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Abstract. Constraining numerical geodynamo models with surface geomagnetic ob-
servations is very important in many respects: it directly helps to improve numeri-
cal geodynamo models, and expands their geophysical applications beyond geomag-
netism. A successful approach to integrate observations with numerical models is
data assimilation, in which Bayesian algorithms are used to combine observational
data with model outputs, so that the modified solutions can then be used as initial
conditions for forecasts of future physical states. In this paper, we present the first
geomagnetic data assimilation framework, which comprises the MoSST core dynam-
ics model, a newly developed data assimilation component (based on ensemble co-
variance estimation and optimal interpolation), and geomagnetic field models based
on paleo, archeo, historical and modern geomagnetic data. The overall architecture,
mathematical formulation, numerical algorithms and computational techniques of the
framework are discussed. Initial results with 100-year geomagnetic data assimilation
and with synthetic data assimilation are presented to demonstrate the operation of the
system.
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1 Introduction

The Earth has possessed an internal magnetic field (geomagnetic field) through much
of its history. It is now widely accepted that this field is generated and maintained by
convective flow in the Earth’s liquid outer core (geodynamo).

Observation and study of geomagnetism can be traced far back in history. It was
perhaps discovered more than 4000 years ago by Chinese [24]. While geomagnetic field
properties were recorded decades earlier, one of the earliest scientific theories on the ge-
omagnetism, De Magnete, was published by William Gilbert in 1600. Since then, geomag-
netic studies have been developed along two separate tracks: understanding the spatial-
temporal variation of the geomagnetic field (called the “kinematic track” in this paper),
and understanding the origin of the geomagnetic field (called the “dynamic track”),
though the latter appeared much later. In the early ages, the kinematic track was the
main focus. An example is the work by Gauss on separation of internal and external
magnetic fields in 1835. In this approach, the magnetic field is a potential field, and is
described by a potential scalar. This scalar can then be represented by a spherical har-
monic expansion and can be solved via Laplace’s equation (the spectral coefficients in
the expansion are called the Gauss coefficients in geomagnetism). The present work is
only concerned with the internal field, so that the geomagnetic field in this paper implies
only the part of the field originating in the interior of the Earth.

From surface observations it is found that the geomagnetic field varies on time scales
ranging from as short as a year (e.g. geomagnetic jerks [7]), several decades (e.g. west-
ward drift [11]), to as long as millions of years and beyond (e.g. field polarity re-
versal [22]). These can be described by time-varying Gauss coefficients. Combined
with the spherical harmonic expansion, the geomagnetic field displays complicated spa-
tial/temporal variation. Indeed, Gauss laid the foundation for modeling the global geo-
magnetic field.

In the dynamic track, dynamo theory, first proposed nearly 90 years ago [19], has
been widely accepted as the most likely explanation for the origin of the geomagnetism.
However, due to the complicated, nonlinear magnetohydrodynamic (MHD) processes
involved, mathematical solutions (from numerical simulation) of self-consistent geody-
namo action have been generated for only about the past decade. A detailed review can
be found in [12].

Unfortunately, further interactions between geomagnetic field modeling and geody-
namo modeling have been mainly on comparing numerical dynamo simulation results
and observations, and possible geodynamic consequences [12]. There has been no at-
tempt to combine geomagnetic field modeling and geodynamo modeling for studying
the core dynamics. Perhaps the main reason is that numerical models are believed to
be far from accurately simulating the real Earth’s core. For example, while they display
several properties similar to those of the geomagnetic field derived from surface observa-
tions, numerical model solutions cannot be labeled the “geodynamo” solutions: except
the dominance of the dipole component at the core-mantle boundary (CMB), the higher
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multipole components from the numerical solutions are very different from those ob-
served at/near the surface of the Earth. Therefore, numerical dynamo simulation has
been mostly focused on qualitative understandings of the dynamical processes in the
Earth’s outer core.

The “crudeness” of the numerical models has been mostly attributed to the fact that
the parameters used in numerical modeling are far from those appropriate for the Earth’s
core, provided those values can be reasonably assessed. For example, the Ekman number
E, which measures the fluid viscosity with respect to the Coriolis effect, and the mag-
netic Rossby number Ro, a measure of fluid inertia to the Coriolis effect, are currently at
least 3 orders of magnitude larger in numerical models, than those appropriate for the
Earth’s core (the difference is even larger for the Ekman number E if the molecular value
is used). In addition, the Rayleigh number Rth that measures the buoyancy force driving
the convection is not known exactly for the Earth’s core. Lack of detailed knowledge of
the outer core also contributes to the model error, as the models are developed based on
several physical approximations.

A number of simulations have been performed with a range of parameter values fea-
sible for current computing facilities, with the purpose of understanding possible scaling
rules that could lead to a better estimation of the physical state from the numerical model
results [12, 23]. In particular, such efforts could help us understand the physical proper-
ties associated with the parameter values (e.g. force balances in the core, small scale flow
patterns) that are important to improve numerical geodynamo models (e.g. parameteri-
zation of sub-grid processes).

However, even if we could match the physical parameters appropriate for the Earth’s
core in a numerical simulation, this still would not imply that the model outputs repre-
sent the true physical processes, thereby allowing us to make direct comparisons between
the model and observations. A useful analogy is in the field of numerical weather predic-
tion (NWP) where modeling has advanced very far during the past 40 years. In spite of
these advances, if one were to simply run an atmospheric model it would produce very
realistic looking climate phenomena, including rainfall, storms and heat waves. How-
ever, none of these would occur at the time or place that they are actually happening in
the real atmosphere. To tie the model to the physical atmosphere, NWP makes use of
data assimilation, a general name for mathematical methods for combining model and
observations.

