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Abstract. The applicability of the Poisson-Boltzmann model for micro- and nanoscale
electroosmotic flows is a very important theoretical and engineering problem. In this
contribution we investigate this problem at two aspects: first the high ionic concentra-
tion effect on the Boltzmann distribution assumption in the diffusion layer is studied
by comparisons with the molecular dynamics (MD) simulation results; then the elec-
trical double layer (EDL) interaction effect caused by low ionic concentrations in small
channels is discussed by comparing with the dynamic model described by the coupled
Poisson-Nernst-Planck (PNP) and Navier-Stokes (NS) equations. The results show that
the Poisson-Boltzmann (PB) model is applicable in a very wide range: (i) the PB model
can still provide good predictions of the ions density profiles up to a very high ionic
concentration (∼ 1 M) in the diffusion layer; (ii) the PB model predicts the net charge
density accurately as long as the EDL thickness is smaller than the channel width and
then overrates the net charge density profile as the EDL thickness increasing, and the
predicted electric potential profile is still very accurate up to a very strong EDL inter-
action (λ/W ∼10).

PACS (2006): 41.20.Cv, 66.30.Ah, 82.39.Wj

Key words: Poisson-Boltzmann model, electroosmotic flow, EDL interaction, Poisson-Nernst-
Planck equation.

1 Introduction

Electroosmotic flow plays a fundamental role in many biochemical and biophysical pro-
cesses [1, 2], such as ion transports in cells [3, 4] and electroosmosis in random porous
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structures [5]. Similar applications can also be found in NEMS/MEMS devices [6, 7].
A complete understanding of these physical and chemical processes need correct math-
ematical descriptions and accurate solutions of the electrostatic potential distributions.
One of the most widespread models for the electrostatic interactions is the Poisson-
Boltzmann equation (PBE) [2]. The linearized PBE (LPBE) and non-linearized PBE
(NLPBE) have been applied successfully in predictions and modeling of the microscale
electroosmotic flows [8–10]. However, the accuracy of the PBE depends on whether the
Boltzmann distributions of ions densities can hold on within the EDL. There are several
factors that could make the PBE failure, especially for micro- and nanoscale electroos-
motic flows: (i) molecular nature and interactions of ions; (ii) ionic concentration effect;
(iii) EDL interaction and overlap.

Concerning the molecular effects upon the applicability of the Poisson-Boltzmann
equation for micro- and nanoscale electroosmotic flows, much work has been done
using the atomistic simulations and comparing with the continuum theory in the last
decade [11–21]. Most of them reported deviations of the Poisson-Boltzmann theory from
the MD results for nanoscale electroosmotic flows [14–19]. For example, much higher
ionic concentration distributions near wall surfaces predicted by MD were reported than
those predicted by the Poisson-Boltzmann theory [14, 15]. Qiao and Aluru [15] modified
the Poisson-Boltzmann equation by introducing an electric potential correction extracted
from the ion distribution in a smaller channel using MD simulations, which could be
used for predicting the electric potential distribution in larger channels [15,19], however,
with some rigorous conditions for similarity [20]. Cui and Cochran [17] found that the
Poisson-Boltzmann equation agreed well with the MD results quantitatively at moder-
ate ionic concentrations around 20 mM and failed at low ionic concentration and higher
zeta potential over 50 mV. Dufreche et al. [18] simulated the electroosmosis in clays and
declared that the Poisson-Boltzmann theory and MD simulation only agreed when the
interlayer spacing was large enough, and a slipping modification must be considered
for the hydrodynamics. Zhu et al. [19] also reported the failure of Poisson-Boltzmann
theory in nanochannel electroosmotic flows and traced the reason to the exclusion of
ions near the channel walls. Recently, Wang et al. [21] summarized all these previous
researches and figured out that the base must be the same when the Poisson-Boltzmann
theory was compared with the atomistic simulation results. Once the MD simulation re-
sults were calculated by the binning technique in which the bin size was no smaller than
one molecular diameter and the focusing region was limited to the diffusion layer, the
ion distributions from the MD simulations agreed well with the predictions based on the
Poisson-Boltzmann theory for their cases. The Stern layer caused by the ions size and the
non-Coulombic interactions between ions and walls should be excluded for the compar-
isons. Such a conclusion provides virtually a guide line for future comparisons between
atomistic simulations and continuum predictions of electrokinetic transports.

