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Abstract. Due to the complexity of the interactions among the nodes of the complex
networks, the properties of the network modules, to a large extent, remain unknown or
unexplored. In this paper, we introduce the spatial correlation function Grs to describe
the correlations among the modules of the weighted networks. In order to test the pro-
posed method, we use our method to analyze and discuss the modular structures of the
ER random networks, scale-free networks and the Chinese railway network. Rigorous
analysis of the existing data shows that the spatial correlation function Grs is suitable
for describing the correlations among different network modules. Remarkably, we find
that different networks display different correlations, especially, the correlation func-
tion Grs with different networks meets different degree distribution, such as the linear
and exponential distributions.
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1 Introduction

In many real world networks, it was found that there exist significant subnetworks (so-
called network modules) in their structures, such as the metabolic networks [1], food
webs [2], social networks [3] and Internet [4]. Many theoretical and experimental results
indicate that the network modules perform specific tasks in the functional properties of
such networks. A major current challenge is to understand their topological structures
and the roles they playing in the networks. What are the mechanisms by which network
modules emerge in the network? How to describe the interactions among the network
modules?
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Recently, a number of methods have been proposed to understand the structure prop-
erties of complex networks, such as the statistical, mathematical and model-based anal-
ysis methods. Newman and Girvan proposed the clustering algorithm in [5, 6], where
the quantitative definition of modularity was firstly introduced. In [7], the network is
mapped into a spin system. Here, the problem of finding the modularity of a network
is analogous to the standard statistical mechanism problem. Donetti and Muñoz pro-
posed an algorithm that combines spectral methods with clustering techniques [8]. Ziv,
Middendorf and Wiggins outlined an information theoretical algorithm by applying the
information bottleneck on probability distributions [9]. In [10], a weighted network is
proposed to model and simulate the Dutch railway network. For a review, see [11, 12].

Correlation is an important property of networks, which is of special interest [13–
15]. For example, whether gregarious people are more likely to contact with gregarious
people? or whether an old web site is more likely to connect to old ones? These questions
often have fundamental importance in reality. The correlation function provides a tool to
give a better insight into the problem mentioned above. In this paper, we introduce a new
correlation function and use it to capture an explicit and obvious relationship between the
network modules and that have highly connected nodes. The main aim is to get a better
understanding of the network modules and their correlations. The paper is organized as
follows: we introduce the proposed method in Section 2; the numerical and analytical
results are presented in Section 3; finally, conclusions are presented.

2 The proposed method

The appearance of the network modules represents a broad range of natural phenom-
ena. To describe these phenomena requires an understanding of the basic topological
structures of such networks. These topological structures are based on the links of the
nodes. A reasonable assumption is that the correlations among the network modules are
describe by the links of the nodes on a coarse-grained level. In this paper, to assume
that the modular structures of networks have been determined in advance, we describe
the properties of the network modules and their correlations by introducing the spatial
correlation function Grs.

Our method is as follows. A weighted network which has N nodes is considered. Let
wij be the weight of the edge that links the node i and the node j. We introduce the spatial
correlation function Grs(i). Assume that the node i is within the module r and the node j
is within the module s. Then the definition of Grs(i) is as follows:

Grs(i)=
1

ns

Ns

∑
j=1

didjwij, (2.1)

where ns represents the number of the links between the node i and the nodes within the
module s, Ns represents the number of the neighbours of the node i and di is the degree
of the node i. The degree di of the node i is defined as the number of edges linked to the
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node i. According to the definition of Grs(i), if the Grs(i)-value is higher, the node i has
more correlations with the nodes that are within the module s.

In complex networks, the variations of the existing weights induced by new links can
be represented by the following rule [16],

wij−→wij+δ
wij

si
. (2.2)

Here δ is the fraction of weight which is induced by the new link onto the others, and si

is called the node strength, which is defined as [17, 18]

si =
di

∑
j=1

wij. (2.3)

In the proposed method, the variations of the existing weights are caused by the values
of weights. By assuming that these variations comply with the same rule described by
Eq. (2.2), we obtain

Grs(i)−→Grs(i)+
1

ns

Ns

∑
j=1

didjδ
wij

si
. (2.4)

Here δ is the fraction of weights rearranging between the node i and its neighbors j, which
is induced by the variations of weights with the vertex i. In addition, in the proposed
method, the parameter δ can be chosen by experience, or be determined by numerical
simulations. From Eq. (2.4), we can measure how the spatial correlation function Grs(i)
varies with the time t.