Therefore, we believe that assimilation of surface geomagnetic observations to numer-
ical geodynamo models could be the best approach to facilitate interactions between the
kinematic and the dynamics tracks of geomagnetic research, thus significantly improving
our understandings of the geomagnetism, and the related geophysical processes.

While it will be discussed in further detail later in the paper, data assimilation can
be summarized as follows: observations are assimilated into the numerical model out-
put (called the “forecast”) in order to form a new “initial” state (called the “analysis”).
This process is repeated a large number of times, resulting in numerical solutions that are
drawn closer to the true physical states. Data assimilation has been shown to be very suc-
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cessful in meteorology and in oceanography. Originally used to form better initial states
for weather and climate forecasting, it has also been used to improve models through
error diagnosis and parameter estimation.

The current state of geodynamo modeling is in a similar phase of development to
NWP three decades earlier: the models are relatively primitive, in both physical and
mathematical approximations. This has lead to many comments from the community
that geodynamo models are “not ready” for data assimilation. However, the example
from NWP shows that in fact model development and data assimilation are highly inter-
dependent, and that improvements in one area lead to improvements in the other. Fur-
ther concerns have been expressed that model errors in geodynamo solutions will make
geomagnetic field predictions impossible. Yet it is only through data assimilation that er-
ror growth due to model error can even be estimated. This should lead to improvements
in numerical models, as it has done in NWP.

To carry out geomagnetic data assimilation, a modeling system (or framework) must
include three components: a numerical geodynamo model, a data assimilation compo-
nent, and a geomagnetic field model. The geodynamo model is developed to solve a set
of partial differential equations that govern the dynamical processes in the Earth’s outer
core; the data assimilation component provides an appropriate algorithm to combine the
forecast and the observation to make the analysis for the geodynamo model; the field
model produces a set of parameters (e.g. Gauss coefficients) describing the geomagnetic
field at the surface of the Earth.

The data assimilation algorithm component has been under development during the
past 3 years, while the other two have existing working models. For example, this system
uses the numerical model originally developed by Kuang and Bloxham [14], and later
by Kuang and Chao [16] with substantial improvements and revisions in many aspects
and is henceforth referred to as the MoSST (Modular Scalable Self-consistent and Three-
dimensional) dynamo model. There are several geomagnetic field models for different
epochs. A paleomagnetic/archeomagnetic field model developed by Constable et al [6],
and by Korte and Constable [13] is used for the data period from 5000BC to 1590AD; a
geomagnetic field model by Jackson et al [10] is used for the observation from 1590AD to
1960; and a geomagnetic field model developed by Langel and Estes [18], and by Sabaka
et al [26] is used for the period from 1960 to 2005. The actual data records of all models
are longer and are being extended, but only the results for the cited periods are used in
the present work.

The field models developed from surface and/or near surface observations cover the
time varying geomagnetic field over 7000 years. This is two orders of magnitude longer
than the time scales of the (theoretically estimated) fastest MHD waves in the Earth’s
outer core: the torsional oscillations with the periods of several decades [4]. Thus, it
is feasible to use data assimilation as a tool to understand decadal geomagnetic secular
variation. These timescales are the focus of the work done using MoSST−DAS.

Two different sequential data assimilation algorithms are included in the assimilation
component: an Optimal Interpolation (OI) algorithm with modeled error covariances
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(estimates of forecast error), and a second scheme that uses error covariances estimated
using a Monte Carlo technique within the same OI framework. The first algorithm is
simple and can be easily implemented regardless of the details of a given model, while
the latter attempts to provide a statistically optimal analysis for a given numerical model.
Both algorithms have their pros and cons in terms of mathematical properties and com-
putational efficiency.

In the past few years, we have carried out many geomagnetic data assimilation ex-
periments, including those using the OI algorithm and with surface geomagnetic obser-
vations, Monte-Carlo techniques to estimate error covariance for multivariate data as-
similation, and the use of observing system simulation experiments (OSSEs) to test the
system. Two papers have been accepted for publication [20, 27], which include many of
the details concerning the techniques used. However, we have not yet provided an over-
all description of the framework (numerical model), MoSST−DAS, used for the research.
Therefore, this paper focuses on providing an overview of the framework, including the
algorithms, the framework structure, the use of parallel computing. Several results are
also reported in this paper to demonstrate the capabilities of the model.

This paper is organized as follows: the mathematics of the three components are given
in Section 2. The program structures are described in Section 3. Numerical results and
discussions are presented in Sections 4 and 5, respectively.

2 Mathematical formulation

As stated in the introduction, only the assimilation component is newly developed, while
the other two have been transplanted from existing models. Therefore, we intend to only
summarize the mathematics of the dynamo and the geomagnetic field models while the
assimilation algorithms are discussed in more detail.

2.1 Dynamo model

Very simply speaking, an electrically conducting fluid moving in an existing magnetic
field generates an electrical current within the fluid. This current induces its own mag-
netic field. A dynamo action exists if the generated field is maintained without the pres-
ence of the (initial) external field.

The geodynamo is in the Earth’s fluid outer core, where convection (fluid motion) is
driven by the buoyancy force arising from secular cooling of the Earth, in which lighter
material and heat are released during the continuing solidification of the inner core. It has
been recently argued that radiogenic heat may also be important in driving the geody-
namo. Regardless, it can be approximated mathematically by a single density anomaly,
which can be due to variations in composition, temperature, or both.

The details of the dynamo model used in this data assimilation system can be found
in [15, 16]. Here we only summarize the key mathematical formulations of this model.
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It should be pointed out that other dynamo models have been developed with various
approximations and algorithms, which could also be used in this system.

