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Abstract. Recent years have witnessed significant improvement in implicit solvents
based on the Poisson-Boltzmann theory, whether in the forms of numerical solution
or analytical approximation. Especially worth noting are the improvements and revi-
sions of those implicit solvents for stable dynamics simulations. Given these technical
advancements, attentions are now paid to the quality of implicit solvents as compared
with the more expensive explicit solvents. The new developments in nonpolar sol-
vents mentioned above and reviewed elsewhere will also result in more accurate sim-
ulations of biomolecules. We have also touched the new challenges facing the implicit
solvents. That is how to incorporate these solvents in the emerging polarizable force
fields. New challenges could also arise from the assumptions underlying all implicit
solvents, as recently explored to couple electrostatic and nonelectrostatic components
together. In addition, hybrid solvents could eventually become a reality for dynamics
simulation even this has been proposed in the early days of computational biochem-
istry. It is likely that such hybrid solvents will offer the necessary accuracy, as they no
longer average out the very degrees of freedom that are of interest in studies where
solute/solvent coupling is crucial.
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1 Introduction

Molecular dynamic (MD) simulation is one of the important theoretical methods to inves-
tigate the structures, dynamics and kinetics of proteins at the atomic level. To describe the
interactions between atoms, MD simulations usually adopt a relatively simple potential
energy function (U), as follows

U = ∑
bonds

kb(b−b0)
2+ ∑

angles

kθ(θ−θ0)
2+ ∑

torsions

kφ[cos(nϕ+δ)+1]

+ ∑
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[

QiQj

rij
+

Aij

r12
ij

−
Bij

r6
ij

]

. (1.1)

The first three summations are over deviations of bonds (b) from their equilibrium val-
ues (b0), deviations of angles (θ) from their equilibrium values (θ0), and rotatable bonds
(torsion angles ϕ with phase n and offset δ). The final summation is over pairs of atoms
i and j with charges Qi and Qj separated by distance rij. It describes electrostatic in-
teractions that are represented by a Coulombic potential, and dispersion and exchange
repulsion interactions that are represented by a Lennard-Jones 6-12 potential. The pa-
rameters in Eq. (1.1) along with the function form of Eq.(1.1) are called force field. Many
force fields have been developed for biomolecular simulations, such as Amber [1–6],
CHARMM [7,8], and OPLS [9–11]. Use of the potential energy function in Eq. (1.1) allows
a rather efficient numerical procedure to be developed to solve the Newtonian equation
of motion

d2r

dt2
=−∇U. (1.2)

The overwhelming adoption of molecular dynamics in molecular biophysics can be
contributed to the often stringent requirement that an atomic-detailed description of
biomolecules must be used to elucidate their structures and functions. However even
with such a simple functional form of Eq. (1.1), many fundamental biomolecular pro-
cesses remain largely inaccessible to molecular dynamics simulations when relevant time-
scales reach microseconds and system sizes exceed more than a few hundred residues.
The computational inaccessibility partially comes from the requirement for an accurate
description of the aqueous environment that is essential for atomistic biomolecular sim-
ulations. To fulfill the requirement even for a medium-sized biomolecule requires thou-
sands of discrete water molecules to be placed around it. The computational cost for
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simulating these ”extra” thousands of water molecules far exceeds that for simulating
the biomolecule alone.

Exploration for alternative treatments of solvation by ”implicit or continuum water”
balancing simplicity that permits fast calculations without loss of atomic-detailed de-
scription of biomolecules has been a constant theme in molecular biophysics throughout
most of its still short history. In developing such implicit water models, or implicit sol-
vents to be more general, it is natural to enforce that any implicit solvent approximation
retains the proper structural distributions of biomolecules as much as possible from those
of the same biomolecules solvated in explicit solvents. This requirement leads to the fol-
lowing formulation of implicit solvents.