3 Numerical simulations

In order to test the proposed method, as different examples, we analyze and discuss
the modular structures of the ER random networks, scale-free networks and the Chinese
railway network. In Subsection 3.1, we first construct the ER random networks and scale-
free networks, with weights 1, and then let the weights vary with time on such networks.
In Subsection 3.2, as a reality network, the Chinese railway network will be considered.
Its structure is fixed in advance, and its weights are calculated by the Chinese railway
time table.

3.1 ER random networks and scale-free networks

Both the numerical and analytical results indicated that random networks and scale-free
networks have modularity [7]. In order to test the performance of the method proposed
in this paper, we analyze and discuss the spatial correlation functions in the Erdös-Rényi
(ER) random networks and scale-free networks. Using the proposed method, we need to
detect the modular structure of weighted networks in advance. Here we firstly construct
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the ER random networks and scale-free networks, and then determine their modular
structure using the method proposed by Newman and Girvan [5, 6].

An ER random network having 40 nodes is considered. Each node is linked to other
nodes with probability p. To each link, we assign a weight wij=1. Using the method
proposed by Newman and Girvan, the considered network is divided into two modules.
We select that module which has the largest number of nodes as our investigative object.
By averaging the values of Grr(i) over the nodes with degree k in the module r, we obtain
the degree distribution Pr(k). Fig. 1 shows the correlation degree distribution Pr(k) of
the selected module. From Fig. 1, it can be seen that several nodes which have higher
degrees have higher values of Pr(k). The simulation result indicates that the module has
a “hub-like” core. Several nodes within the “hub-like” core have more correlations with
other nodes.
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Figure 1: A plot of Pr(k) vs k for p=0.4.
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Figure 2: A plot of Pr(k) vs k for m0=4 and m=2.

As the second example, we consider a scale-free network which has 40 nodes. Using
the similar steps mentioned above, we firstly construct a scale-free network. We choose
m0 nodes as an initial set of nodes. When a new node is added to the set, m edges are
linked between the new node and the existing nodes. This procedure is iterated until the
number of nodes reached a given number. To each link, we assign a weight wij=1. We
select the module having the largest number of nodes as our investigative object. Fig. 2
shows how the correlation degree distribution Pr(k) of the selected module varies with
the degree k. From Fig. 2, it can be seen that there is a similar “hub-like” core observed
in the ER random networks.

For each node i within the selected module r, we measure the correlation function
Grs(i) (r 6= s). The measured results are shown in Fig. 3. Fig. 3(a) is the result for the
ER random network, and Fig. 3(b) is the result for scale-free network. Here the symbols
“square” are the values of Grs (r 6=s), and the symbols “cross” are the values of Grr. From
Fig. 3(a), we observe that the data which have higher Grs have higher Grr. In Fig. 3(b),
there is only a fraction of data whose Grr is greater than zero. The nodes whose Grs are
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Figure 3: The correlation function Grs(i) (r 6=s). (a) ER random network; (b) scale-free network. Here ‘�’ and
’x’ represent Grs and Grr, respectively.
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Figure 4: Time dependence of correlation function Ḡrs for δ=0.5. (a) ER random network; (b) scale-free
network.

equal to zero are not directly correlated with the nodes which belong to other modules.
The simulation results demonstrate that the ER random networks and the scale-free net-
works have different correlations. In the ER random networks, most of nodes participate
in different modules at the same time. But only a fraction of nodes participate in different
modules in the scale-free networks.

In order to investigate how the correlations among different modules vary with the
time t, we further define the function Ḡrs. This average value Ḡrs is calculated by averag-
ing Grs(i) within the module r. In the beginning, each link is assigned an initial weight
wij=1. As the time proceeds, the weights of all links are updated according to Eq. (2.2).
Each updated step is regarded as an evolution time step. At each evolution time step,
we record the averaging correlation function Ḡrs. Then we obtain a time series of Ḡrs.
This time series describe how the correlation function varies with time. Fig. 4 shows the
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results. Here δ is set to be δ=0.5. Fig. 4(a) is the result for the ER random network, and
Fig. 4(b) is the result for scale-free network. From Fig. 4, we can see that the correlation
functions Ḡrs observed both in Figs. 4(a) and 4(b) vary with time linearly.