In the model, the Earth’s outer core is a spherical fluid shell with a finite electrical
conductivity σc, and is bounded between

ricb ≤ r ≤ rcmb,

where ricb is the mean radius of the inner core boundary (ICB), and rcmb is the mean
radius of the core-mantle boundary (CMB). On top of the CMB is a thin layer (D′′-layer)
with a much smaller electrical conductivity σd, and an upper boundary r = rdp. The
remaining solid mantle

rdp≤ r≤ rea

is assumed electrically insulating (rea is the mean radius of the Earth).
The equations that describe MHD processes in the outer core are defined in the refer-

ence frame co-rotating with the solid mantle with an angular velocity

Ω = Ω01z+Ωǫ , (2.1)

where Ω0 is the mean rotation rate, 1z is the unit vector of the mean rotation axis, and Ωǫ

is the tiny variation in the Earth’s rotation.
Formulating the geodynamo model in the mantle reference frame is convenient for

geomagnetic data assimilation, mainly because the observations are made in this refer-
ence frame. Otherwise data reprocessing is necessary to account for any reference frame
difference. In this reference frame, the Boussinesq MHD fluid can be described by the
following equations [5, 16]

(

∂

∂t
+V·∇

)

V+2Ω01z×V=−∇p+
1

ρ0
J×B+

ρ

ρ0
g+ν∇

2V−2Ωǫ×V−Ω̇ǫ×r, (2.2)

∂

∂t
B=∇×(V×B)+ηc∇

2B, (2.3)
(

∂

∂t
+V·∇

)

ρ=κ∇
2ρ, (2.4)

where V is the velocity field, B is the magnetic field, J≡ (∇×B)/µ is the current density,
ρ0 is the mean density, ν is the fluid viscosity, κ is the dissipation for the density ρ (e.g.
thermal conductivity if the density anomaly arises purely from temperature variation),
µ the magnetic permeability, and r is the position vector. With scaling rules specified
in [15], the above equations can be non-dimensionalized as follows,

Ro

(

∂

∂t
+V·∇

)

V+1z×V=−∇p+(∇×B)×B+RthΘr+E∇
2V

−Ro (2ωǫ×V+ω̇ǫ×r) , (2.5)

∂

∂t
B=∇×(V×B)+∇

2B, (2.6)
(

∂

∂t
+V·∇

)

Θ=−(V·∇)T0+qκ∇
2Θ, (2.7)
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where Rth is the Rayleigh number, Ro is the magnetic Rossby number, E is the Ekman
number and qκ is the modified Prandtl number. For the detailed definitions of the pa-
rameters, we refer the reader to [15].

All variables in (2.5)-(2.7) are nondimensional, and unless otherwise specified, they
remain nondimensional in the rest of the paper.

The magnetic field B is decoupled into the poloidal BP and the toroidal BT compo-
nents:

B=BP+BT ≡∇×(∇×PB1r)+∇×(TB1r), (2.8)

where PB and TB are called the poloidal and toroidal scalars, respectively. The velocity
field V can be also decoupled into poloidal and toroidal components, which are then
described by the similar scalers PV and TV .

In the model, these scalars are approximated with the following spherical harmonic
expansions,

[

PB

TB

]

=
M

∑
m=0

L

∑
l=m

[

bm
l (ri,t)

jm
l (ri,t)

]

Ym
l (θ,φ)+C.C. for i=0,1,··· ,N, (2.9)

where (r, θ, φ) is the spherical coordinate, Ym
l are the spherical harmonic functions of

degree l and order m. Other variables are expanded similarly as (2.9). The integers (L, M,
N) are the truncation order of the numerical model.

It should be pointed out that the toroidal scalar TB, or more precisely, the coefficients
jm
l vanish in the insulating region. Therefore, they are not observable at the surface of the

Earth. Only the poloidal coefficients bm
l are observable. This will be discussed further in

the geomagnetic field modeling subsection.
With the expansion (2.9), a 4th-order compact finite difference algorithm in radius r,

and a 3rd order Adams-Bashforth/Adams-Moulton algorithm in time integration [16],
the system is reduced to the following linear system:

A1x(tk+1)=A2x(tk)+f(tk), (2.10)

where x is the state vector that includes all discretized coefficients of the fields, and f is
the forcing vector that includes all nonlinear interaction of the system. The computational
aspect of this model will be further discussed in the next section.

2.2 Data assimilation methodology

Data assimilation belongs to the field called estimation theory in which the state x of a
system is considered to be a stochastic variable. The purpose of data assimilation is to
combine all possible sources of information, generally from models and observations, so
as to produce the best possible estimate of x.

The process can be qualitatively described as follows: a model will produce an es-
timate of the system at later time ta+δta when given an estimate at the analysis time
ta

x f (ta+δta)=M[x f (ta)], (2.11)
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where x f (ta+δta) is called the forecast of the state at time ta+δta, and M is the (generally)
non-linear numerical model (or discrete propagator). The true state of the system, xt, is
unknown, and is propagated forward in time by the process

xt(ta+δta)=M[xt(ta)]+ǫ(ta)
m. (2.12)

where the random vector ǫ(ta)m describes the model error. It is applied to the true state
propagation because there is a component of the true state evolution that cannot be cap-
tured by the numerical model.

Observations, y, are made from the true state, and are modeled as

y=Hxt+ǫ
o, (2.13)

where the observation operator, H, represents the transformation from the state variables
to the observed quantities, and ǫo is the observation error. In the present work, geo-
magnetic observations are the product of a field model and are represented by spherical
harmonic coefficients up to certain degree Lobs. Because the observations can only be
made at or above the Earth’s surface and are only sensitive to the poloidal field BP (more
specifically bm

l ), the matrix H will act to zero out all of the other variables and BP at the
grid points beneath rdp. Determination of bm

l (rdp) from surface observations is described
in Section 2.3.