To start, we note that Eq. (1.1) is pairwise additive, i.e., it can be decomposed into
a summation of terms involving a pair of atoms only. Thus the potential energy of a
solvated biomolecular system can always be written as

U(ru,rv)=U(ru)+U(rv)+U(ru : rv) (1.3)

with ru and rv representing the degrees of freedom of the solute (biomolecule) and solvent
(water) molecules, respectively, and U(ru : rv) representing solute/solvent coupled inter-
action potential. In an NVT ensemble (with fixed number of atoms for both biomolecule
and water molecules at constant volume and temperature), the probability distribution
for the solvated system at (ru,rv) is

P(ru,rv)=
exp[−βU(ru,rv)]

∫

drudrv exp[−βU(ru,rv)]
. (1.4)

In simulations with implicit solvents, we are not interested in the solvent degrees of free-
dom, rv. Therefore only the reduced probability distribution for the solute at ru is of
interest. Apparently

P(ru)=
∫

drvP(ru,rv).

This gives

P(ru)=
exp[−βW(ru)]

∫

dru exp[−βW(ru)]
, (1.5)

where

exp[−βW(ru)]≡
∫

drv exp[−βU(ru,rv)].

Here W(ru) is defined as a potential of mean force, or reversible work, of a given solute
configuration ru. It can be shown that the gradient of W(ru) with respect to a solute
atomic coordinate ri is related to its mean force component Fi:

∂W(ru)

∂ri
=

〈

∂U(ru)

∂ri

〉

= 〈Fi〉. (1.6)
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W(ru) can be decomposed into two parts, U(ru), and a solvent-induced term Ws(ru):

W(ru)=−kT ln
∫

drv exp[−βU(ru,rv)]

=U(ru)+Ws(ru), (1.7)

with

Ws(ru)=−kT
∫

drv exp[−βU(rv,ru : rv)], (1.8)

since the term involving U(ru) is independent of rv and can be moved out of the integral.
By definition, W(ru), is the reversible work to assemble solute atoms into their final

configuration ru in the presence of solvent molecules. Most modern implicit solvation
schemes compute W(ru) by separating the assembly process into two steps: (1) switching
on non-electrostatic interactions of the solute atoms, and (2) switching on electrostatic
interactions by charging up solute atomic charges.

In step (1), the assembly reversible work takes into account the solute covalent terms
(U(rp)cov), i.e. the bond, angle and torsion angle terms in Eq. (1.1), the solute van der

Waals term (U(rp)vdw) in Eq. (1.1), and the non-electrostatic solvation reversible work
Ws(rp)nes. Thus, the reversible work of this step can be expressed as

W(ru)
1 =U(ru)

cov+U(ru)
vdw+Ws(ru)

nes. (1.9)

In principle, the non-electrostatic solvation reversible work can be modeled as a repulsive
cavity component and an attractive dispersion component, as will be reviewed in Section
5.

In step (2), the charging process wraps both the solute Coulombic contribution in
Eq. (1.1), U(rp)es, and the solvent-induced contribution, Ws(rp)es, into the charging re-
versible work:

W(ru)2 =U(ru)
es+Ws(ru)es. (1.10)

The reversible work of charging the solute, W(ru)2, may be computed by solving the
Poisson equation

∇·ε(r)∇φ(r)=−ρ(r), (1.11)

where ε is the dielectric constant, φ is the electrostatic potential, and ρ is the charge den-
sity, i.e. all atomic charges within the solute. All three variables are functions of posi-
tion vector r. A dissolved electrolyte may be accommodated by the use of the Poisson-
Boltzmann equation instead of the Poisson equation

∇·ε(r)∇φ(r)=−ρ(r)−∑n0
i qi exp[−βqiφ(r)], (1.12)

where n0
i is the number density of counterions of type i in the bulk solution, qi is the

charge of the counterions of type i, and β=1/kT. Here k is the Boltzmann constant, and
T is the temperature. When the electrostatic field is weak, Eq. (1.12) can be linearized as

∇·ε(r)∇φ(r)=−ρ(r)+∑βn0
i q2

i φ(r). (1.13)
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Once the electrostatic and nonelectrostatic reversible works and their derivatives on
all atoms are solved, they can be used in Eq. (1.2) to propagate the solvated biomolecular
system. When the Langevin heat bath is used, the solute atoms distribution will follow a
probability distribution as in Eq. (1.5).

