
COMMUNICATIONS IN COMPUTATIONAL PHYSICS
Vol. 3, No. 2, pp. 397-405

Commun. Comput. Phys.
February 2008

Inflection Point as a Manifestation of Tricritical Point

on the Dynamic Phase Boundary in Ising Meanfield

Dynamics

Muktish Acharyya1,∗ and Ajanta Bhowal Acharyya2

1 Department of Physics, Presidency College, 86/1 College Street, Calcutta-700073,
India.
2 Department of Physics, Hooghly Mohsin College, PO-Chinsurah, Dist-Hooghly,
India.

Received 30 May 2007; Accepted (in revised version) 6 July 2007

Communicated by Dietrich Stauffer

Available online 9 October 2007

Abstract. We studied the dynamical phase transition in kinetic Ising ferromagnets
driven by oscillating magnetic field in meanfield approximation. The meanfield dif-
ferential equation was solved by sixth order Runge-Kutta-Felberg method. We calcu-
lated the transition temperature as a function of amplitude and frequency of oscillat-
ing field. This was plotted against field amplitude taking frequency as a parameter.
As frequency increases the phase boundary is observed to become inflated. The phase
boundary shows an inflection point which separates the nature of the transition. On
the dynamic phase boundary a tricritical point (TCP) was found, which separates the
nature (continuous/discontinuous) of the dynamic transition across the phase bound-
ary. The inflection point is identified as the TCP and hence a simpler method of deter-
mining the position of TCP was found. TCP was observed to shift towards high field
for higher frequency. As frequency decreases the dynamic phase boundary is observe
to shrink. In the zero frequency limit this boundary shows a tendency to merge to the
temperature variation of the coercive field.

PACS: 64.60.Ht, 64.60.Kw
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1 Introduction

The ferromagnetic system, in the presence of a time varying external magnetic field, re-
maining far from statistical equilibrium, became an interesting object of research over the
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last two decades [1]. One interesting nonequilibrium response is the dynamic phase tran-
sition. This dynamic phase transition is widely studied in model ferromagnetic system
in the presence of oscillating magnetic field, see, e.g., [1–3]. Tome and Oliveira [4] first
observed a prototype of nonequilibrium dynamic transition in the numerical solution of
meanfield equation of motion for the classical Ising ferromagnet in the presence of a mag-
netic field varying sinusoidally in time. The time averaged (over the complete cycle of the
oscillating magnetic field) magnetization plays the role of the dynamic order parameter.
They [4] found that this dynamic ordering depends on the amplitude of the oscillating
magnetic field and the temperature of the system. Systems get dynamically ordered for
small values of the temperature and the amplitude of the field. They [4] have drawn a
phase boundary (separating the ordered and disordered phase) in the temperature field
amplitude plane. More interestingly, they have also reported [4] a tricritical point on the
phase boundary, which separates the nature (continuous/discontinuous) of the dynamic
transition across the phase boundary. This tricritical point was found just by checking
the nature of the transition at all points across the phase boundary. The point where the
nature of transition changes was marked as the tricritical point. No other significance
of this tricritical point was reported. The frequency dependence of this phase boundary
was not reported earlier for the dynamic transition in Ising meanfield dynamics.

In this paper, we studied numerically the dynamic transition in Ising meanfield dy-
namics. Here, we confined our attention to study the frequency dependence of the dy-
namic phase boundary. We studied the tricritical behavior and found a method of finding
the position the tricritical point on the dynamic phase boundary. The frequency depen-
dence of the position of the tricritical point was studied here. We also studied the static
(zero frequency) limit of dynamic phase boundary.

The paper is organized as follows. In the next section the model and the method of
numerical solution is discussed. Section 3 contains the numerical results and the paper
end with summary of the work in Section 4.

2 Model and numerical solution

The time (t) variation of average magnetization m of Ising ferromagnet in the presence of
a time varying field, in meanfield approximation, is given as [4]

τ

dm

dt
=−m+tanh

(

m+h(t)

T

)

, (2.1)

where h(t) is the externally applied sinusoidally oscillating magnetic field (h(t) =
h0sin(ωt)) and T is the temperature measured in units of the Boltzmann constant (KB).
This equation describes the nonequilibrium behavior of instantaneous value of magneti-
zation m(t) of Ising ferromagnet in meanfield approximation.