The analysis step combines the state forecast and observations by calculating the ob-
served minus forecast values (O−F) through the innovation equation,

(O−F)=y−Hx f . (2.14)

The (O−F) values represent the force exerted on the solution by the observations. The
analysis equation spreads information from the (O−F)s back to the model grid through
a gain matrix, K,

xa =x f +K
[

y−Hx f
]

. (2.15)

The gain matrix is determined by minimizing the estimated analysis variance (hence this
is a minimum variance solution)

K=P f HT
[

HP f H+R
]−1

, (2.16)

where P f is the forecast error covariance and R is the observation error covariance.
In traditional OI assimilation schemes, the covariance P f is modeled in a way to in-

sure that it retains the essential features of positive definiteness and diagonal dominance.
In many cases, the error characteristics are not well understood, and a simple model is
the most appropriate solution. However, when it is computationally feasible, a more
sophisticated approach may be undertaken using an ensemble calculation of the covari-
ances [8]. In this section we focus on the modeled covariances, and will discuss ensemble
calculation in Section 4.2.
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The algorithm for the gain matrix K used in this section is qualitatively the same as an
Optimal Interpolation (OI) algorithm in which observations are assumed “perfect”, i.e.
no error is included in the data. In addition, no cross-correlation is introduced, so that
only the poloidal field coefficients bm

l for l ≤ Lobs are modified. However, this approach
includes two arbitrary adjustable parameters to help tune the assimilation system.

For ease of discussion, we describe the algorithm with bm
l , not in the more standard

vector-matrix format shown in equation (2.15). The first adjustable parameter is the scal-
ing factor αb between the “observation” y in (2.15) and the poloidal field coefficients
bm

l (rdp) continued downward from surface observations. The other is the radial corre-
lation length rc in the outer core such that the analysis (2.15) only modifies the poloidal
field coefficients bm

l in the domain rdp ≥ r ≥ (rcmb−rc)≡ r∗. The details of derivation is
given in a manuscript submitted separately. Here we only provide the final formula of
the analysis:

b
m(a)
l (r)=

{

b
m( f )
l (r), r< r∗,

b
m( f )
l (r)+h(r)δbm

l

[

1−l(r/rdp−1)
]

, rdp > r≥ r∗,
(2.17)

where

δbm
l =αb

m(o)
l (rdp)−b

m( f )
l (rdp),

h(r)=
(r−r∗)2

(rdp−r∗)3

[

3(rdp−r∗)−2(r−r∗)
]

.
(2.18)

As in the previous discussion, the superscripts “a”, “ f ” and “o” represent the coefficients
of analysis, forecast and observation, respectively. From (2.17) and (2.18) one can find
that the poloidal field coefficients bm

l and their first order radial derivatives ∂bm
l /∂r are

continuous at r= r∗.
In this analysis, α is often chosen to be the ratio of the dipole coefficients of the obser-

vation and forecast
α=b

0( f )
1 /b

0(o)
1 .

But other definitions can be used to ensure that the scaled coefficients αb
m(o)
l are compa-

rable in magnitude to b
m( f )
l of the numerical model output.

2.3 Geomagnetic field model

Magnetic measurements at and/or near the Earth’s surface include contributions from
various sources, e.g. the magnetic field from the Earth’s core, the remnant magnetism
in the crust, the induced field in the crust and mantle (due to the time varying magnetic
environment), and the external fields (from ionosphere, magnetosphere and beyond) etc
[26, 28].

The magnetic field generated in the core contributes more than 90% of the magnetic
signals at the surface, and is often referred to as the Main Field. The main field varies
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slowly with time scales from a few years to millions of years [2]. Several models have
been developed for the time-varying main field, using different measurements and over
different epochs [6,10,26]. In this paper, we briefly describe the mathematical foundations
used in these field models.

In the geomagnetic field model, B is divided into the internal and external field:

B=BI+BE . (2.19)

In a source-free region (electrically insulating), it is a potential field, i.e.,

B=−∇Φ(r,θ,φ,t)=−∇ΦI−∇ΦE . (2.20)

Since it is also divergence-free, this potential satisfies the Laplace equation

∇2Φ=0. (2.21)

In a spherical geometry, the solution can be conveniently described by the following
spherical harmonic expansion:

Φ(r,θ,φ,t)= ΦI+ΦE

= rea

Li

∑
l=1

l

∑
m=0

( rea

r

)l+1
[gm

l (t)cos(mφ)+hm
l sin(mφ)]Pm

l (cosθ)

+rea

Le

∑
l=1

l

∑
m=0

(

r

rea

)l

[sm
l (t)cos(mφ)+qm

l sin(mφ)]Pm
l (cosθ), (2.22)

where (gm
l , hm

l ) are the internal Gauss coefficients at r = rea, and (sm
l , qm

l ) are the external
Gauss coefficients. It should be pointed out that conventionally Pm

l (cosθ) in (2.22) are the
Schmidt-normalized associated Legendre polynomials of degree l and order m. Li and Le

are the maximum degrees of the modeled internal and external fields, respectively.
The measured quantities differ in both type and accuracy over time. In the earliest

measurements, the field declination D (the angle between the true north and the local
field direction), and the inclination I (the dip of the field direction from the horizon-
tal) were measured at the surface [24]. After Gauss developed a method for measuring
absolute intensities in 1830s, the horizontal intensity H and the total intensity F were
observed. With advances in technology, all three components of the magnetic field (the
vector field) can now be measured accurately [17].