Implicit solvents apparently have several advantages over explicit solvents. For ex-
ample, in implicit solvent simulations there is no need for lengthy pre-equilibration of
systems, mostly the artificially placed water molecules. Artifacts due to periodic bound-
ary conditions are not of concern because implicit solvation corresponds to the infinite
dilute solution. Implicit solvent simulations generally give improved sampling due to
the absence or reduction of solvent viscosity. Of course, all these benefits of implicit sol-
vents come at a price of making a dramatic simplification of discrete solvent structures.
For example, solute-solvent hydrogen bonds are no longer explicitly present; instead,
they come in implicitly and contribute to the overall solvation free energy.

Due to these advantages, many efforts have been made to develop or improve various
implicit solvents. A class of implicit solvents based on the Poisson-Boltzmann (PB) equa-
tion has become widely accepted [12, 13] and has been widely used in free energy calcu-
lations [14–16], dynamic simulations [17–19], pKa evaluations [20–23], and constant pH
simulations [24–26]. This review focuses on this class of implicit solvents, especially on its
applications in dynamics simulations. Thus, it is far from exhaustive. The readers are re-
ferred to other recent review articles on solvation for more general reviews [12,13,27–37].

2 Adaptation of Poisson-Boltzmann solvents to dynamics

simulations of biomolecules

Adaptation of PB solvents to dynamic simulations requires numerical solution of the
3-D partial differential equation. However, the numerical procedure has been a bottle-
neck, largely limiting their application to calculations with static structures only. The
difficulty lies in the numerical procedure to apply such solvents, which involves dis-
cretization of the partial differential equation into a system of linear equations that tends
to be rather large: it is not uncommon to have a million unknowns in biochemical ap-
plications. In addition, the setup of the linear system before the numerical solution and
post-processing to obtain energies and forces are both nontrivial. The most commonly
used finite-difference (FD) approach was first introduced into biochemical studies in the
early 1980s [38–40]. The programs Delphi [41], UHBD [42], Grasp [43] and others have
greatly assisted its adoption by the biochemistry community. The boundary element ap-
proach has also been used for molecular mechanics [44–47], though less widely than the
finite-difference approach. One advantage in applying the boundary element approach
lies in the fact that the dimension of the linear system is much smaller than that from
the finite difference scheme due to the different dimensionality (3-D v.s. 2-D). However,
the corresponding linear system is much denser, making it more difficult to solve. The
finite-element approach was also introduced into chemistry, with the idea that it could
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reduce the number of grids when compared with the uniform finite-difference grid with
the same grid resolution near solute atoms [48–51]. However, the regular pattern in the
matrix from finite-difference discretization is lost, making it harder to write a highly ef-
ficient solver. Recently, multi-grid approaches have been introduced into the field of
biochemistry to speed up the convergence of various solvers [50–52]. Their performance
gain is especially useful for very large systems [53].

Due to the computational expense for solving the PB equation numerically, consid-
erable efforts have been invested in approximating the solution of the PB equation, via
methods such as the semi-analytical generalized Born (GB) model [54], the induced mul-
tipole model [55], the dielectric screening model [56, 57], and others. The pair-wise GB
model, in particular, has been widely accepted as an efficient estimation of the solution
of the PB equation as recently reviewed [29, 31–37].

The earliest attempts to use implicit solvents based on the PB theory in dynamic sim-
ulations date back to as early as the 1990s when Davis et al. [58], Zauhar [59], Sharp [60],
Luty et al. [61], and Gilson et al. [62, 63] contributed to adapting numerical PB solvents
for dynamic simulations. However, those successful attempts could only apply such sol-
vents in simulations to small organic molecules, such as dipeptides and tetra-peptides,
since the cost of using implicit solvents on macromolecules was prohibitively high. In
fact, the per-step simulation cost is higher with the finite difference approach than that
with explicit water even at the 1 Å grid spacing, though it can be argued that the sol-
vent is always equilibrated in implicit solvents, whereas it takes a long time to achieve
equilibration in explicit water simulations. Its inefficiency sharply limits the practical
applications of implicit solvents in routine dynamics simulations of macromolecules.