To examine the Boltzmann distribution approximation of ions in the diffusion layer,
an alternative method is to solve the basic coupled electrodynamic, hydrodynamic and
ions transport equations and to compare the results with the Poisson-Boltzmann predic-
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tions. Such a method is suitable for very dilute electrolytes so that the EDL interactions
caused by non-fully-developed EDLs can be studied. Qu and Li [22] first built up a model
based on the Debye-Huckel approximation to investigate the overlapped EDL fields and
found that the Boltzmann equation lead to inaccurate predictions for small channels.
Yang et al. [23] solved the Poisson-Nernst-Planck equations for electroosmotic entry flow
in a microchannel and compared with the Poisson-Boltzmann model. The edge effect
was therefore found which lead the Poisson-Boltzmann model failure for such flows.
Similar analysis could be found for electroosmotic flows in “step-charged” channels [24].
Usually the strongly non-linear PNP equations coupled with the Navier-Stokes equation
can be solved by the finite difference method or finite element method [25]. Recently, a
new algorithm has been developed to solve the equations using multiple lattice Boltz-
mann models which own a high efficiency for such a multi-physical transport process,
especially for complex boundary conditions [26].

The objective of this research is to clarify the applicability of the Poisson-Boltzmann
model for micro- and nanoscale electroosmotic flows. First, considering the molecular
nature and the existence of the Stern layer we compare the atomics simulation results
with the PB model to check the high ionic concentration effect on the applicability of PB
model for nanoelectroosmotic flows. Then, the relatively lower ionic concentration effect
on the applicability of PB model is investigated by comparing the predictions of the dy-
namics theories (coupling PNP with NS equations) with those of PB model for electroos-
motic flows in micro- and nanochannels. The paper is organized as follows. In Section 2,
we introduce the mathematical models and their numerical solution methods, including
the Poisson-Boltzmann model, the molecular dynamics (MD) modeling system and the
multiple lattice Boltzmann models for solving the coupled PNP and NS equations. The
analysis results and discussion on the applicability of the Poisson-Boltzmann model in
micro- and nanoscale electroosmotic flows are presented in Section 3 by comparisons be-
tween different models. Finally we conclude by summarizing the previous work and the
present contributions.

2 Mathematical model and numerical methods

2.1 Poisson-Boltzmann model

Consider an electroosmotic process in an infinite long straight channel. The walls are
fixed and homogeneously charged. The steady electrostatic interaction can therefore be
described by a Poisson equation [27, 28],

∇·(εr∇ψ)=−
ρe

ε0
=−

1

ε0

N

∑
i=1

enizi, (2.1)

where ψ is the electrical potential, εr the relative dielectric constant of the solution, ε0

the permittivity of a vacuum, and ρe the net charge density. According to classical EDL



1090 M. Wang and S. Chen / Commun. Comput. Phys., 3 (2008), pp. 1087-1099

theory, the equilibrium Boltzmann distribution function can be assumed to describe the
distributions of small ions in the dilute solution. Therefore, the net charge density distri-
bution can be expressed as the sum of all the ions in the solution

ρe =∑
i

zieni,∞ exp

(

−
zie

kbT
ψ

)

, (2.2)

where the subscript i represents the ith species, n∞ is the bulk ionic number concentra-
tion, z the valence of the ions (including the sign), e the absolute value of one proton
charge, kb the Boltzmann constant, and T the absolute temperature. For 1:1 electrolyte
solutions, such NaF or NaCl solution in the present work, Eqs. (2.1)-(2.2) can be simpli-
fied as