Since we are only interested in the main field, we focus on the coefficients gm
l and hm

l
in (2.22). These coefficients are obtained via a minimization process [17]. Denote by Ci

a measured quantity (e.g. a field component, the field intensity, or the field orientation)
at the location ri, and C(r) the global approximation to the measured quantity. A cost
function

D2 =∑
i

[Ci−C(ri)]
2
wi (2.23)
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can be constructed. Obviously C(r) and hence D2 are functions of the Gauss coefficients.
These coefficients are then determined by minimizing the cost function D2 with respect to
(gm

l , hm
l ). Naturally, different field models may be developed based on different measured

quantities Ci and different cost functions D2.
After determining gm

l (t) and hm
l (t) at the Earth’s surface, they can be downward con-

tinued to the top of the D′′-layer via (2.22). These coefficients are different from those
used in geodynamo modeling (2.9). Their relationship can be derived from the radial
component Br of the main field BI. By (2.22),

Br ≡ −
∂

∂r
ΦI

=
L

∑
l=1

l

∑
m=0

(l+1)
( rea

r

)l+2
[gm

l (t)cosmϕ+hm
l (t)sinmϕ]Pm

l (cosθ) . (2.24)

Obviously, if rea in (2.24) is read as the mean radius of the Earth scaled by the mean radius
rcmb of the CMB, then r is nondimensional. By (2.9), Br can be also expressed as

Br =∑
l,m

l(l+1)

r2
bm

l Ym
l (θ,φ)+C.C.. (2.25)

At the top of the D′′-layer, (2.24) and (2.25) should be identical, leading to

bm
l (rdp)=

r2
ea

l

(

rea

rdp

)l
√

2π

δm(2l+1)
(gm

l −ihm
l ), (2.26)

where rdp is the scaled (relative to rcmb) mean radius of the top of the D′′-layer, and

δm =

{

1, if m>0,
2, if m=0.

It should be pointed out that (gm
l , hm

l ) include contributions from both the core field
and the crustal field that are not separable. In general, lower degree coefficients are dom-
inantly from the core field. Careful examination of satellite data suggests that 87% of
the degree l = 12 coefficients can be attributed to the core field [21]. This attribution
decreases to 52% at the degree l = 13. Above that the crustal field dominates. Conse-
quently, the degree l = 13 is considered the transition point from the core dominance to
the crustal dominance. However, earlier observations could only provide the coefficients
up to lower degrees [6, 10]. Therefore Lobs≤13 is chosen in our studies.

3 Framework architecture and computation

The geodynamo and geomagnetic field models used in MoSST−DAS are transplanted
from existing models. Considering independent efforts on numerical dynamo model
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and geomagnetic field model development, the framework architecture is designed with
two basic requirements: easy integration (minimum re-engineering) of external models
into the framework; and efficient maintenance for users and developers. Obviously a
modular based structure is sufficient for the two requirements.

The computational requirement (in both CPU time and data storage) for the geomag-
netic data assimilation is enormous, several orders of magnitude larger than simple dy-
namo simulation (which is already very computationally intensive). Exploring new tech-
nologies is important to help meet the computing demand with available systems. We
discuss mainly the parallelization of the dynamo simulation on a single distributed sys-
tem. The parallel computation of the ensemble simulation over networked systems is
also briefly described.

3.1 Program structure

The basic building blocks of MoSST−DAS are individual modules. They are divided into
three levels according to their functions. The Level−1 modules are those defining state
variables and model parameters. The Level−2 modules are those defining the quantities
derived from those given in the first level modules. These derived quantities are often
used for simulation, and for model results analysis. The Level−3 modules are those for
dedicated applications, e.g. dynamo simulation, geomagnetic field modeling and assimi-
lation algorithms. Any module can use only the modules in the same level or in the lower
levels.

An example of the Level−1 modules is that to define the truncation orders for the
numerical simulation:

MODULE mod_dimparam

implicit none

integer Lmax_v,mmax_v,miner

integer nmaxo,nmaxi,nmaxm,nmax_v

... ...

END MODULE mod_dimparam

An example of the Level−2 modules is that for defining and evaluating variables in the
spherical geometries:

MODULE mod_sphgeoms

use mod_dimparam

implicit none

real (kind=8), allocatable :: aslg(:,:,:), clm(:,:,:)

... ...

CONTAINS

... ...

SUBROUTINE sphgeoms
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... ...

END SUBROUTINE sphgeoms

... ...

MODULE mod_sphgeoms

In this example, a Level−1 module, mod−dimparam, is used. The Level−3 modules have
similar structures, but with more complicated functions. For example, some subroutines
are private (not accessible from external), while others are public and can be called by
external routines. In particular, with slight modification, Level−3 modules can be easily
converted to independent numerical models.

The main code becomes very simple. It comprises of the simple commands of use
various modules, and various options for users to choose. Specific applications can be
simply added to the framework by adding/modifying individual modules.

3.2 Parallel computing

Distributed systems have become the main tool for high-end scientific computation.
Therefore, one of our major tasks is to re-engineer the MoSST core dynamics model based
on MPI libraries for distributed systems.

As discussed previously, in the simulation the linear system (2.10) is updated at each
time step. Therefore, the computation is divided into two parts: (i) evaluating the nonlin-
ear forcing f, and (ii) solving the set of linear equations (2.10). The details of the dynamo
model are given in [15]. We focus here only on the properties necessary for the parallel
computing discussion.

