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Abstract. This study presents stochastic methods to simulate wave envelopes in lay-
ered random media. High-frequency Seismograms of small earthquakes are so com-
plex due to lithospheric inhomogeneity that seismologists often analyze wave en-
velopes rather than wave traces to quantify the subsurface inhomogeneity. Since the
statistical properties of the inhomogeneity vary regionally, it is important to develop
and examine direct envelope simulation methods for non-uniform random media. As
a simple example, this study supposes plane wave propagation through two-layer ran-
dom media in 2-D composed of weak and strong inhomogeneity zones. The character-
istic spatial-scale of the inhomogeneity is supposed to be larger than the wavelength,
where small-angle scattering around the forward direction dominates large-angle scat-
tering. Two envelope simulation methods based on the small-angle scattering approx-
imation are examined. One method is to solve a differential equation for the two-
frequency mutual coherence function with the Markov approximation. The other is
to solve the stochastic ray bending process by using the Monte Carlo method based
on the Markov approximation for the mutual coherence function. The resultant wave
envelopes of the two methods showed excellent coincidence both for uniform and for
two-layer random media. Furthermore, we confirmed the validity of the two methods
comparing with the envelopes made from the finite difference simulations of waves.
The two direct envelope simulation methods presented in this study can be a math-
ematical base for the study of high-frequency wave propagation through randomly
inhomogeneous lithosphere in seismology.
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1 Introduction

High-frequency seismic-wave propagation through the earth shows highly complicated
behavior because of medium heterogeneity. We see numerous phases in addition to direct
P- and S-waves, and S-wave trains are formed around direct S-waves in seismograms of
small earthquakes (Fig. 1). Most of the phases are interpreted as waves scattered by ran-
dom inhomogeneities distributed in lithosphere. Accepting the complexity of the seismo-
grams, seismologists often investigate wave envelopes instead of wave traces to quantify
medium inhomogeneity. Observed envelopes show systematic behavior related to the
travel distance and the wave frequency [15, 25]. The behavior is strongly governed by
the statistical properties of the medium inhomogeneity.

In seismology, there are some approaches for simulating directly wave envelopes
without calculating wave traces based on the statistical information such as the power
spectrum density function (PSDF) or the auto correlation function (ACF) of medium frac-
tional fluctuation. We refer to such approaches as direct envelope simulation methods.
The radiative transfer theory is one of the methods to simulate the envelopes of coda
waves [e.g., 1, 3]. The heuristic approach to the radiative transfer theory and its ap-
plication to seismology are summarized in [28]. Theoretical derivation of the radiative
transfer equation based on the Bethe-Salpeter equation for waves through random me-
dia is well summarized in [12]. The validity of the radiative transfer theory with the Born
approximation is examined carefully by a comparison with numerical finite-difference
simulations [18, 38].

Another typical method for the direct envelope simulation is based on a statistical
method called the Markov approximation which supposes small-angle scattering around
the forward direction. This method was originally developed for optical waves in radio
physics [9, 20, 32, 36], and may be considered as a stochastic extension of the split step
method for the parabolic wave equation [8, 34]. The validity of the Markov approxima-
tion can be examined by a comparison between the envelope of the Markov approxima-
tion and the averaged envelopes which are made from the numerically calculated wave
traces [2]. Employing the method of the Markov approximation, H. Sato simulated en-
velopes of S-wave trains, or S-wave envelopes, and showed the duration of the envelopes
increases with increasing the travel distance [25]. It is consistent with the observation that
S-wave trains of small earthquakes usually show the increase in the duration as shown
in Fig. 1. Following this study, many studies have applied the method for the interpre-
tation of high-frequency seismograms [15, 16, 24, 30, 35]. In parallel with the application
to observed seismograms, theoretical simulation methods have also been developed to
adopt more realistic conditions for the lithospheric inhomogeneity. The original method



T. Saito, H. Sato and T. Takahashi / Commun. Comput. Phys., 3 (2008), pp. 63-84 65

200

150

100

50

0 10 20 30 40

Reduced Travel Time [s]

]
m

k[
e

c
n

at
si

D
l

a rt
n

e
c

o
p

y
H

P wave

S wave

S-wave train

Figure 1: Variation of transverse-component seismograms (2-32 Hz band) of a local earthquake of M 4.0 with
increasing travel distance. Data are registered by Hi-net. Traces are plotted against reduced travel time with
the velocity of 7km/s.

supposed the random media characterized by a Gaussian ACF without intrinsic absorp-
tion since this ACF is mathematically easily tractable [32, 33]. In seismology, intrinsic
absorption was phenomenologically introduced [25], and a power-law type PSDF was in-
troduced for characterizing more realistic random media [22]. Also, a simulation method
of envelopes in 2-D weakly anisotropic random media was successfully formulated [21].
Recently, a method of elastic vector-wave envelopes having radial and transverse com-
ponents was proposed [10, 26, 27]. To include large-angle scattering in the framework,
combined methods of the Markov approximation and the radiative transfer theory were
proposed [23, 29].

One of the most attractive topics in seismology is to image a spatial variation of the
statistical properties in the earth medium. For example, medium inhomogeneities are dif-
ferent between the crust and mantle [19]. In Japan, high-frequency S-wave trains show
systematic change related to the volcanic front due to the non-uniform statistical prop-
erties of the inhomogeneity [4, 15] and non-uniform absorption structure [42]. Recently,
anomalous scattering bodies beneath Quaternary volcanoes were successfully imaged by
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analyzing a large number of S-wave envelopes recorded by high-sensitivity seismograph
network Japan (Hi-net) [35]. As the mathematical basis of those studies, envelopes in
random media characterized by non-uniform statistical properties should be examined.
The envelope simulations based on the radiative transfer theory [5, 6, 7, 14, 41] and on
the diffusion equation [37] have been investigated for the case of non-uniform random
media. However, there have been few studies on the envelope synthesis of the Markov
approximation in non-uniform random media.