Recently, there has been renewed interest in finding ways to apply implicit solvents,
both numerical and semi-analytical GB approaches, in dynamic simulations [18, 19, 33,
50, 51, 57, 64–76]. Whether numerical procedures or semi-analytical GB procedures are
used to solve the PB equation, the common continuum approximation of electrostatic
solvation as dielectric response may pose computational challenges in the applications to
biomolecules especially in dynamics simulations.

2.1 Simulation stability and dielectric models

The first challenge is to achieve computational stability in dynamics simulations [18]. In
part, the stability in dynamics simulations is determined by the solute dielectric model
that has to be smooth both over time and over space. This is the case whether numerical
or semi-analytical methods are used [18, 77].

Typically, implicit solvents use a solute molecular surface definition for dielectric as-
signment. The solvent excluded surface is the most used definition. However, setting up
the dielectric map with this surface can be time-consuming [78], though recent develop-
ments have dramatically improved its efficiency [41]. In addition, testing of this surface
definition in molecular dynamics indicates that it is numerically unstable [18,77]. In fact,
none of the native proteins that were tested is stable with this surface definition [18]. This
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is because dynamic variables need to be sufficiently smooth over time for dynamics sim-
ulations to be stable. Otherwise, it is difficult to use a reasonable time step, such as 1-2
femtosecond at room temperature. The limitation of the solvent excluded surface is in
the reentry portion, as recently analyzed [18]. It is found that in simulations of proteins
at room temperature, large reentry volume generated by non-bonded atoms comes and
goes as often as every femtosecond when the nearby atoms undergo vibrational motion,
resulting in rapidly fluctuating forces [18].

The van der Waals surface, or the hard sphere surface, represents the low-dielectric
molecular interior as the union of the atomic van der Waals volumes. This definition
is both efficient and smooth over time, i.e. the surface changes rather smoothly in dy-
namics simulations at room temperature. However, there are too many nonphysical high
(solvent) dielectric pockets inside the solute interior in the van der Waals definition, as
shown in Fig. 6 of Ref. [79]. These small buried “solvent pockets” result in electrostatic
field changing rapidly over space, causing dynamics to be unstable. It has been pointed
out that van der Waals surface has an additional artifact of assigning the apparent protein
interior dielectric constant to a much higher value, as in the pKa calculations which may
or may not be wanted. A more controlled approach on the interior dielectrics is definitely
needed.

The Gaussian(-like) density approach has recently been used in the definition of di-
electric boundary for implicit solvents [65, 80, 81]. In this type of approach, a distance-
dependent density/volume exclusion function is used to define each atomic volume.
This is in contrast to the hard sphere definition of atomic volume as in the van der Waals
or the solvent excluded surface. The trailing tail outside the cavity radii can be used
to smooth out the small cracks and crevices formed by neighboring atoms. This defini-
tion is smooth over both time and space. However, the cost of computing the volume
exclusion/density function at every grid edge is a major concern when this approach is
applied to numerical solvers. In addition, its ability to smooth out the reentry region
depends on the length of the trailing tail outside the cavity radii. A long tail makes the
surface smoother, but it also makes atomic cavities appear larger, changing the underlin-
ing physics of the solvent model. On the other hand, a short tail does not properly cover
the reentry region effectively.

Considering these limitations, the modified van der Waals surface was proposed [18].
This surface definition proceeds by first computing the solvent accessible surface of the
solute. All solute atoms are then classified as solvent exposed, i.e. with non-zero sol-
vent accessible surface area, or as buried, i.e. with zero solvent accessible surface area.
For the exposed atoms, the atomic cavity radii are used directly; for buried atoms, its
cavity radii are increased by the solvent probe radius (termed as modified radii). In the
second step, the standard van der Waals surface is generated with these modified radii.
The harmonic dielectric smoothing [82] is applied at this step to smooth the dielectric
transition between solvent and solute. After step two, the dielectric distribution within
and around buried atoms is very smooth, i.e. it is all part of the solute low dielectric.
However, the dielectric distribution around exposed atoms can still show spatial fluctu-
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ation. Thus, the third step is used to smooth out the spatial fluctuation around exposed
atoms. In the third step, all dielectric edges that are within a rectangular box with its
surfaces one solvent-probe-diameter away from the solute surface are checked. This step
is designed to find any buried high dielectric edges and/or intermediate dielectric edges
(due to the harmonic smoothing of dielectrics) within the solute interior. If these edges
are buried, their dielectric values are changed to the solute dielectric value, i.e. they are
changed to low dielectric edges [18]. A different strategy is also possible with the GBMV
method, which was originally designed to reproduce solvent excluded surface. Interest-
ingly, the sharp interface between solvent and solute in this method can be made softer
by adjusting the β parameter to make more stable dynamics possible [77].