∇·(εr∇ψ)=−
2zen∞

ε0
sinh

(

zeψ

kbT

)

. (2.3)

There are two ways to present the boundary conditions for the Poisson equation
(2.1), Dirichlet and Neumann boundaries. In some atomistic methods for electroosmotic
flows [14, 15], the Neumann boundary condition is mostly used because the electric po-
tential gradient is relative to the wall surface charge density. Electric charge conversa-
tion can be considered as an additional restrict for certain solution under the Neumann
boundary condition, which brings a big additional computational cost as well. Recent
investigations show a lattice evolution method can deal with this problem easily [29]. In
this contribution we still use the Dirichlet boundary condition to solve the Poisson equa-
tion. To compare with the MD simulation results, we obtain the zeta potentials, ζ, from
MD, and then use the values as the Dirichlet boundaries to solve Eq. (2.3).

2.2 Molecular dynamics method

Non-equilibrium molecular dynamics (NEMD) method [30] can be used to simulate the
electroosmotic flow in a channel directly. The accuracy of this type of model is limited
only by the force fields used to describe interactions between solvent molecules, ions,
and the channel walls, and the simulation size and duration, which are determined by
computer resources and the computational efficiency of the simulation code. In order to
provide a clear picture of how the various conditions affect the applicability of contin-
uum theory, a simplified model was used to capture the essential physics [13, 19]. Both
solvent and ions are simplified as spherical, non-polar particles interacting with a shifted
Lennard-Jones potential,

VLJ(rij)=4ε ij

[

(

σij

rij

)12

−

(

σij

rij

)6

−

(

σij

rc

)12

+

(

σij

rc

)6
]

, (2.4)

where rij, ε ij, and σij are the separation, Lennard-Jones well depth and Lennard-Jones di-
ameter, respectively, for the pair of atoms i and j . With this simplification, the simulations
become more tractable while still retaining a model with discrete solvent particles. In
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deed, replacing such a model for solvent with a more realistic model, such as SPC/E [15]
will improve the accuracy of the simulations; however the simplified model can still
provide qualitative conclusions applicable to real systems, which has been proved in
many previous researches for various areas [19]. The L-J interaction is set to zero when
molecules are separated by farther than the cut-off length rc=2.5σ. The molecular param-
eters are chosen to match those in a NaF electrolyte solution in a silicon channel which
are listed in Table 1 [31]. The Lorentz-Berthelot combination rules were used for the in-
teraction parameters that are not specified explicitly [31].

Table 1: Parameters for Lennard-Jones interactions between same species particles.

Species m (g/mol) σ (10−10m) ε (kJ/mol)

O (Water) 18.00 3.165 0.6503

Si 28.08 3.386 2.4770

Na+ 22.99 2.350 0.0618

F− 19.00 3.121 0.6080

Each ion was assigned a charge ( +e or −e ), while the solvent particles were neutral.
The ion-ion electrostatic interactions were calculated using a screened Coulomb interac-
tion,

VC(rij)=
qiqj

4πε0εrrij
, (2.5)

where the relative dielectric constant of fluid, εr, is approximately set to 78 in our simula-
tions. The electro-static interactions were computed using the direct summation over the
whole domain with no truncation for the Coulomb interactions [32].

The equations of motion are integrated using the Verlet scheme [33] with time step
∆t = 0.005τ, where τ≡ (mσ2/ε)1/2 is the characteristic time of the Lennard-Jones poten-
tial. A Langevin thermostat [34] with damping rate τ−1 is used to maintain a constant
temperature of 1.1ε/kb . The thermostat is only applied in the y-direction, since it is peri-
odic and normal to the main flow direction.