This study presents direct envelope simulation methods for plane-wave propagation
in two-layer random media in 2-D as the simplest case for non-uniform random media. In
Section 2, we numerically calculate wave envelopes in two-layer random media for the
incidence of a plane wavelet with the finite-difference (FD) method to obtain reference
envelopes that will be compared with the envelopes of the two direct simulation meth-
ods. In Section 3, solving a differential equation for the two-frequency mutual coherence
function with the Markov approximation, we obtain wave envelopes. In Section 4, we de-
scribe another direct envelope simulation method which uses the Monte Carlo method
to simulate ray bending process in scattering media, which is based on the Markov ap-
proximation for the mutual coherence function. In Section 5, we compare the envelopes
obtained by the two direct simulation methods with the FD envelopes to validate these
methods. Finally, in Section 6, we summarize our study.

2 Plane-wave propagation in two-layer random media in two-

dimensional space: FD envelopes

We consider propagation of a scalar wave u(x,t) through inhomogeneous media in 2-D
space governed by

(

∆− 1

V (x)2

∂2

∂t2

)

u(x,t)=0, (2.1)

where x=(x,z) and ∆ is the Laplacian. In randomly inhomogeneous media, the velocity
is written as

V (x)=V0{1+ξ(x)},

where the fractional velocity fluctuation ξ(x) is a random function of location x and is
small |ξ| ≪ 1. We consider an ensemble of the fractional fluctuation {ξ(x)} such that
〈ξ(x)〉 = 0, where the angular brackets mean the ensemble average. The media are
referred to as random media which are statistically characterized by an ACF R(xd) =
〈ξ(x+xd)ξ(x)〉. This study supposes that ξ(x) is statistically homogeneous and isotropic
in a layer, and is characterized by a Gaussian ACF as

R(xd)= ε2exp
(

−x2
d/a2

)

, (2.2)

where ε is the root-mean-square value of the fractional velocity fluctuation and a is the
correlation distance which is a characteristic scale-length of the inhomogeneity. The cor-
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responding PSDF in 2-D space is given by

P(m)=

∞
∫

−∞

∞
∫

−∞

R(xd)exp(−im·xd)dxd =πε2a2exp

(

−m2a2

4

)

, (2.3)

where m is the wavenumber vector and m= |m|.

Figure 2: Geometry of a two-layer random medium and line receiver arrays (triangles) in 2-D space for finite
difference (FD) simulations. Two-layer random medium is composed of Layer 1 (weak inhomogeneity zone,
ε=0.04, a=5km, 0km<z<60km) and Layer 2 (strong inhomogeneity zone, ε=0.07, a=3km, 60km<z<160km).
Plane Ricker wavelet with 2Hz dominant frequency is generated from a white dashed line (z=−5km) in Layer
0 (gray area, -40km< z<0km).

We first numerically study the wave propagation through two-layer random media
(Fig. 2) for the incidence of a plane wavelet by using the finite difference (FD) method.
Layer 0 between z =−40km and 0 km is homogenous, characterized by the background
velocity V0 = 4km/s. Layer 1 between z = 0 and 60km has weak inhomogeneity charac-
terized by RMS fractional fluctuation ε = 0.04 and correlation distance a = 5km. Layer 2
between z =60 and 160km has strong inhomogeneity characterized by ε =0.07, a =3km.
For the realization of a random medium, we generate random numbers and distribute
them on a 2-D grid space, thus producing random fluctuation with a white-noise type
PSDF. We then take the Fourier transform of the random fluctuation, correct the spec-
trum amplitude according to Eq. (2.3), take the inverse Fourier transform, and we get
ξ(x). A plane wavelet is generated at z=−5km in Layer 0. We use a Ricker wavelet with
the dominant frequency fc=2Hz as a source time function. The plane wavelet propagates
along the z-axis and plunges into Layer 1. Line receiver arrays are put at z = 25, 50, 75,
100 and 125km; each line array consists of 11 receivers with 8km spacing along the x-axis.
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Figure 3: Wave traces at different travel distances in two realizations of the two-layer random media by using
the FD simulations for the incidence of a 2Hz Ricker wavelet. The traces are plotted against reduced travel
time with velocity V0 =4km/s.

The first and the second line arrays are located in Layer 1, and the third, fourth and fifth
line arrays are in Layer 2. We numerically solve the wave propagation by the FD method
with fourth-order accuracy in space and second-order one in time with grid spacing of
50m and time step of 4ms [21]. Absorbing boundary condition is set at the both ends
orthogonal to the z-axis, and periodic boundary condition is set at the both ends orthog-
onal to the x-axis. As examples, Fig. 3 shows wave traces at different travel distances in
two realizations of the random media. Increasing the travel distance, wave traces become
complex to contain more number of phases. However, the maximum amplitude does not
always decrease with increasing the travel distance.

To investigate the statistical properties of the wavefield, we synthesize mean-square
(MS) envelopes from 20 realizations of the random media having the same PSDFs as fol-
lows. At first, we calculate an envelope at each station by using the Hilbert transform
[31]. Then, the envelopes of 11 receivers on a line array are squared and averaged to
obtain squared envelopes for a single realized medium. Finally, the squared envelopes
in 20 realized random media are averaged to obtain MS envelopes. They are referred to
as FD envelopes, hereinafter. Fig. 4a shows the FD envelopes [bold gray curves] at the
travel distance z = 25, 50, 75, 100 and 125km in the two-layer random media. Dashed
curves around the bold gray curve indicate the standard deviation of the FD envelopes.
The standard deviation is estimated by a bootstrap method, in which MS envelopes are
repeatedly replicated from 20 envelopes randomly taken with replacement from the com-
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Figure 4: Mean-square (MS) envelopes (gray curves) in (a) the two-layer random media and (b) uniform random
media (ε=0.04, a=5km, 0km<z<160km) by using finite-difference simulations (FD envelopes) for the incidence
of a 2Hz Ricker wavelet. Black dashed curves indicate the range of one standard deviation of the FD envelopes.