In these attempts to achieve stable dynamics simulations, attention should also be
paid to the quality of the solvents. It has been pointed out that solvent excluded surface
probably gives the best agreement with explicit solvents and experiment [41,83,84]. Thus,
revision of dielectric models for implicit solvents has to balance both dynamic stability
and quality [77]. The later point is addressed in Section 3.

2.2 Is discrete water structure important?

The second challenge, more of a nature in the limitation of continuum approximation
of solvent dielectric response, is the lack of discrete solvent structure. Experiments and
simulations have revealed that buried and bound water molecules may contribute to
protein structure, dynamics and function [85–89]. Without explicit water representation,
implicit solvent can not study the effect of these water molecules. A recent work reported
that the unique water structure in the second solvation shell, not so much by that of the
first shell, results in the so-called ”water-bridging” phenomenon [90]. This effect causes
the existence of second minimum in the potential of mean force in hydrogen-bonded or
salt-bridged two-body systems. The second free energy minimum cannot be reproduced
by implicit solvents though overall potential of mean force can be obtained [90].

What is troublesome is the observation of the water-bridging effect in energetics of
secondary structures: the deviations of implicit solvents from explicit solvents are mostly
smaller in anti-parallel conformations than in parallel conformations [90]. Further ev-
idences are from experimentally observed structural water molecules in crystal struc-
tures. Many hydrogen-bonded water molecules are observed to be at the water bridging
distance, indicating that water bridged minima are very common in biomolecules [91].
Nevertheless, more direct dynamics simulations of biomolecules, especially short pep-
tides that can demonstrate the role of water-bridging effect, are still needed to elucidate
its influences in structural and energetic properties of biomolecules.

It is possible to use a complex position-dependent dielectric constant near solute to
partially alleviate the above deficiency because the local water density due to the water-
bridging effect essentially produces a different dielectric response from that in the bulk
water. It is also possible to develop more complex solvation treatments to incorporate a
few explicit solvent molecules to overcome the limitations observed here, for example, as
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suggest by Yu et al. [92], or by hybrid explicit/implicit solvents as recently reviewed by
Okur and Simmerling [93]. Both directions would increase the computational complexity
and cost of the implicit solvents.

A similar question is whether explicit representation of ions is important. In PB sol-
vents, ions are implicitly treated in the PB equation. Thus the correlation between ions
and the solute or solvents can not be studied. Recently, Sharp et al. presented a hybrid
method, which represents ions explicitly but still leaves solvents implicit, to overcome
this question successfully [94]. An additional advantage of their method is that highly
charged solutes can be treated as neutral so that it is less challenging to maintain their
structural stability in dynamics simulations.

3 The force field aspect of Poisson-Boltzmann solvents

A major advantage of implicit solvents over explicit solvents is their high computational
efficiency. However, it is worth asking whether the quality of the implicit solvents is
comparable to that of widely used explicit solvents. Ideally, we should directly compare
implicit solvent simulations with experimental observables. However, such comparisons
are often limited by several factors: the inability to generate convergent ensembles of
conformations; the coupling between electrostatic solvation and nonelectrostatic solva-
tion treatments so that it is hard to interpret the disagreement with experiment if any;
finally the limited accuracy in the classic molecular mechanics force fields again makes it
hard to interpret the disagreement with experiment if any. Thus a more straightforward
question to ask is how well implicit solvents agree with explicit solvents under identical
simulation conditions.