Computation of f can be carried out independently at different radial grid points ri,
given the spectral coefficients defined at the point. The numerical procedure Wi can be
summarized as

Wi =⇒



























Input: xi≡
[

x0
1(ri),x0

2(ri),··· ,xm
l (ri),··· ,xM

L (ri)
]T

,

Call Spherical Transforms

Output: fi≡
[

f 0
1 (ri), f 0

2 (ri),··· , f m
l (ri),··· , f M

L (ri)
]T

,

(3.1)

The superscript “T” in the above descriptions implies the transpose of the array. There-
fore, in our model, all Wi are evenly distributed among the nodes allocated for commu-
nication.

The matrices A1 and A2 in (2.10) are block diagonal in the spectral space (l, m) [15],
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e.g.

A1 =





















A10
1 0 ··· 0 ··· 0

0 A20
1 ··· 0 ··· 0

...
...

. . .
...

...
...

0 0 ··· Alm
1 ··· 0

...
...

...
...

. . .
...

0 0 ··· 0 ··· ALM
1





















, (3.2)

and similarly for A2. Each Alm
1 in (3.2) is an N×N sub-matrix. Therefore (2.10) can be

solved via the following independent procedures Qm
l :

Qm
l =⇒



































Input: xm
l (tk)≡

[

xm
l (r1),xm

l (r2),··· ,xm
l (rN)

]T
(tk),

fm
l (tk)≡

[

f m
l (r1), f m

l (r2),··· , f m
l (rN)

]T
(tk);

Solve Alm
1 xm

l (tk+1)=Alm
2 xm

l (tk)+fm
l (tk);

Output: xm
l (tk+1).

(3.3)

In the above expression, xm
l and fm

l are the subsets of x and f for given (l, m), respectively.
Obviously Wi and Qm

l require different subsets of the state vector x. And data com-
munication between the two parts of calculation is not simple.

We have tested two approaches in the data communication. One is the “master-slave”
architecture (MSA), in which a single node (the “master” node) is dedicated to manage
the data distribution and redistribution between W and Q, while the rest of the nodes
(the “slave” nodes) carry out the actual computation in W and Q. This architecture is
very simple for implementation. But the scalability is poor: the communication time
depends only on the bandwidth between the master node and the slave nodes.

The other approach is based on the “divide-and-conquer” scheme (DCA). In this ar-
chitecture, all nodes perform the dual functions of computation and communication. A
node acquires from the rest only the portion of data it needs for computation. Synchro-
nization among the nodes are ensured by the pair of MPI SEND and RECEIVE functions.
Implementation of this architecture is more complicated. But it is scalable, and the effec-
tive bandwidth increases with the node number in simulation.

Since the ensemble runs in error covariance analysis are independent from each other,
and since only the final results from the individual runs are required to obtain the covari-
ance matrix, this part of computation can therefore be distributed among individual com-
puting systems connected via networks. We have tested this approach successfully, using
XCAT3 framework, a Common Component Architecture (CCA)-compliant framework,
to manage job distribution and model output collection. The details of the experiment
are given in [29]. With this parallel computing over networked systems, computation
needs for the geomagnetic data assimilation could be reasonably accommodated with
currently available technologies.
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Figure 1: Scalability Test with up to 64 nodes. The total time steps K=50. The resolution is 62×40×110. The
columns are the wall clock time for 8, 16, 32 and 64 nodes. Note that the communication time (dark blocks)
reduces as the node number increases.

4 Some numerical results from MoSST−DAS

This section is focused on the code parallelization, the covariance matrix from the ensem-
ble simulations, the experiments with synthetic data (OSSEs), and 100 years of surface
geomagnetic observations. Much of the work has been reported in manuscripts submit-
ted for publication. Therefore the selected results are used to demonstrate the operation
of the framework.

4.1 Scalability of the MoSST model

Two approaches are employed for data communication in the MPI-based MoSST core dy-
namics model, the “Master-Slave” structure and the “Divide-and-Conquer” algorithm.
Both are tested for the scalability of the code.

The computing system used for this test is a 256-node, dual processor, Linux cluster.
Up to 64 nodes are used for these experiments, and the numerical resolution used is
L×M×N = 60×40×110. The overall CPU time is divided into communication time τco

and the data crunching time τdc (for evaluating nonlinear terms and solving the linear
system). In all cases there are 50 steps of time integration.

The overall performance of the first approach is as expected, τdc decreases as the num-
ber of nodes used in simulation increases. But τco remains approximately constant during
the process. In other words, the communication in the first approach is not scalable.

The results for the second approach are shown in Fig. 1. From the figure we can
observe clearly that τco (the red sectors of the columns) is approximately halved when
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the number of the nodes doubles. Reduction of τco is slowing down when more nodes
are used. Similar properties are also observed in τdc (the white sectors of the columns).

The scalability at large node numbers (e.g. from 32 to 64) is not as good as that at
smaller node numbers (e.g. from 8 to 16) is partly due to unbalanced workload in par-
allelization of nonlinear forcing evaluation. For example, the velocity field and the tem-
perature perturbation are evaluated only in the outer core, while the magnetic field must
be solved additionally in the inner core and in the D′′-layer. This could be improved by
proper redistribution of the calculations in the inner core and in the D′′-layer among the
individual nodes.

4.2 Monte-Carlo estimation of background error covariance

In this section we discuss the use of a Monte Carlo method to estimate the multivariate
forecast error covariance [3]. Because of the large number of degrees of freedom in the
model, it is not yet feasible to run the system as an Ensemble Kalman filter. Instead, we
make the approximation that the error statics can be approximated as constant over the
assimilation time. The estimated error covariance will then have information on spatial
error correlations and correlations between the observed poloidal field to the unobserved
variables.