We have solved this equation by sixth order Runge-Kutta-Felberg (RKF) [5] method
to get the instantaneous value of magnetization m(t) at any finite temperature T, h0 and
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ω(=2π f ). This method of solving ordinary differential equation

dm

dt
= F(t,m(t))

is described briefly as:

m(t+dt)=m(t)+

(
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where

k1 =dt·F(t,m(t)),

k2 =dt·F

(
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(2.3)

The time interval dt was measured in units of τ (the time taken to flip a single spin).
Actually, we have used dt = 0.01 (setting τ=1.0). The local error involved in the sixth
order RKF method is of the order of (dt)6(= 10−12). We started with initial condition
m(t=0)=1.0.

3 Results

The dynamic order parameter Q(= 2π

ω

∮

m(t)dt) is time average magnetization over a full
cycle of the oscillating magnetic field. This was calculated after discarding the values of
Q for few initial (transient [6]) cycles of the oscillating field. Finally, the dynamic order
parameter Q is calculated as a function of T, h0 and f . Now, depending on the values
of these parameters the system gets dynamically ordered (Q 6= 0) or disordered (Q = 0).
This shows a dynamical phase transition which is a nonequilibrium phase transition.
We have studied the transition and determined the transition temperature Td(h0, f ) in a
very simple way. For a fixed set of values of h0 and f the temperature T is varied (in
step ∆T =10−3) and Q is measured as a function of T. Then we calculated the derivative
dQ/dT numerically (using three point central difference formula; where the error O(dT2)
[5]). The temperature, at which the derivative dQ/dT is sharply minimum, is considered
here as the transition temperature Td. In this way, we obtained the dynamic transition
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Figure 1: The temperature variation of Q and dQ/dT for different values of h0 but for fixed f =0.2. (A) and
(B) for h0 =0.5 and (C) and (D) for h0 =0.3.

temperature Td(h0, f ) for all values of h0. Here, we have changed h0 (with interval ∆h0 =
0.02) and obtained the dynamic transition temperature Td(h0, f ).

Now, for a particular frequency f , the plot of Td(h0, f ) against h0 gives the dynamic
phase boundary. This dynamic phase boundary separates the regions of Q 6=0 and Q=0.
For fixed frequency, it was observed that the dynamic transition occurs at higher temper-
ature for lower values of applied field amplitude h0 and vice versa. Fig. 1 shows such a
variation. For f =0.2 and h0 =0.5, the temperature variations of Q and dQ/dT are plot-
ted in Figs. 1(A) and (B) respectively. From the sharp minimum of dQ/dT (in Fig. 1(B))
the transition temperature Td(h0, f ) was found equal to 0.725. The same plots are shown
in Figs. 1(C) and (D) for h0 = 0.3 (keeping frequency f = 0.2 fixed). Here, the transition
temperature was found to be equal to 0.919. It is clear from the figure that the transi-
tion occurs at lower temperature for higher value of the field amplitude. In this way, the
entire phase boundary (i.e., Td(h0, f ) as a function of h0 for fixed f =0.2) was obtained.
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Figure 2: The temperature variation of Q and dQ/dT for different values of f but for fixed h0 =0.4. (A) and
(B) for f =0.2 and (C) and (D) for f =1.0.

The dynamic phase boundary was obtained for different frequency f . It was observed
that for a fixed value of the field amplitude h0 that transition occurs at higher tempera-
ture for higher frequency. This observation was shown in Fig. 2, for fixed h0 = 0.4. The
dynamic transition occurs at Td(h0, f ) = 0.845 for f = 0.2 (see Figs. 2(A) and (B)) and it
becomes Td(h0, f ) = 0.908 for f = 1.0 (see Figs. 2(C) and (D)). From the figures it is clear
that the transition occurs at higher temperature for higher frequency. We have reported
the results of dynamic phase boundary for frequencies f = 0.01, 0.02, 0.05, 0.1, 0.2, 0.5 and
1.0.

In the limit f → 0 we approach the equilibrium behavior. In equilibrium, dm/dt = 0.
Eq. (2.1) takes the form

m−tanh
(m+h)

T
=0.

This equation was solved by Newton-Raphson iterative method of finding the root to get
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the value of equilibrium magnetization m(h,T). At any fixed temperature T, by changing
the value of the external magnetic field h, we calculated the coercive field hc (i.e, the
field for which the magnetization just changes its sign). The value of the coercive field
was found to depend on the temperature T, i.e., the coercive field is a function of the
temperature.