3.2 Chinese railway network

In the real-world networks, the railway network is one of the most important networks.
In order to test our method proposed in this paper, we collect the data of northeast rail-
way network on a coarse-grained level following the recent Chinese railway time ta-
ble [19]. Fig. 5 shows the map of the northeast railway network, which contains a total
of 69 stations. In Fig. 5, the nodes of the network represent the stations, the links among
nodes represent the rail lines, and the weights represent the numbers of different passen-
ger trains running on these rail lines. All nodes shown in Fig. 5 are labeled by a number,
which only represents the order of nodes.

Figure 5: The northeast railway network in China.

First, we classify the nodes of the network into different modules according to the
definition of the module. Here, the module is defined as that if some nodes belong to the
same railway regional administration, they constitute a module. Fig. 6 plots the result.
From Fig. 6, we can find that the nodes of the network can be divided into two modules,
which are labeled by the number 1 and 2. Here, we use a dotted line to distinguish them.
In modules 1 and 2, there are 31 nodes and 38 nodes, respectively.
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Fig. 7 shows how Pr(k) varies with the degree k. Here the horizontal axis represents
the node degree in the module r and the vertical axis represents the values of Pr(k). From
Fig. 7, it can be seen that several nodes which have higher degrees have higher Pr(k)-
values. The simulation results indicate that in each module of the network, several nodes
are core nodes which have more correlations than other nodes. This result is similar to
that observed in the ER random networks and scale-free networks. Further, we can use a
mathematical function to fit the data shown in both Figs. 7(a) and 7(b), and find

Pr(k)∼ kβ , β≈2.72.

Figure 6: The division of the nodes of the network shown in Fig. 5.

Using the proposed method, we measure the distribution of the correlation function
Grs(i). The measured results labeled by circles are shown in Fig. 8. In Fig. 8, there are
only 5 nodes whose values of the correlation function are greater than zero. From Fig. 5,
we see that these nodes are the boundary nodes between two modules. On the other
hand, the nodes whose values of Grs are equal to zero are not directly correlative with
the nodes belonging to other modules. In general, if a node has a higher Grs-value, the
weights of the links among this node and its neighbor nodes have higher values. This
result indicates that the correlation function Grs represents the strength of the interaction
between two different modules.

We choose one node which belongs to the module r, and calculate its Grs. From the
definition of the correlation function Grs, the only variable in the Chinese railway net-
work is the weight of links. Following the recent Chinese railway time table [18], every
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Figure 7: A plot of Pr(k) vs k. (a) the 1st module; (b) the 2nd module.

one hour, we calculate the numbers of the different passenger trains running on the cho-
sen rail lines. The calculated results are regarded as the weights of links. Then we obtain
a time series of weights. Based on the time series of weights, we obtain the time series
of the correlation function Grs. Fig. 9 is the result for r = 1 and s = 2. From Fig. 9, we
can see that sometimes the correlation function has higher values, and sometimes it has
lower ones. In the former case, the number of the different passenger trains running on
the rail line is higher. This means that there is a strong correlation between two different
modules. Fig. 10 shows how the parameter δ used in Eq. (2.4) varies with the time t. To a
large extent, δ represents the variations of the correlation function Grs.

4 Conclusions

In this work, we outline a new method to describe the modules in weighted networks.
The main improvement is that we introduce the spatial correlation function Grs, and use
it to describe the correlations among the modules of the weighted networks. The nu-
merical simulations demonstrate that module has a ”hub-like” core, which is formed by
connecting high-degree nodes to each other. Moreover, different network displays dif-
ferent correlations. In the ER random networks, most of nodes participate in different
modules at the same time. But only a fraction of nodes participate in different modules
in scale-free networks.

The dimensionless parameter δ is an important factor. It governs the variation of the
correlation function Grs. When δ is a constant, as shown in Fig. 4, the correlation function
Grs varies with time linearly. When δ is similar to a random number, as shown in Fig. 9,
the correlation function Grs varies with time randomly. Although our study is focused
on the ER random networks, the scale-free networks and the Chinese railway network, it
is easy to extend our study to other networks, such as the Internet, social and ecological
systems etc.
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Figure 8: The distribution of the correlation function Grs for r=1 and s=2.
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Figure 9: The correlation function Grs as a function of the time t.
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Figure 10: Parameter δ as a function of time t.
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