plete set of the original envelopes. The FD envelopes indicate that the maximum ampli-
tude smoothly decreases with increasing the travel distance, although it is difficult to see
such systematic variation in wave traces in each individual realization as shown in Fig. 3.
The amplitude attenuation is due to wave scattering (scattering attenuation) caused by
medium inhomogeneity since our simulation considers neither intrinsic absorption nor
geometrical spreading. Furthermore, the duration of the envelope increases with increas-
ing the travel distance. This feature is referred to as envelope broadening, that is observed
in S-wave envelopes of small earthquakes [25]. As a comparison, Fig. 4b shows plots of
FD envelopes for the uniform random media characterized by the weak inhomogeneity
[ε = 0.04, a = 5km, 0 < z < 160km]. Due to the lack of a strong inhomogeneity zone, the
maximum amplitude in Fig. 4b decreases more slowly with travel distance than that in
Fig. 4a.

3 Markov envelopes

We describe the direct envelope synthesis method by using the Markov approximation
where a differential equation of two-frequency mutual coherence function is solved. This
study deals with the wave propagation through random media for the incidence of a
plane wavelet in 2-D space; the derivation is similar to the study [10]. Wavefield u(x,z,t)
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in 2-D space is written as a superposition of harmonic plane waves of angular frequency
ω as

u(x,z,t)=
1

2π

∞
∫

−∞

dω U(x,z,ω)ei(kz−ωt), (3.1)

where the wavenumber k = ω/V0. When the wavelength is smaller than the correlation
distance of the medium inhomogeneity ak≫1, we may neglect the second derivative of
U(x,z,ω) with respect to the direction z and obtain the parabolic wave equation

2ik0
∂U

∂z
+

∂2U

∂x2
−2k2

0ξU =0. (3.2)

In order to derive the MS envelope, we introduce a two-frequency mutual coherence
function (TFMCF). The TFMCF is defined as an ensemble average of a product of wave-
fields at two points x′ and x′′ on the x-axis and two angular frequencies ω′ and ω′′ at the
travel distance z,

Γ2

(

x′,x′′,z,ω′,ω′′)≡
〈

U
(

x′,z,ω′)U
(

x′′,z,ω′′)∗
〉

, (3.3)

where the asterisk denotes complex conjugate. When a plane wave propagates along the
z-axis (Fig. 2), Γ2 is dependent only on xd =x′−x′′, but is independent of xc =(x′+x′′)/2,
since the random media are statistically homogeneous along the x-axis. Introducing cen-
tral angular-frequency ωc =(ω1+ω2)/2 and difference angular-frequency ωd = ω1−ω2,
we explicitly write arguments of Γ2 as Γ2(xd,z,ωd,ωc). Then, the intensity of the wave-
field is written as

I(z,t)≡
〈

|u(x,z,t)|2
〉

=
1

(2π)2

∞
∫

−∞

∞
∫

−∞

dωcdωdΓ2(xd =0,z,ωd,ωc)exp{−iωd(t−z/V0)}

=
1

2π

∞
∫

−∞

dωc Î(z,t;ωc), (3.4)

where the intensity spectral density function Î(z,t;ωc) is given by

Î(z,t;ωc)≡
1

2π

∞
∫

−∞

dωdΓ2(xd =0,z,ωd,ωc)exp{−iωd(t−z/V0)}. (3.5)

We may interpret Î(z,t;ωc)∆ω as the MS envelope of the bandpass-filtered trace with the
center frequency ωc and a bandwidth ∆ω. In order to obtain Γ2 at a travel distance z=Z0,
the master equation is derived from Eq. (3.2) as

∂Γ2

∂z
+i

kd

2k2
c

∂2
Γ2

∂x2
d

+k2
c [A(0)−A(xd)]Γ2+

k2
d

2
A(0)Γ2 =0, (3.6)
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where a function A is given by

A(xd)≡
∞
∫

−∞

R(xd,zd)dzd =
√

πε2aexp
(

−x2
d

/

a2
)

≈
√

πε2a
(

1−x2
d/a2

)

for |xd|<< a , (3.7)

for the Gaussian ACF [2]. In the derivation of Eq. (3.6), we supposed quasi-monochromatic
waves of central wavenumber kc =(k′+k′′)/2 and difference wavenumber kd =k′−k′′. In
Eq. (3.7), the approximation |xd|≪ a is used, since the correlation of the wavefield at two
points spatially separated on the transverse axis rapidly decreases to zero with increasing
the lag distance [see p. 245, 28]. The value of Γ2 is written as the following product

Γ2 = 0Γ2exp

(

−ω2
d A(0)z

2V2
0

)

. (3.8)

The Fourier transform of the exponential term in Eq. (3.8) is given by

w(z,t) =
1

2π

∞
∫

−∞

dωdexp

(

−A(0)zω2
d

2V2
0

)

exp(−iωdt)

=
V0

√

2πA(0)z
exp

(

− V2
0 t2

2A(0)z

)

. (3.9)

The function w(z,t) shows the wandering effect which corresponds to the probabilistic
distribution of the onset time estimated from the geometrical optics [e.g. 11]; the vari-
ance of the onset time is given by A(0)z/V0

2 on the basis of the geometrical optics [see
Eq. (8.24), 28]. The intensity spectral density function (3.5) is then given by a convolution
form as

Î(z,t;ωc)=

∞
∫

−∞

dt′w
(

z,t−t′
)

Î0

(

z,t′;ωc

)

, (3.10)

where

Î0(z,t;ωc)=
1

2π

∞
∫

−∞

dωd0Γ2(xd =0,z,ωd,ωc)exp{−iωd(t−z/V0)}. (3.11)

From Eqs. (3.6) and (3.8), the master equation for 0Γ2 is given by

∂0Γ2(xd,z,ωc,ωd)

∂z
+i

kd

2k2
c

∂2
0Γ2

∂x2
d

+
√

πε2k2
c a

(

x2
d

a2

)

0Γ2 =0 (3.12)

for the case of the Gaussian ACF. In order to solve Eq. (3.12) in the two-layer random
media, we take the xd- and z-axes as shown in Fig. 5a. Layer 1 ranges between z=0 and
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Figure 5: Coordinate used for the envelope synthesis using the Markov approximation. The z- and z′-axes are
in the global ray direction of a plane wave, and the xd-axis is orthogonal to the z-axis. The distance L1 is the
travel distance in Layer 1, and L2 is that in Layer 2. The total travel distance is Z0.

