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SHORT NOTE

A Remark on “An Efficient Real Space Method for
Orbital-Free Density-Functional Theory”
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Abstract. In this short note we clarify some issues regarding the existence of mini-
mizers for the Thomas-Fermi-von Weiszacker energy functional in orbital-free density
functional theory, when the Wang-Teter corrections are included.
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In [1] it was claimed that there always exists a minimizer; however, the statement of
Theorem 2.1 is incomplete. In this note we present the full statement, with a detailed

proof.
The theorem stated in [1] holds as long as the number of electrons is below a certain

critical value. The correct statement for the theorem in [1] is:

Theorem 1 (Existence of minimizers). Given v € C®(Q), and Ky € L2 _(R3), consider the

loc
problem
inf Flu], (1)
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uzo,/nuzzl}. 3)

In (2), the set () is open and bounded, and star-shaped with respect to 0; € is defined as

and

B:{ueH&(Q)

i >1

2 7 rS — 7

e(Nu)=1< 1+ B1/Ts+ Bors (4)
Aln(rs) + B+ Crsln(rs) + Drs, rs<1,

where rs = (4nNu?/3) 5 the parameters used are v = —0.1423, B =1.0529, B, = 0.3334,
A=0.0311, B=—-0.048, and C=2.019151940622 x 103 and D = —1.163206637891 x 102
are chosen so that (r) and € (r) are continuous at r=1 [6].

Then, there exists Ny > 0 such that:

1. If N < Ny then 3u* € B such that

F[u*]zmeigF[u]. (5)
2. If N> Ny then
irelgF[u] = —oo0. (6)

Proof. The second part of the theorem was proved in [2,3]. We outline the proof
here for completeness. Since 0 € ), 36y > 0 such that B(0,dp) C Q). Consider a compactly
supported function uy € C{(B(0,1)), such that

2_
| iE=1 )
and consider the rescaling
1 X
u(g(x):muo(g), 0< <. (8)
Then us; € B, and
7 N?/ 1
< / ‘v CTF / M(1)0/3> + O <_> . (9)
Q o
Define

\V4 2
Ap= inf Jo |Vl

JalViE o, 10
weHY(Q), uls=1 Jpy1073 (19

Then if Ay/2<7CrrN?/3/25, we can choose g so that the leading term in (9) is negative,
and when § — 0, the desired result follows.
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For the existence of minimizers, assume that N is such that Ay/2 > 7CrpN?/3/25. By
Lemma 1, there exist C >0, § >0 such that

2/3
F[u]zl/ IVul? — M-q—é /u1°/3—C
2Ja 25 O

1 1 7CTFN2/3 2 2
> _— — e — >
<2 0( 5 —1—5 /Wu\ 1/‘vu‘ C, (11)

where 7T > 0. Therefore the functional is coercive, and the result follows from now from
standard arguments in the Calculus of Variations [4], involving the Sobolev Embedding,
and the Rellich-Kondrachov compactness theorem. O

Remark 1. Note that given () C R3, then

. fQ’V“F
where
A:{ueHg(Q)yuzo,/u2:1}. (13)
o)

By the Gagliardo-Nirenberg inequality, 3C; >0 such that

1/3
(/Qu6> gcl/ﬂywyz. (14)

By the Riesz-Thorin theorem, since u € L2(Q) N L%(Q)), and

3.6,
10 2

1-6
6 7

(15)

with §=2/5, we get

3/10 0/2 (1-0)/6
/
(her) = () () a0

and therefore, since ||u|2 =1,
5(1-6) /9 1/3
/ w08 < </ u6) = </ u6> §C1/ \Vu\z. 17)
0 0 0 0
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Therefore,
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In [1] it was proved that Kyt € LZ(]R3). In the following lemma we establish the
necessary inequalities to prove the coercivity of energy functional (2).

Lemma 1. Assume Kyt € L2(R3), ve€ L®(Q), and ¢ is defined as in (4). Then, there exist
constants C;, i=1,---,5, dependent only on the domain () and on N, such that for all u € H& (Q)
satisfying ||u|l2=1,

S 172 (K )| < €™ 6™ K (19)
1
2 2 2,15/6 7/3.
NG G EC G R 20
[ < Collu o e
Q
3/4

/Quze(Nuz) §C4-|-C5(/Q]u|10/3> . (22)

Proof. Since Kyt € L?, by the Cauchy-Schwarz inequality, followed by Young’s in-

equality:
‘/ !u\5/3<KWT*\“!5/3) < [|u®2 2| Kwr * [u]*3 2
(@)

< il 2| Kwrll2flu®lr. (23)

Note that since ||u||, =1, by Holder’s inequality, [|[u®/3||; < |Q|'/®. This gives (19). The
inequality (20) was proved in [5] (Theorem IV.1, page 75). The estimate (21) follows from
the Cauchy-Schwarz inequality:

[ :'/ w33 < |3 ]2 (24)
Q O
From the definition of €, we get that
/uze(Nuz) §C1—|—62/ u?log|u|
0 ul> 535
R 3/4
<+ G / /2 §C1+C2</ |u]10/3) . (25)
Q O
This concludes the proof. O
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