The covariance is defined in terms of the nondimensional model state vector for a
given (l,m), which is

y=















(PV−µPV
)/σPV

(TV−µTV
)/σTV

(PB−µPB
)/σPB

(TB−µTB
)/σTB

(Θ−µΘ)/σΘ















, (4.1)

where
(

µPV
,µTV

,µPB
,µTB

,µΘ

)

=(〈PV〉,〈TV〉,〈PB〉 ,〈TB〉,〈Θ〉)

are the ensemble means of the state vectors, and σ[PV ,TV ,PB,TB,Θ] are the (radially) maximum
standard deviations in the outer core of the vectors PV , TV , PB, TB and Θ, respectively.

The forecast error covariance matrix is

P=















PPV ,PV PPV ,TV PPV ,PB PPV ,TB PPV ,Θ

PTV ,PV PTV ,TV PTV ,PB PTV ,TB PTV ,Θ

PPB,PV PPB,TV PPB,PB PPB,TB PPB,Θ

PTB,PV PTB,TV PTB,PB PTB,TB PTB,Θ

PΘ,PV PΘ,TV PΘ,PB PΘ,TB PΘ,Θ















. (4.2)

If the matrix YN×M contains an M-member ensemble of model-state vectors as columns,
then P can be calculated as

PN×N =
YYT

M−1
. (4.3)
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Figure 2: Original covariance between the poloidal field in the core and on the CMB, (l,m)=(1,1).

An ensemble of 50 model runs with perturbed initial states is carried out in our study,
with each run lasting 0.04 time units (on the magnetic diffusive timescale). This ensemble
size is substantially smaller than the model dimensions, which will likely result in some
spurious covariances at large distances. The covariances therefore be truncated at some
correlation length , and we use the piecewise continuous function proposed by [9]
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(4.4)

to smooth P. This results in C0 being a homogeneous and isotropic correlation function
where z is the distance between two radial grid points. We compute the smoothing P by
multiplying each item with C0(zij,1/2,c), given a constant c (e.g. c=10% of the outer core
thickness in this study). From this we obtain the new truncated covariance matrix P. As
an example, one part of the covariance and its filtered result are shown in Figs. 2 and 3.

4.3 Observing System Simulation Experiments

In order to demonstrate the overall effect as well as detailed improvement, Observing
System Simulation Experiments (OSSEs) based on an Optimal Interpolation (OI) scheme,
have been performed to assimilate synthetic geomagnetic observation into the geody-
namo simulation system. One advantage of OSSEs lies in that it is possible to evaluate
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Figure 3: Smooth covariance between the poloidal field in the core and on the CMB, (l,m)=(1,1).

the local as well as global RMS error in terms of the observed (BP) and unobserved (BT)
variables during any computational temporal as well as spatial domain. Therefore the
improvement can be visualized and analyzed numerically.

In these OSSEs, a nature run as well as a free model run, using Rayleigh number
Rth =15,000 and 14,500 respectively, have been obtained before a forecast run starts, so
that two references are available before hand to compare with. Other parameters are
specified as:

Ro =E=1.25×10−6, qκ =1.0. (4.5)

Therefore, the model error here refers to the difference in the Rayleigh numbers. A num-
ber of OSSEs have been carried out using different scenarios, such as with and with-
out model error; different observation degrees of spherical harmonic coefficients of the
synthetic observation data; various forecast error correlation length scales; and varying
assimilation time frames.

Through consistent data assimilation over a portion of the magnetic free decay time
(τd), both the poloidal and toroidal magnetic fields show a positive impact - the RMS
error is well bounded and in some period even consistently decreasing. A relatively long
error correlation length has a slightly better effect on improving the velocity field than a
shorter one.

Fig. 4(a) and (b) show the relative RMS error of 3 sets of data: free model run, forecast
run (assimilating the first 8 degrees of observation data) started at t=0.1 and 0.95 respec-
tively. The forecast error correlation length scale is set to be rc=120 km. Fig. 4(a) has both
the initial error and model error; Fig. 4(b) has only model error there. These two plots
demonstrate that the overall error for BP in core mantle boundary is bounded over one
time unit. At analysis times, the error is greatly reduced by assimilating the observation
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Figure 4: Relative RMS error in poloidal component of B inside core mantle boundary versus time. Assimilation
started at t= 0.1 (triangles) and 0.95 (squares) of magnetic free decay time respectively. Assimilation with both
model and initial error is on the left while that with only the initial error is on the right. The error for the free
model run is shown as a dotted line.

data. Between assimilation times, error forecast errors grow, but are generally lower after
repeating the assimilation many times. This is a good indication that by periodically as-
similating geomagnetic observation data, the geodynamo simulation is drawn closer to
the true state.

Fig. 5 presents the magnetic field morphology at the top of the D′′-layer for the nature
run (true solution) on the left, and the forecast run with assimilation on the right, at
time t = 0.994, nearly in the middle between two assimilations. The dipole component
of magnetic field which is about 80% of the total magnitude has been excluded to see
the small structures. The assimilation started from time t = 0.1, using the first 8 degrees
of observational data, without model error. The forecast error correlation length is rc =
120km. Since the previous assimilation, although the forecast solution has developed
without constraint for over 0.3% of magnetic free decay time, it still demonstrates similar
small scale structure compared to the true solution on the left. This also tells us that
observing the first 8 degrees of observational data is able to capture a substantial portion
of the magnetic field structure. These results indicate that OSSEs is a useful tool for
evaluating a geomagnetic data assimilation system.