L1, and the Layer 2 ranges z > L1. We calculate 0Γ2(xd,Z0,ωc,ωd) at a travel distance Z0

with respect to the initial condition 0Γ2(xd,0,ωd,ωc)=1 which corresponds to Î(0,t;ωc)=
δ(t). Considering the symmetry of 0Γ2 with respect to the xd-axis, we set the boundary
condition at xd =0 as

∂0Γ2(xd,z,ωc,ωd)
/

∂xd

∣

∣

xd=0
=0.

For the case that the travel distance Z0 is smaller than L1, Eq. (3.12) is solved analytically
[10]. Setting the medium parameters in Layer 1 as ε1 and a1, and introducing a character-
istic time

tM =

√
πε2

1Z2
0

2V0a1
, (3.13)

the solution is given by

0Γ2(xd,Z0,ωd,ωc)=
exp

{

− tan(s0τ)
s0

χ2
}

√

cos(s0τ)
, (3.14)

where

τ = z/Z0, χ=
√

2Z0V0k2
c tMxd/Z0, s0 =2

√
tMωdexp(iπ/4).

Using this solution, we obtain the solution at the end of Layer 1, 0Γ2(xd,L1,ωd,ωc).
Then, we consider the propagation in Layer 2 introducing the z′-axis whose origin

is located at z = L1 (Fig. 5b). The solution 0Γ2(xd,z= L1,ωd,ωc) in Layer 1 is used as an
initial condition 0Γ2(xd,z′=0,ωd,ωc) in Layer 2. The situation is similar to the propaga-
tion in Layer 1, but the difference is that the initial condition in Layer 2 is not constant,

0Γ2(xd,z′=0,ωd,ωc) 6= 1. Because of this initial condition, we cannot use an analytical
solution like Eq. (3.14). We solve the Eq. (3.12) in Layer 2 numerically. The characteristic
time in Layer 2 is given by

tM =

√
πε2

2L2
2

2V0a2
. (3.15)
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Introducing two non-dimensional parameters as

µ=
(tMωd)

1/2

L2
z′, ν=(tMωd)

−1/4

√

2L2V0k2
c tM

L2
xd, (3.16)

we rewrite Eq. (3.12) as
∂0Γ2(ν,µ)

∂µ
+i

∂2
0Γ2

∂ν2
+ν2

0Γ2 =0. (3.17)

Also, the initial condition 0Γ2(xd,z′=0,ωd,ωc) is rewritten as 0Γ2(ν,0). To obtain the so-
lution 0Γ2(xd,z′ = L2,ωd,ωc), we estimate Γ2(ν,

√
tMωd) by solving Eq. (3.17) numerically.

Using a finite difference expression 0Γ2

(

νj,µn

)

= 0Γ2|nj and employing Crank-Nicholson
scheme [17], we obtain a finite difference equation from Eq. (3.17),

i∆µ

2(∆ν)2
Γ|n+1

j+1 +

{

1− i∆µ

(∆ν)2
+

∆µνj

2

}

Γ|n+1
j +

i∆µ

2(∆ν)2
Γ|n+1

j−1

=− i∆µ

2(∆ν)2
Γ|nj+1+

{

1+
i∆µ

(∆ν)2
−∆µνj

2

}

Γ|nj −
i∆µ

2(∆ν)2
Γ|nj−1 . (3.18)

We calculate 0Γ2|nj from 0Γ2|n−1
j using Eq. (3.18), where the range [0, 8] is discretized

with the grid size ∆ν = 0.02 on the ν axis and the grid step is ∆µ = 0.02 on the µ axis.
The boundary conditions are set as 0Γ2|n0 = 0Γ2|n1 and 0Γ2|nJ = 0Γ2|nJ−1, where ν0 = 0.00

and νJ =8.00. Fig. 6a shows real and imaginary parts of 0Γ2(ν,
√

tMωd) in the case of the
travel distance L2 =40km (Z0 =100km) and the difference angular frequency ωd =0.5s−1

(solid curves) with respect to a initial condition 0Γ2(ν,0) (dashed curves). The value of

0Γ2(0,
√

tMωd) corresponds to the value of 0Γ2(0,z′ = L2,ωd,ωc) or 0Γ2(0,z=Z0,ωd,ωc).
Varying the value of ωd, we obtain the curve 0Γ2(0,Z0,ωd,ωc) against ωd (Fig. 6b). The
variation of 0Γ2 against ωd depends both on the travel distance and on the random in-
homogeneity; the value of 0Γ2 more rapidly decreases to zero against ωd at longer travel
distance and stronger inhomogeneity. Hence, the appropriate range and step size of ωd

should be taken corresponding to the travel distance and the random inhomogeneity.
In general, the value of 0Γ2 decreases rapidly against ωd when ωd is small (see Fig. 6b).
Therefore, it is computationally efficient to take small step size when ωd is small and
large step size when ωd is large.