NEMD simulations were performed for systems consisting of a slab of electrolyte so-
lution sandwiched by two plane walls as shown in Fig. 1. The two walls are symmetrical
with respect to the channel center line. Each wall is made up of five layers of atoms ori-
ented in the <111> direction. The channel is L in length and W in width. The wall atoms
are fixed to their original positions, all of which have van der Waals interactions with the
fluid molecules. Only the outermost wall layers are charged, uniformly among the wall
atoms. In cases of this contribution, we use a channel with L=3.3 nm, W =4.98 nm and
1500 molecules flowing in it.

At the beginning of the simulation, the molecules were randomly positioned and as-
signed Maxwellian distributed velocities at the temperature of 1.1ε/kb . Periodic bound-
ary was performed in the x and y directions. Before the macroscopic characteristics were
sampled, the NEMD simulations were run for 5×105 time steps to reach steady state flow.
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After that, the densities and velocities were computed time-averaged, over 3×106 times,
by using the binning method [33].

Figure 1: A schematic of the electro-osmotic flow in nanochannel. The two channel walls are symmetrical with
respect to the channel center line. Each wall is made up of five layers of still solid atoms. The channel width
W is defined as the distance between centers in the two innermost wall layers.

2.3 Poisson-Nernst-Planck model

When the Boltzmann distribution of ions in the diffusion layer is not preconcerted, the
electric potential profile has to be determined by solving a series of coupled electrody-
namic, hydrodynamic and ions transport equations. Consider an N-component Newto-
nian electrolyte flowing with velocity u(r,t) in a channel with no polarization and chem-
ical reactions. The flux ji of each ith ion species, composing the solute, is given by the
following constitutive equation [35]

ji =−Di∇ni−ezibini∇ψ+niu (2.6)

where ni is the number density of the ith ion species, Di and bi are the ion’s diffusivity
and electric mobility, related by the Stokes-Einstein equation

Di =bikbT. (2.7)

The ionic flux ji and the concentration ni obey the continuity equation

∂ni

∂t
+∇·ji =0. (2.8)

For an incompressible laminar electroosmotic flow, the movement of electrolyte is
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governed by the continuity and momentum equations:

∇·u=0, (2.9)

ρ
∂u

∂t
+ρu·∇u=µ∇2u+FE, (2.10)

where ρ the solution density, µ the dynamic fluid viscosity and FE the electric force den-
sity vector.

Eqs. (2.6)-(2.10) together with Eq. (2.1) compose the Poisson-Nernst-Planck model
which govern the electroosmotic transports and are solvable subject to the following
boundary conditions on the liquid-solid interface Ω

(v·ji)Ω =0, (2.11)

uΩ =0, (2.12)

ψΩ = ζ, (2.13)

where v is the outer normal to Ω.
The non-linear coupled Poisson-Nernst-Planck and Navier-Stokes equations can be

solved using the traditional PDE solvers [25]. He and Li [36] proposed a lattice Boltz-
mann scheme to solve the electrochemical process; however their assumption of locally
electrically neutral is too critical and may not be true for many cases [37] and their evo-
lution equations might be unstable. Hlushkou et al. [38] developed a coupled numerical
method between a lattice Boltzmann method for PNP equations and a finite difference
method for NS equations. Unfortunately, there is a half cell/grid difference between
the lattice Boltzmann simulation with a bounce-back boundary treatment and the finite
difference method on the same set of grid which leads to the coupling failure [39]. Re-
cently Wang [26] presented a new algorithm to solve the equations using multiple lattice
Boltzmann models. Different from the decouple process of the lattice Poisson-Boltzmann
method [7, 10, 40], the new algorithm uses a coupling evolution process. The evolution
equations were proved stable and the boundary treatments were consistent. The algo-
rithm details and efficiency discussion can be found in [26].