Doubts in implicit solvents based on the Poisson-Boltzmann theory were raised when
these implicit solvents were compared with explicit solvents in protein folding simula-
tions of peptides [95, 96], though it was later reported that adjustment of atomic cav-
ity radii was found to be able to alleviate many of the previously observed deficien-
cies [97, 98]. Thus a set of more careful comparisons are still needed. In these compar-
isons, the first issue that has to be paid attention to is atomic cavity radii as discussed in
Section 3.1. Once the atomic cavity radii are determined, quantitative comparisons can
be performed as discussed in Section 3.2.

3.1 Atomic cavity radii

A common limitation in many previous investigations of implicit solvents is the lack of
optimized atomic cavity radii for tested implicit solvents. In these studies, van der Waals
radii in a force field were directly used to define the solute cavity boundary without opti-
mization. It is well known that PB reaction field energies depend sensitively on the solute
cavity boundary, where the solvent induced surface charge density is located. As men-
tioned above, the solute cavity is defined by solute atomic centers, atomic cavity radii,
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and solvent probe, so that different reaction field energies computed with different cav-
ity radii may have different performances. Thus, a set of accurate cavity radii is the basis
for quantitative analysis. To date, several sets of systemically optimized cavity radii have
been presented [99–102]. In Sitkoff et al. [99], atomic charges and radii (PARSE) were
obtained by modifying existing force-field or quantum-mechanically-derived values, by
fitting to experimental solvation energies of small organic molecules. Roux and cowork-
ers [100, 101] presented their optimized cavity radii, based on the molecular dynamics
free energy simulations in explicit solvents.

An important issue that has to be addressed is the transferability of optimized cav-
ity radii from small molecules (usually in the training set) to large molecules (usually
biomolecules out of the training set). The cavity radii are usually optimized based on
the studies of small molecules. It is not guaranteed that they work well when applied to
large and complex biomolecules. However, transferability tests, i.e. tests of cavity radii
with biomolecules outside the training set, were only mentioned in Swanson et al. [102].
In their study, Swanson et al. presented optimized cavity radii for amino acid templates
in the Amber force fields. Then the cavity radii were tested on four peptides. Electrostatic
solvation free energies and forces calculated with both optimized and non-optimized cav-
ity radii were compared with those in the TIP3P explicit solvent, and a higher accuracy
was observed when the optimized cavity radii were used. In the study of Tan et al., a
good transferability of empirically optimized cavity radii from small training molecules
to large testing molecules was observed [90]. It is found that transferability of cavity radii
cannot be taken for granted, as shown for two sets of radii with the NMA dimer as a test
case [90]. However, deviations between the tested implicit and explicit solvents are also
apparent in hydrogen-bonding and salt-bridging dimers [90].

3.2 Quality of Poisson-Boltzmann solvents

Many comparisons between implicit and explicit solvents were made in the past. In
the study of Jeancharles et al. [103], electrostatic solvation free energies of twenty small
molecules calculated by the finite-difference Poisson-Boltzmann method were compared
to those calculated by the free energy perturbation method in the TIP4P explicit solvents.
In the study of Marrone et al. [104], solvent forces for alanine dipeptide computed with
both implicit and explicit solvents were compared. Recently, a comparison of atomic sol-
vation forces was also reported with the hope to apply the implicit solvents in molecular
dynamics simulations [105]. Lee and Olson used a hybrid explicit/implicit solvents to
evaluate the accuracy of several Poisson-based implicit solvents [83]. They showed that,
among various dielectric boundary definitions, the solvent excluded surface has the best
agreement with hybrid solvent results. Furthermore, certain modifications of cavity radii
and water probe radius of the molecular surface provide varied results [83]. Whether an
agreement or a disagreement was observed, a limitation in many previous comparisons
was the lack of optimized atomic cavity radii for tested PB solvents.