Substituting the solution 0Γ2(0,Z0,ωd,ωc) into Eqs. (3.11) and (3.10), we directly syn-
thesize the intensity spectral density Î(Z0,t;ωc). Since Eq. (3.11) has the form of the
Fourier transform, we can use FFT algorithm [17] by interpolating the value of 0Γ2 with
respect to equally spacing ωd values. Integrating Eq. (3.11) over time, we obtain a con-
served value

∞
∫

−∞

Î0(z,t;ωc)dt=

∞
∫

−∞

dωd0Γ2(xd =0,z,ωd,ωc)δ(ωd)exp{iωdz/V0}

= 0Γ2(0,z,0,ωc)=1, (3.19)
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Figure 6: (a) The values of 0Γ2 against normalized transverse distance ν in the case of difference angular

frequency ωd =0.5 [s−1] in the two-layer random media given by Fig. 2. Real and imaginary parts of an initial
condition in Layer 2 are shown by dashed curves, and those of a solution at travel distance L2=40km (z=100km)
are shown by solid curves. (b) The value of 0Γ2 against difference angular frequency ωd for travel distance
L2 =40km (z=100km). Real and imaginary parts are shown by solid and dashed curves, respectively.

since ∂0Γ2/∂z=0 when xd =0 and ωd = kdV0 =0 [see Eq. (3.12)].

Although we have supposed delta-function type source duration in the above deriva-
tion, sources usually have finite duration. In the case of a finite duration source intensity
s(t), the corresponding intensity spectral density is obtained by the convolution of s(t)
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and Î(z,t;ωc). When we set the source intensity as

∞
∫

−∞

s(t)dt=1,

the integral over time of the intensity spectral density function is also conserved,

∞
∫

−∞

Î(z,t;ωc)dt=1.

The envelopes obtained by this method will be referred to as Markov envelopes.

4 Stochastic ray-path method: SR envelopes

In this section, we describe another direct envelope simulation method. Dividing the
medium into many thin layers, we interpret wave scattering as a successive ray bending
process. The ray bending process is simulated stochastically by using the Monte Carlo
method. This idea was proposed by I.P. Williamson [39, 40] and referred to as the stochas-
tic ray-path method. A compact summary is given in [Chapter 6, 36].

4.1 Markov approximation for the mutual coherence function (MCF)

We consider a monochromatic wave with angular frequency ω in Eq. (3.1) and define
the mutual coherence function (MCF) at a distance z as a correlation of field U between
different locations on the transverse line (x-axis) as

Γ1

(

x′,x”,z,ω
)

≡
〈

U
(

x′,z,ω
)

U(x”,z,ω)∗
〉

. (4.1)

When there exists a length that is larger than a and smaller than the scale of variation of
U, neglecting backward scattering, we can derive the master equation for MCF as

∂Γ1

∂z
+k2

0 [A(0)−A(xd)]Γ1 =0, (4.2)

using the Markov approximation [see p. 244, 28], where the difference coordinate xd=x′−
x′′ and the function A is the longitudinal integral of ACF defined in Eq. (3.7). Integrating
(4.2) for an increment ∆z, we have MCF at a distance z+∆z as

Γ1(xd,z+∆z,k0)=Φ(xd,∆z,k0)Γ1(xd,z,k0). (4.3)

The transfer function is given by

Φ(xd,∆z,k0)=exp
{

−k2
0 [A(0)−A(xd)]∆z

}

, (4.4)
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where Φ(0,∆z,k0)=1.
For the incidence of a coherent wave with Γ1 = 1 at z = 0, using successively (4.3)

with an increment ∆z, we can get Γ1 at any distance z. Intensity spectral density
⌢

I 0 is
given by the ensemble average of squared amplitude, that is the MCF at xd = 0. The
Fourier transform of MCF with respect to xd gives the angular spectrum function (ASF)
⌣

Γ. Therefore, the intensity spectral density is given by

⌢

I 0(z;k0)≡Γ1 (xd =0,z,k0)=

[

1

2π

∫

∞

−∞

dkxeikx xd
⌣

Γ(kx,z,k0)

]

xd=0

. (4.5)

The ASF
⌣

Γ(kx,z,k0) is considered as the intensity spectral density propagating with the
direction

k= kxex+
√

k2
0−k2

xez,

where ex and ez are unit vectors along the x- and z-axes, respectively. The infinite inte-
gration range is formally used in Eq. (4.5) for the Fourier transformation, but in practice,
the range of kx is limited within the range between −k0 and k0 since we do not consider

inhomogeneous waves. Furthermore, the value of
⌣

Γ(kx,z,k0) rapidly decreases to zero
when kx increases to k0 since small-angle scattering is supposed. By using the Fourier
transform, we may write the master equation (4.3) as a convolution integral for ASF,

⌣

Γ (kx,z+∆z,k0)=
1

2π

∞
∫

−∞

dk′x
⌣

Φ
(

kx−k′x,∆z,k0

) ⌣

Γ
(

k′x,z,k0

)

, (4.6)

where the Fourier transform of the transfer function is given by

Φ(xd,∆z,k0)=
1

2π

∫

∞

−∞

dkxeikx xd
⌣

Φ(kx,∆z,k0), (4.7)

Eq. (4.6) describes the process of ASF in the thin layer from z to z+∆z.
Let us introduce new parameter s≡kx/k0 =sinφ as an independent variable, where φ

is the angle of a ray from the z-direction. The value of s varies from -1 to 1 when kx varies
from −k0 to k0. Since the scattering angle is small or forward scattering is dominant,
kx ≪ k0, we may approximate s≈φ. We re-define the ASF for the parameter s as

⌣

Γs (s,z,k0)≡
k0

2π

⌣

Γ(k0s,z,k0)

and the transfer function in the s space as

⌣

Φs (s,∆z,k0)≡
k0

2π

⌣

Φ(k0s,∆z,k0)=
k0

2π

∞
∫

−∞

dxdΦ(xd,∆z,k0)exp(−ik0sxd)

=
1

2π

∞
∫

−∞

dwexp

{

−k2
0

[

A(0)−A

(

w

k0

)]

∆z

}

exp(−isw), (4.8)
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where the normalization is
1
∫

−1

ds
⌣

Φs (s,∆z,k0)=1.