3 Results and discussion

In this section, we compare the Poisson-Boltzmann model with the more fundamental
models to clarify the applicability of the PB model for micro- and nanoscale electroos-
motic flows. First, to check the high ionic concentration effect on the applicability of PB
model for nanoelectroosmosis we compare the PB model with the MD simulation results.
Then, the PB model is compared with the predictions of the dynamics theories (coupling
PNP with NS equations) for relatively lower ionic concentrations to make clear the EDL
interaction effect on the applicability of PB model for electroosmotic flows in micro- and
nanochannels.
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3.1 High concentration effect

Based on the classical electrostatics theory, the solute ions have a Boltzmann distribution
in the diffusion layer when the solution is dilute enough. If the ionic concentration is
high, the molecular interactions will make the Boltzmann distribution assumption break
down. However the classical theory did not give a quantitative description what a high
ionic concentration would make this happen. Few researches have been found on this
topic for two reasons: (i) it is hard through any continuum way; (ii) most of atomic re-
searches believed that the Boltzmann distribution assumption broke down already even
for dilute electrolyte solutions. Our recent research has figured out that there are two crit-
ical points when the atomic simulation results are compared with the continuum mod-
els: (i) the bin (or grid) size should be no smaller than the diameter of the dominating
molecules; (ii) since the Boltzmann distribution are only assumed within the diffusion
layer in the classical theory, the atomic simulation results should exclude the part of Stern
layer [21]. After considering these two aspects, we have obtained good agreements be-
tween the atomic simulation results and the Poisson-Boltzmann model for dilute cases.

Thus, we use this NEMD simulation to study the critical high ionic concentration that
would make the Poisson-Boltzmann model fail. The NEMD process and general param-
eters are described in the Section 2.2. The bin size in this work equals to one diameter of
the water molecule. We obtain the outer electric potential of the diffusion layer of the MD
result as the zeta potential and the averaged ionic concentrations at the middle of chan-
nel as the bulk ionic concentration for the numerical solution of the Poisson-Boltzmann
equation by a lattice Poisson method [29]. We fix the wall surface charge density and
change the ions numbers to vary the ionic concentrations. The various simulated cases
performed in this work are summarized in Table 2. The resulted bulk ionic concentration
therefore varies from 0.15 to 5.23 M.

Table 2: Summary of the simulated cases.

Case # σs (C/m2) Counter-ion # (Na+) Co-ion # (F−)

1 0.191 30 0
2 0.191 40 10
3 0.191 55 25
4 0.191 100 70
5 0.191 200 170

Fig. 2 shows the comparisons of the calculated ions density profiles between the MD
simulations and the PB predictions. For a clear picture, we divide the comparisons into
two parts: relatively lower concentrations and higher concentrations. The results indicate
that the Poisson-Boltzmann model works well for relatively lower concentrations but
fails to agree with the MD results for high concentration any more. The critical ionic
bulk concentration from this research is around 1 M (Case 3). The higher than this critical
concentration, the larger is the deviation. For very high ionic concentrations, the Poisson-
Boltzmann model underrates the ion density near the wall surfaces.



M. Wang and S. Chen / Commun. Comput. Phys., 3 (2008), pp. 1087-1099 1095

*

e

*
z

*

e

*
z

(a) (b)

Figure 2: Ions density profiles for different ionic concentrations. (a) Cases at moderate and low ionic concen-
trations. The cases from bottom to top are Cases 1, 2, 3; (b) Cases at high ionic concentrations. The cases
from bottom to top are Cases 3, 4, 5. The bulk ionic concentration of Case 3 is around 1 M. The solid symbols
are MD results, and the solid lines are the PB model predictions. The ion density is normalized by |e|/σ3, i.e.,

ρ∗e =ρeσ3/|e| , and the z-position is normalized by the channel width, e. g. z∗= z/W.