The dynamic transition temperature Td is also plotted against the amplitude of the
externally applied sinusoidal magnetic field, in the same figure. For a fixed value of
frequency, the transition temperature Td decreases as the value of the field amplitude
increases. This gives the dynamic phase boundary, below which we observed the dy-
namically ordered (Q 6= 0) phase and above which the phase is dynamically disordered
(Q=0). Different dynamic phase boundary was obtained for different values of frequency
and plotted in Fig. 3. It is observed that for same value of the field amplitude, the tran-
sition temperature Td increases as the frequency increases. So, the phase boundary gets
inflated as the frequency increases.
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Figure 3: The dynamic transition temperature Td(h0, f ) is plotted against the amplitude of oscillating magnetic
field h0 taking frequency f as parameter. Different symbols represent different frequencies. f = 1.0(♦), f =
0.5(+), f =0.2(�), f =0.1(×), f =0.05(△), f =0.02(⋆) and f =0.01(o). The bullets represent the TCP’s on
the phase boundary. The continuous line represent the variation of coercive field with temperature.

As the frequency decreases ( f → 0) the phase boundary shrinks and ultimately it
approaches the curve of temperature variation of the coercive field (continuous line in
Fig. 3). In this context, one may think that the temperature variation of coercive field
acts as the static limit of dynamic phase boundary. We studied the nature of the dynamic
phase boundary. This dynamic phase boundary changes its curvature from one side to
other, as one changes the field from lower to higher value. This means, the boundary has
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Figure 4: The derivative dTd/dh0 is plotted against the field amplitude h0 for a particular frequency f = 1.0.
Left inset shows the temperature variation of the dynamic order parameter for h0 = 0.70 and the right inset
shows that for h0 =0.74.

an inflection point (where the curvature changes from one side of the curve to its other
side) which was detected by calculating the derivative dTd/dh0. The derivative dTd/dh0

plotted against h0 (for fixed f =1.0) shows (in Fig. 4) a very sharp minimum (at hm) which
indicates the inflection point of Td−h0 curve. This minimum occurs at h0=0.72. This min-
imum or the inflection point has a great significance. If the value of the field amplitude is
less than hm, the transition is a continuous one. A typical transition, for h0 =0.70(< hm),
was shown in the left inset of Fig. 4. On the other hand, if the value of the field amplitude
exceeds hm, the transition becomes a discontinuous one. The right inset of Fig. 4, shows
such a typical transition for h0 = 0.74(> hm). The observation shows that the inflection
point on the dynamic phase boundary acts as tricritical point. To search the location of
the tricritical point on the dynamic phase boundary, the nature of the dynamic transition
has to be studied at several points. The TCP is the point, where the nature (continu-
ous/discontinuous) of the transition changes from one side to other. But in the method
of finding the inflection point on the dynamic phase boundary, one can get the exact lo-
cation of tricritical point on the phase boundary, quite easily at least in this case. Tome
and Oliveira [4] studied this dynamic transition in kinetic Ising model in meanfield ap-
proximation and observed the existence of a tricritical point on the phase boundary. But
they did not report any method to find the TCP directly from the phase boundary. Here,
we found a method of getting the TCP directly from the phase boundary.

We have also studied the change in position of the TCP on the phase boundary as
one changes the frequency. Following the same method, by computing the derivative
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Figure 5: The derivative dTd/dh0 is plotted against the field amplitude h0 for different frequencies. Different
symbols represent different frequencies. f =1.0(♦), f =0.5(+), f =0.2(�), f =0.1(×) and f =0.05(△). The
continuous line in each case just connects the data points.

dTd/dh0 and plotting it against h0, for different frequency, we obtained the position of
the minima of the derivatives (for different frequencies) and hence the position of TCP’s.
This was shown in Fig. 5 for few frequencies. The position of TCP’s for different frequen-
cies are shown (by big black dot) in Fig. 3. It was observed that the position of TCP shifts
towards higher field amplitudes (consequently lower temperatures) for higher frequen-
cies.

4 Summary

In this paper, we have reported our numerical results of the study of the dynamic phase
transition in kinetic Ising model driven by oscillating magnetic field, in the meanfield
approximation. The dynamic phase boundary was drawn in the temperature-field am-
plitude plane for different frequencies of the applied oscillating magnetic field. The dy-
namic phase boundary was observed to get inflated as the frequency increases. As the
frequency decreases it shrinks and in zero frequency limit it seems to merge to the tem-
perature variation of the coercive field (equilibrium case).

The important thing that we observed here is: The tricritical point on the dynamic
phase boundary is the point of inflection of the phase boundary. This observation made
the task, of finding the position of TCP on the phase boundary, much simpler. We have
also observed that the position of TCP shifts towards higher field amplitude for higher
frequency.
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