The master equation (4.6) is then written as

⌣

Γs (s,z+∆z,k0)=
∫ 1

−1
ds′

⌣

Φs

(

s−s′,∆z,k0

)⌣

Γs

(

s′,z,k0

)

. (4.9)

For the case of Gaussian ACF, the longitudinal integral of ACF is given by (3.7), we have
Φ(xd,∆z,k0)=exp

{

−√
πε2 ∆z

a k2
0x2

d

}

. It gives a Gaussian-type transfer function as

⌣

Φs (s,∆z,k0)≈
1

2π

∫

∞

−∞

dwe−iswexp

{

−
√

π
ε2

∆z

a
w2

}

=
1

√
2π

√

2
√

πε2∆z
a

exp







− s2

2
(

2
√

πε2∆z
a

)







, (4.10)

where the standard deviation
√

2
√

πε2∆z/a

is independent of the central frequency.

4.2 Stochastic ray path method

Eqs. (4.9) and (4.10) describe how rays are bent according to the random inhomogeneity
in a layer of thickness ∆z for stationary state. We may interpret the integral equation
(4.9) as a Wiener process where the change in ray direction is stochastically controlled

by the spectrum of random media through the transfer function
⌣

Φ. To extend the above
solution to non-stationary state problem, we need to calculate the accumulated travel
time for each ray path from a source to a receiver.

We divide the random medium into many horizontal layers of thickness ∆z as illus-
trated in Fig. 7. At the n-th boundary, the ray coordinate is (xn,zn) and the travel time tn

with small ray angle φn. Practically we may approximate as

sn ≡sinφn≈φn.

After a step increment of ∆z in the n-th layer, zn+1 = zn +∆z,

xn+1 = xn+∆xn = xn+
∆zsn
√

1−s2
n

≈ xn+∆zφn, (4.11)

and the ray path length

∆ln =
∆zn

cosφn
≈∆zn

(

1+
φ2

n

2

)

. (4.12)
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Figure 7: Ray bending process through a plane layer in a random medium.

The travel time is

tn+1 = tn+
∆ln

V0
≈ tn+

∆z

V0

(

1+
φ2

n

2

)

. (4.13)

Stochastic ray bending process is written as

φn+1 =φn+∆φn =φn+Random. (4.14)

According to the Monte Carlo method, random angle ∆φn = φn+1−φn is generated by
using the transfer function (4.10) as the probability density function for every increment
∆z. Since we suppose small-angle scattering, large-angle scattering should be discarded.
Considering that cosφn ≈ 1−φn

2/2 and φn must be smaller than π/2, we delimit the
range φn

2/2<1 in this study. The simulation procedure is as follows: first, we shoot many
particles from the origin to the z-direction (s1=φ1=0) and calculate the travel time of each
ray at a target distance z=Z0 according to (4.13). The travel time distribution obtained at
the target distance irrespective of their x coordinates represents the time trace of intensity
⌢

I 0 at a central angular frequency ωc. The finite duration intensity at the source s(t) and

the wandering effect w(t) are included by convoluting them with the solution
⌢

I 0. The
envelopes obtained by this method will be referred to as SR envelopes.

5 Resultant envelopes and their comparisons

5.1 Uniform random media

Fig. 8a shows a comparison between the Markov envelopes and the SR envelopes in the
uniform random media characterized by ε=0.04 and a=5km for the incidence of a 2 Hz
plane Ricker wavelet. We used the corresponding intensity source time function s(t) for
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Figure 8: MS envelopes in the uniform random media for the incidence of 2Hz Ricker wavelet. (a) Comparison
between the Markov envelopes (black curves) and the SR envelopes based on the stochastic ray-path (gray
curves). (b) Comparison between the Markov envelopes (black curves) and the FD envelopes (gray curves).

the convolution. For example, the Markov envelopes at the travel distances at Z0=75, 100
and 125km are obtained from the values of 0Γ2 with 2048 grid points of ωd in the range
[0s−1,70s−1]. The SR envelopes are synthesized with 1,000,000 particles from the source.
Those envelopes are in excellent agreement for all the travel distances. Both the Markov
envelopes and SR envelopes are based on the parabolic equation, so that their envelopes
are almost identical. I. P. Williamson also showed the agreement for 3-D uniform random
media [40].

Fig. 8b shows the comparison between the FD envelopes and the Markov envelopes
in the uniform random media. In this figure, the SR envelopes are not plotted since they
are almost identical to the Markov envelopes. The envelopes of the Markov and the FD
simulations are also in good agreement, although there are some slight discrepancies in
the later-phase excitation. The Markov envelopes include only small-angle scattering
around the forward direction. On the other hand, the FD envelopes rigorously simulate
small- and large angle scattering. The discrepancies in the later intensity (intensity at the
lapse time around 21s for example), may be due to neglecting large-angle scattering in the
Markov envelopes. We note that the difference is small since the small-angle scattering
dominates the large-angle scattering in this case.
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Figure 9: MS envelopes in the two-layer random media for the incidence of 2Hz Ricker wavelet. (a) Comparison
between the Markov envelopes (black curves) and the SR envelopes based on the stochastic ray-path (gray
curves). (b) Comparison between the Markov envelopes (black curve) and the FD envelopes (gray curves). The
Markov envelopes of the uniform random media (ε=0.04, a=5km, 0km< z<160km) are also plotted (dashed
curves).

5.2 Two-layer random media

Fig. 9a shows a comparison between the Markov envelopes and SR envelopes in the two-
layer random media for the incidence of a 2Hz plane Ricker wavelet. As in the case of
the uniform random media (Fig. 8a), those envelopes are in excellent agreement for all
travel distances. Note that the stations at the travel distance larger than 60km are located
in Layer 2. This study confirms the accordance of the Markov and SR envelopes for non-
uniform random media.

Fig. 9b shows a comparison between the Markov envelopes and the FD envelopes for
the two-layer random media. The Markov envelopes for the uniform random media are
also plotted for the comparison. Since Layer 2 located at the travel distance larger than
60km is characterized as a strong scattering layer, the Markov envelopes for the two-layer
random media (solid curves) more rapidly decrease in the maximum amplitude with
increasing the travel distance than for the weak uniform media (dashed curves). Also, the
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envelopes for the two-layer media (solid curves) have more energy in the later envelope
than the envelopes of the weak uniform media (dashed curve). The difference between
the envelopes in the two-layer and uniform media increases with increasing the travel
distance in Layer 2. The Markov envelopes for the two-layer random media show good
accordance with the FD envelopes. This supports the validity of the direct simulation
methods, the Markov and the stochastic ray path methods, synthesizing envelopes in the
two-layer random media.