3.2 EDL interaction effect

On the other side of the high ionic concentrations, a too dilute solution may lead to the
electric double layers interaction with each other within a very small channel. For such
dilute cases, the MD simulation is not available due to its huge computational costs.
Therefore we consult the dynamic models here without the Boltzmann distribution as-
sumption. Several simplified models have been established for the overlapped EDL fields
in microchannels. Differences were reported between predictions by these models and
by the PB model for the electric potential distribution and the flow velocity profile across
the channel, which were ascribed to the EDL interactions. For instance, Qu and Li [22]
ever investigated the EDL fields overlap effect on the potential distribution for inorganic
oxide-aqueous solution systems using a model based on the Debye-Huckel approxima-
tion. In this contribution, we solve the strongly non-linear coupled dynamic equations
(PNP and NS equations) by the multiple lattice Boltzmann models without any lineariza-
tion approximations [26] for comparisons to clarify the effect of EDL interaction on the
applicability of PB equation. We are focusing on the physical transports while ignoring
the chemical actions, such as the water molecules dissociation, during the electroosmotic
process.

Consider an electroosmotic flow of a NaCl solution in a two-dimensional straight
homogenously charged channel. The channel width (W) is fixed at 1 µm and the bulk
ionic concentration is changed to vary the thickness of the EDL. Supposing the thickness
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(a) λ/W =0.09 at n∞ =10−5 M

(b) λ/W =0.92 at n∞ =10−7 M

(c) λ/W =9.22 at n∞ =10−9 M

Figure 3: Net charge density and electric potential profiles for different bulk ionic concentrations.
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of the EDL defined as

λ=
√

ε0εrkbT/(2e2z2n∞),

we vary the bulk ionic concentration from 10−4 M to 10−9 M so that the ratio of the EDL
thickness to the channel width (λ/W) coves a wide range from 0.03 to 9.22. Though the
real solution is not possible to have a dominating bulk ionic concentration lower than
10−7 M, yet these dimensionless results will be very helpful for nanoscale applications.
In our present simulations, we use ζ =−5 mV, Di =1×10−8 m2/s, Ex =103 V/m and the
other parameters used can be found in Ref. [26].

Fig. 3 compares the net charge density and the electric potential profiles resulted from
the dynamic model and the Poisson-Boltzmann model for different bulk ionic concen-
trations. The results indicate that as long as the EDL thickness is much smaller than
the channel width both the net charge density and the electric potential profiles resulted
from the PB model agree pretty well with the dynamic model predictions. Once the EDL
thickness is larger than the channel width, the predicted net charge density profile by
the PB model will be higher than that by the dynamic model. It is also surprising to find
that the PB model can still provide very good predictions of electric potential distribution
for very thick EDL (λ/W =9.22) which means very strong EDL interactions. This result
differs much from the previous researches by others, such as those in Ref. [22], which in-
dicates that the EDL interaction effect on the applicability of the PB model was overrated
and the chemical actions, such as the water molecules polarization and dissociation, and
the associated effects on the boundary conditions at interfaces play a more significant
role especially in the dilute solutions.

4 Conclusions

The applicability of the Poisson-Boltzmann model for micro- and nanoscale electroos-
motic flows has been investigated in this contribution. First the high ionic concentration
effect on the Boltzmann distribution assumption in the diffusion layer was studied by
comparisons with the MD simulation results. It was found that the high bulk ionic con-
centration would make the Poisson-Boltzmann model fail to agree with the atomistic
simulations; however the PB model can still provide good predictions up to a very high
ionic concentration (∼1 M). On the other side, the low ionic concentration for very small
channels leads to the electric double layers interacting with each other within the channel.
The EDL interaction effect was then discussed by comparing with the dynamic model de-
scribed by the coupled Poisson-Nernst-Planck and Navier-Stokes equations. The results
showed that the PB model accurately predicted the net charge density as long as the EDL
thickness is smaller than the channel width and then overrated the net charge density
profile as the EDL thickness increased. The PB prediction of electric potential profile
was still very good up to very strong EDL interaction (λ/W ∼ 10). As a summary, the
Poisson-Boltzmann model is applicable in a very wide range.
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