It should be pointed out that if the molecular dissipative coefficients of the core fluid
are used, the corresponding parameter values would be

R0≈10−9, E≈10−15, qκ ≈10−6 ,

thus orders of magnitude smaller than those (4.5) in our experiment. The effect of these
parameter differences on geomagnetic data assimilation can be also analyzed similarly
via carefully designed OSSEs.
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Figure 5: Surface morphology of Br at t = 0.992 for (a) the true solution; (b) forecast run with assimilation
(assimilating the first 8 degrees of observation data Lobs = 8), forecast error correlation length rc = 120km,
without model error.

4.4 Assimilating 100 years of geomagnetic observations

We have carried out an experiment in which geomagnetic observations are assimilated
into the system every 20 years, for a period of 80 years (1900 to 1980). A final forecast
run is started in 1980. We used the scaled OI scheme described in Section 2.2, in which
observations of the poloidal field are scaled relative to the dipole field (l=1,m=0). In this
algorithm, corrections are only made to the poloidal component of the magnetic field, so
that changes in other variables can only occur through the dynamo model itself. The goal
of these experiments is to determine whether there is some improvement in the estimate
of the core state resulting from this assimilation. Because the true state is not known,
any improvement can only be inferred indirectly by comparing the error growth rate (or
difference between observation and forecast) for the surface magnetic field at the first and
last assimilation cycles. That is, if a 20 year forecast of the surface magnetic field is more
accurate after 80 years of assimilation than it is after just one assimilation, then there is
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Figure 6: RMS of (O−F ) for the m=3 wave number (all L) between 1900 and 1985. Assimilation is carried
out every 20 years, and the (O−F ) is calculated every 5 years. The error growth rate shows a modest decline
of about 15% over the course of the assimilation run.

evidence that the initial state for the forecast has been improved.

The RMS difference between the observations and forecast for a given wave number
m

RMSm =

[

1

L−m+1

L

∑
l=m

(b
m( f )
l −b

m(o)
l )

]1/2

(4.6)

is one possible indicator of the forecast error growth rate (similar choice can be the RMS
for a given degree l). Since the observation error is assumed zero, the RMS error at
analysis times is also zero. The RMS growth is plotted in Fig. 6 for m = 3, which shows
a roughly 15% drop in the RMS error growth for the 1980 forecast relative to the 1920
forecast.

While this improvement is small, it does indicate that some change in the core dy-
namics has taken place which has the 1980 analysis a better initial state than the 1900
analysis. While there are no other kinds of observations to compare with, we can deter-
mine the kind of impact on other state variables by comparing the model states with and
without assimilation. The toroidal component of magnetic field, for example, is impacted
indirectly by the observations through the induction equation. Fig. 7 shows the change in
a single profile of the toroidal field as a function of radius. The maximum change to this
field occurs around r=2000km, which is well inside the outer core (rcmb =3500 km in this
model run). This represents roughly a 10% change to the field at this location. Although
it cannot be determined whether this represents an improvement or worsening of the es-
timate of the toroidal component, it does show that the surface observations do begin to
have some impact on non observed variables within the core, and the improvements to
the magnetic field forecasts indicate that this impact is not negative.
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Figure 7: Change in profile of the toroidal component of magnetic field (assimilation - free running model) for
the year 1980.

5 Discussion

In this paper, we have described the mathematical foundation, numerical algorithms,
programming structure, and several numerical results of the geomagnetic data assimi-
lation framework, MoSST−DAS, that we have been developing during the past several
years.

The framework is numerically stable: numerical solutions from Sections 4.3 and 4.4
show that model outputs (numerical solutions) are stable over a very long period of time
(one magnetic free-decay time) with the constraints imposed at the top of the D′′-layer.
The numerical results also show that the model outputs do respond significantly to the
imposed constraints from surface observations. However, the degree of response varies
at different locations and for different fields. For example, the poloidal field near the top
of the CMB responds quickly to the surface observations, as shown in Figs. 5 and 6. On
the other hand, the toroidal field (not observable at the Earth’s surface) changes slightly
over a short (100 years) assimilation time, e.g. Fig. 7. The OSSEs also show that the
improvement of the model forecast over the assimilation time period: the errors between
the forecast and the “truth” decay with time, as demonstrated in Fig. 4.

These results only demonstrate the successful operation of the MoSST−DAS. Many
problems still remains to be solved for a fully functional system. First, not all field mod-
els have been completely integrated into the framework. One of the key issues for imple-
mentation is the consistency of the various field models. Different field models generate
the main field Gauss coefficients from different surface observations, and with different
optimization algorithms. Consequently, the degrees of the available Gauss coefficients
vary in time. We are investigating the impact of the varying degrees of the observed
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poloidal field on geomagnetic data assimilation with carefully designed OSSEs.
In the OSSEs and the geomagnetic data assimilation experiments presented in this

paper, we have assumed (as the first step) that the observations are precise, i.e. no ob-
servation error is included in the framework. In reality, observations error is non-zero,
and they depend on observational techniques, field modeling algorithms, assumptions
on other electromagnetic processes on and near the Earth’s surface. Therefore, it is nec-
essary to understand the impact of observational errors on the model forecast, and to
estimate appropriately the errors in the Gauss coefficients.

Cross correlation between the poloidal field and the other physical quantities (e.g.
toroidal magnetic field, velocity field, density perturbation) in the outer core has been
implemented into our MoSST−DAS framework. But it has not been applied to either
OSSEs nor geomagnetic data assimilation experiments. We are currently examining the
impact of the cross-correlation on the geomagnetic data assimilation, focusing on the
speed-up of the assimilation process (or, in other words, reduction of the spin-up time of
the system).

Though, there are many problems to be resolved and many questions to be answered,
we are beginning to shape up the study of geomagnetic data assimilation. This could
enable us not only to forecast geomagnetic secular variation in the coming decades, but
also to provide observational constraints to improve numerical geodynamo models.
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