6 Summary and discussions

This study presented the scalar wave propagation through two-layer random media com-
posed of weak and strong inhomogeneity zones in 2-D space for the vertical incidence
of a plane wavelet. When the wavelength is supposed to be smaller than the charac-
teristic scale of the inhomogeneity, small-angle scattering around the forward direction
dominates large-angle scattering. Two direct envelope simulation methods based on the
small-angle scattering approximation are examined. One method is to solve a differen-
tial equation for the two-frequency mutual coherence function with the Markov approx-
imation. The other is to solve the stochastic ray bending process by using the Monte
Carlo method based on the mutual coherence function with the Markov approximation.
The resultant wave envelopes of the two methods showed excellent coincidence both for
uniform and two-layer random medium cases. We confirmed the validity of these two
methods comparing with the envelopes made from the finite difference simulations. The
idea that two-layer medium is considered to be the sum of two uniform random media
and the connection of the values of TFMCF at the boundary can be easily extended to
multi-layer random medium. Also, the synthesis method of SR envelopes is applicable
to multi-layer random medium. Although this study dealt with only the case of Gaussian
PSDF, it is easy to extend the formulation to a more realistic PSDF having a power-law
spectrum [22].

When considering applications of those methods to observed seismograms, one can
relate the geometry of plane-wave propagation to teleseismic wave observations. How-
ever, we should be careful since the condition ak≫1 restricts the applicable range to be
high frequencies. Extending the plane wave propagation to a point source radiation in
3D space as in the studies [22, 24], our approaches will be applicable to seismograms
of local earthquakes. Furthermore, it would be preferable to suppose anisotropic ran-
dom media characterized by a long horizontal correlation distance compared with the
vertical correlation distance, since the anisotropic random media are more realistic to de-
scribe lithospheric inhomogeneity [4, 19]. We expect from 2-D study that envelopes in the
anisotropic random media are significantly different from those of the isotropic random
media [13, 21]. Finally, we should include those extensions in the framework of elastic
wave propagation [10, 26, 27]. The formulation and the results in this study would work
as a sound mathematical base for those developments.



82 T. Saito, H. Sato and T. Takahashi / Commun. Comput. Phys., 3 (2008), pp. 63-84

Acknowledgments

The authors wish to thank M. Korn and J. Kawahara for their valuable comments, which
greatly improve this manuscript. We would like to thank those who made efforts to run
the high-sensitivity seismograph network Japan (Hi-net).

References

[1] K. Aki and B. Chouet, Origin of coda waves: source, attenuation and scattering effects, J.
Geophys. Res., 80 (1975), 3322-3342.

[2] M. Fehler, H. Sato and L.-J. Huang, Envelope broadening of outgoing waves in 2-D random
media: A comparison between the Markov approximation and numerical simulations, Bull.
Seismol. Soc. Am., 90 (2000), 914-928.

[3] M. Fehler and H. Sato, Coda, Pure Appl. Geophys., 160 (2003), 541-554.
[4] T. Furumura and B. L. N. Kennette, Subduction zone guided waves and the heterogeneity

structure of the subducted plate: intensity anomalies in northern Japan, J. Geophys. Res.,
110 (2005), B10302, doi:10.1029/2004JB003486.

[5] A. Gusev and I. R. Abubakirov, Vertical profile of effective turbidity reconstructed from
broadening of incoherent body-wave pulses. I. General approach and the inversion pro-
cedure, Geophys. J. Int., 136 (1999), 295-308.

[6] A. Gusev and I. R. Abubakirov, Vertical profile of effective turbidity reconstructed from
broadening of incoherent body-wave pulses. II. Application to Kamchatka data, Geophys. J.
Int., 136 (1999), 309-323.

[7] M. Hoshiba, A. Rietbrock, F. Scherbaum, H. Nakahara and C. Haberland, Scattering atten-
uation and intrinsic absorption using uniform and depth dependent model: application to
full seismogram envelope recorded in Northern Chile, J. Seismol., 5 (2001), 157-179.

[8] L.-J. Huang, M. Fehler, P. M. Robert and C. C. Burch, Extended local Rytov Fourier migration
method, Geophysics, 64 (1999), 1535-1545.

[9] A. Ishimaru, Wave Propagation and Scattering in Random Media, Academic Press, New
York, 1978.

[10] M. Korn and H. Sato, Synthesis of plane vector wave envelopes in two-dimensional random
elastic media based on the Markov approximation and comparison with finite-difference
simulations, Geophys. J. Int., 161 (2005), 839-848.

[11] L. C. Lee and J. R. Jokipii, Strong scintillations in astrophysics. II. A theory of temporal
broadening of pulses, Astrophys. J., 201 (1975), 532-543.

[12] L. Margerin, Introduction to radiative transfer of seismic waves, in: A. Levander and G. No-
let (Eds.), Seismic Earth: Array Analysis of Broadband Seismograms, Geophysical Mono-
graph Series, AGU, Washington, Vol. 157, Ch 14, 2005, pp. 229-252.

[13] L. Margerin, Attenuation, transport and diffusion of scalar waves in textured random media,
Tectonophysics, 416 (2006), 229-244.

[14] L. Margerin, M. Campillo and B. A. van Tiggelen, Radiative transfer and diffusion of waves
in a layered medium: New insight into coda Q, Geophys. J. Int., 134 (1998), 596-612.

[15] K. Obara and H. Sato, Regional differences of random inhomogeneities around the volcanic
front in the Kanto-Tokai area, Japan, revealed from the broadening of S wave seismogram
envelopes, J. Geophys. Res., 100 (1995), 2103-2121.