With optimized cavity radii, Tan et al. studied the quality of a PB solvent in hydrogen-
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bonding/salt-bridging dimers and peptides of different conformations and different lengths
with respect to the TIP3P explicit solvent in the PME treatment of electrostatics [106].
They found an overall agreement between the implicit and explicit solvents for the tested
systems [90]. Interestingly, the same mechanism underlining the discrepancy in hydrogen-
bonding dimers is also responsible for the larger deviations of certain peptide conforma-
tions, such as parallel β-strand dimers [90]. Chocholousova and Feig investigated the
performance of the GBMV methods [71,107] in the conformational sampling of DNA with
two sets of cavity radii, the one is the set optimized by Roux and co-workers [101, 108],
the other is the set of van der Waals radii in the CHARMM force field. They observed
differences in conformational sampling of DNA with the two different sets of cavity radii.
Their results suggest that depending on the choice of cavity radii the agreement is either
closer to experimental data or to explicit solvent simulations [76].

4 Coupling between Poisson-Boltzmann solvents and

polarizable force fields

One research area not reviewed above is the applications of implicit solvents with po-
larizable force fields. It is widely known that electronic polarization plays an impor-
tant role in many fundamental biochemical processes. As we approach biochemical time
scales in simulations, longer time scales lead to large-scale conformational changes and
substantial variations in dielectric environment that require proper treatment. Other-
wise, it is difficult to represent accurately the energy landscapes and thus the dynamics
of interested biomolecules. The advent of polarizable force fields, such as AMBER ff02
force field [109], was timely in addressing these issues. While we anticipate that addi-
tive model will continue to play important roles, polarizable force fields are expected to
extend our ability to study more complex biochemical processes.

Towards the goal of including polarization, a great deal of efforts has been invested
on developing explicit polarizable force fields. A variety of methods have been explored,
including the fluctuating charge models in the polarizable OPLS force field [110]; the
induced dipole models in the polarizable Amber force field [109]; the detailed multi-pole
expansions and more complicated molecular mechanics potentials in the AMOEBA force
field [111]; the fluctuating charge and Drude oscillator models in the CHARMM force
field [112–114].

There is no conceptual difficulty in applying implicit solvents in the explicit polariz-
able force fields though detailed procedures have to be worked out. Recently Maple et
al. reported their success to incorporate a GB solvent into an explicit polarizable force
field [115]. Schneiders et al. also combined a PB solvent and multi-pole technology in
polarizable AMOEBA force field successfully [116].

Given the continuum approximation of solvation polarization by implicit solvents,
it is also worth exploring a continuum approximation of electronic polarization [117].
Indeed, continuum treatment of electronic polarization has been often used in many cal-
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culations related to solvation free energies [99,118]. Typical implicit solvents, such as nu-
merical Poisson-Boltzmann approaches [12,13] and semi-analytical generalized Born ap-
proaches [119–121], have been developed to deal with non-vacuum solute interior. How-
ever, a molecular mechanics force field that is designed to be consistent with such a treat-
ment of electronic polarization is yet to be developed. Indeed, it is still unclear whether a
continuum treatment of electronic polarization is accurate enough for biomolecular sim-
ulation purposes.

Interestingly, a recent study [117] has shown that a continuum dipole moment den-
sity can be used to treat electronic polarization for molecular mechanics simulations in
implicit solvents with accuracy comparable to an explicit polarizable model [109]. Never-
theless, it should be pointed out that the continuum polarization scheme cannot describe
the atomic-detailed polarization within a molecular environment. However, it does give
us an efficient and self-consistent approach in treating polar interactions in biomolec-
ular simulations more satisfactory than existing additive force fields with implicit sol-
vents [117].

5 Nonpolar component in Poisson-Boltzmann solvents

Successful application of any implicit solvents in molecular mechanics also requires care-
ful treatment of nonpolar/nonelectrostatic solvation. In the widely used surface area
(SA) model, the nonpolar solvation free energy is estimated from the solvent accessible
surface area (SAS) of the molecule with a uniform surface tension coefficient:

Wnes =γ·SAS+c, (5.1)

where the surface tension coefficient γ represents the contribution to the nonpolar solva-
tion free energy (Wnes) per unit surface area. The constant offset is the solvation free
energy for a point solute (SAS = 0). The use of a single γ is based on the observa-
tion that for linear alkanes, solvation free energy approximately increase linearly with
SAS [99, 122–124]. However, the correlation has been found to be poor for more gen-
eral organic molecules (see Fig. 1). In addition, Levy and coworkers [125, 126] and Luo
and coworkers [98] have pointed out that inclusion of the SA model tends to reduce the
agreement between simulation and experiment in their tested systems.

It has been recognized that in order to obtain a more accurate nonpolar solvation treat-
ment, Wnes should be further decomposed into two terms: Wrep, repulsive free energy,
and Watt, attractive free energy [70, 74, 125, 127–131]

Wnes =Wrep+Watt, (5.2)

where Wrep is the solvation free energy from the solute-solvent repulsive interactions
and the formation of solute cavity (the excluded volume effect). Watt is the free energy
for establishing the solute-solvent attractive interactions, but may also include solvent-
solvent reorganization component. When decomposed in this way, Wrep was found to
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Figure 1: Correlation between SAS and nonpolar solvation free energies of 42 small molecule templates from
the Amber force field database [90,143]. Note that the correlation is negative between the two variables.
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Figure 2: Correlation between SAS or SAV and nonpolar repulsion free energies of the 42 small molecules
from the Amber force field database [143, 90]. (A) SAS. Correlation Coefficient: 0.997. RMS Deviation:
0.30kcal/mol. RMS Relative Deviation: 0.026. (B) SAV. Correlation Coefficient: 0.998. RMS Deviation:
0.27kcal/mol. RMS Relative Deviation: 0.022.

have a very good correlation with SAS [132]

Wrep≈γ·SAS+c. (5.3)

Use of molecular volumes (SAV, solvent accessible volume) has also been proposed to
correlate with Wrep [133–136]. It has been found that correlation with Wrep is excellent
whether SAS or SAV is used [137] (see Fig. 2).

Efficient computation of Watt then becomes a new challenge. Fortunately, according
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to Chandler and co-workers [138, 139] and subsequently confirmed in simulations by
Levy and co-workers [132], Watt can be approximated by the van der Waals attractive
interaction potential energy between solute (a) and solvent (w).

Watt≈<Uatt,aw > . (5.4)

Based on this approximation, the solute-solvent van der Waals interaction energy can be
analytically expressed as the following volume integral

Uatt =
Ns

∑
n=1

∫

ρaw(raw)Vatt(raw)draw. (5.5)

Here the sum is over all solute atoms (Ns) and the integration is over the solvent occupied
volume. ρaw(raw) is a solvent distribution function around solute atom a at a given solute-
solvent distance raw. Vatt(raw) is the attractive van der Waals potential in a decomposition
scheme, for example the WCA scheme [127, 140] and the σ scheme [137]. In implicit
solvents, Eq. (5.5) has to be further approximated because ρaw(raw) cannot be known
a priori without equilibrium simulations in explicit solvents. As a first approximation, a
uniform distribution (i.e. constant density) can be used. It was reported that the nonpolar
solvent can reproduce solvation free energies in explicit solvents very well for monomer
systems. But for dimer systems, neither the association energetics nor the nonpolar free
energy differences between fully separated conformations and complex conformations
can be reproduced consistently.

6 Conclusions

Recent years have witnessed significant improvement in implicit solvents based on the
PB theory, whether in the numerical approaches or in the semi-analytical GB approaches.
Especially worth noting are the improvements and revisions of those implicit solvents
for stable dynamics simulations. Given these technical advancements, attentions have
also been paid to the quality of implicit solvents as compared with the more expensive
explicit solvents. The new developments in nonpolar solvents mentioned above and re-
viewed elsewhere will also result in more accurate simulations of biomolecules. We have
also touched the new challenges facing the implicit solvents. That is how to incorporate
these solvents in the emerging polarizable force fields. New challenges could also arise
from the assumptions underlying all implicit solvents, as recently explored to couple
electrostatic and nonelectrostatic components together [141,142]. In addition, hybrid sol-
vents could also become a reality for dynamics simulation even this has been proposed
in the early days of computational chemistry. It is likely that such hybrid solvents will
offer the necessary accuracy, as they no longer average out the very degrees of freedom
that are of interest in studies where solute/solvent coupling is crucial.
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