T. Saito, H. Sato and T. Takahashi / Commun. Comput. Phys., 3 (2008), pp. 63-84 83

[16] A. G. Petukhin and A. A. Gusev, The Duration-distance relationship and average envelope
shapes of small Kamchatka earthquakes, Pure Appl. Geophys., 160 (2002), 1717-1743.

[17] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical Recipes in C,
Cambridge University Press, New York, 1987.

[18] J. Przybilla, M. Korn and U. Wegler, Radiative transfer of elastic waves versus finite dif-
ference simulations in two-dimensional random media, J. Geophys. Res., 111(B4) (2006),
B04305, 10.1029/2005JB003952.

[19] T. Ryberg, M. Tittgemeyer and F. Wenzel, Finite difference modeling of P-wave scattering in
the upper mantle, Geophys. J. Int., 141 (2000), 787-800.

[20] S. M. Rytov, Y. A. Kravtsov and V. I. Tatarskii, Principles of Statistical Radio Physics (Vol. 4)
Wave Propagation Through Random Media, Springer-Verlag, Berlin, 1989.

[21] T. Saito, Synthesis of scalar-wave envelopes in two-dimensional weakly anisotropic random
media using the Markov approximation, Geophys. J. Int., 165 (2006), 501-515.

[22] T. Saito, H. Sato and M. Ohtake, Envelope broadening of spherically outgoing waves
in three-dimensional random media having power-law spectra, J. Geophys. Res., 107(B5)
(2002), 2089, doi:10.1029/2001JB000264.

[23] T. Saito, H. Sato, M. Fehler and M. Ohtake, Simulating the envelope of scalar waves in 2D
random media having power-law spectra of velocity fluctuation, Bull. Seismol. Soc. Am., 93
(2003), 240-252.

[24] T. Saito, H. Sato, M. Ohtake and K. Obara, Unified explanation of envelope broadening and
maximum-amplitude decay of high-frequency seismograms based on the envelope simu-
lation using the Markov approximation: Forearc side of the volcanic front in northeastern
Honshu, Japan, J. Geophys. Res., 110 (2005), B01304, doi:10.1029/2004JB003225.

[25] H. Sato, Broadening of seismogram envelopes in the randomly inhomogeneous lithosphere
based on the parabolic approximation: Southeastern Honshu, Japan, J. Geophys. Res., 94
(1989), 17735-17747.

[26] H. Sato, Synthesis of vector wave envelopes in three-dimensional random elastic media
characterized by a Gaussian autocorrelation function based on the Markov approximation:
Plane wave case, J. Geophys. Res., 111 (2006), B06306, doi: 10.1029/2005JB004036.

[27] H. Sato, Synthesis of vector wave envelopes in three-dimensional random elastic media
characterized by a Gaussian autocorrelation function based on the Markov approximation:
Spherical wave case, J. Geophys. Res., (2007), doi: 10.1029/2006JB004437.

[28] H. Sato and M. Fehler, Seismic Wave Propagation and Scattering in the Heterogeneous Earth,
Springer-Verlag, New York, 1998.

[29] H. Sato, M. Fehler and T. Saito, Hybrid synthesis of scalar wave envelopes in two-
dimensional random media having rich short-wavelength spectra, J. Geophys. Res., 109
(2004), B06303, doi:10.1029/2003JB002673.

[30] F. Scherbaum and H. Sato, Inversion of full seismogram envelopes based on the parabolic
approximation: Estimation of randomness and attenuation in southeastern Honshu, Japan,
J. Geophys. Res., 96 (1991), 2223-2232.

[31] P. M. Shearer, Introduction to Seismology, Cambridge University Press, Cambridge, 1999.
[32] V. L. Shishov, Effect of refraction on scintillation characteristics and average pulsars, Sov.

Astron., 17 (1974), 598-602.
[33] I. A. Sreenivasiah, A. Ishimaru and S. T. Hong, Two-frequency mutual coherence function

and pulse propagation in a random medium: An analytic solution to the plane wave case,
Radio Sci., 11 (1976), 775-778.

[34] P. L. Stoffa, J. T. Fokkema, R. Freire and W. Kessinger, Split-step Fourier migration, Geo-



84 T. Saito, H. Sato and T. Takahashi / Commun. Comput. Phys., 3 (2008), pp. 63-84

physics, 55 (1990), 410-421.
[35] T. Takahashi, H. Sato, T. Nishimura and K. Obara, Strong inhomogeneity beneath Qua-

ternary volcanoes revealed from the peak delay analysis of S-wave seismograms of mi-
croearthquakes in northeastern Japan, Geophys. J. Int., 168 (2007), 90-99, doi: 10.1111/j.1365-
246X.2006.03197.x.

[36] J. Uscinski, The Elements of Wave Propagation in Random Media, McGraw-Hill, New York,
1977.

[37] U. Wegler, Diffusion of seismic waves in layered media: Boundary conditions and analytical
solutions, Geophys. J. Int., 163 (2005), 1123-1135.

[38] U. Wegler, M. Korn and J. Przybilla, Modeling full seismogram envelopes using radiative
transfer theory with Born scattering coefficients, Pure Appl. Geophys., 163 (2006), 503-531.

[39] I. P. Williamson, Pulse broadening due to multiple scattering in the interstellar medium,
Mon. Not. R. Astron. Soc., 157 (1972), 55-71.

[40] I. P. Williamson, The broadening of pulses due to multi-path propagation of radiation, P.
Roy. Soc. Lond. A, 342 (1975), 131-147.

[41] K. Yoshimoto, Monte-Carlo simulation of seismogram envelopes in scattering media, J. Geo-
phys. Res., 105 (2000), 6153-6161.

[42] K. Yoshimoto, U. Wegler and M. Korn, A volcanic front as a boundary of seismic-attenuation
structures in northeastern Honshu, Japan, Bull. Seismol. Soc. Am., 96 (2006), 637-646.


