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Abstract. A multi-timescale algorithm is proposed for simulating time-dependent prob-
lems in micro- and nano- fluidics. The total simulation domain is spatially decom-
posed into two regions. Molecular dynamics is employed in the crucial interfacial
regions and continuum hydrodynamics is adopted in the remaining bulk regions. The
coupling is through “constrained dynamics” in an overlap region. Our time scheme
is based on the time scale separation between the continuum macro time step and
molecular micro time step. This allows the molecular dynamics during one macro
time step to be treated as in quasi-steady state. Therefore, molecular simulation is only
performed in two shorter time intervals. Through linear extrapolation of macroscopic
velocities and re-initialization of particle configurations, we can significantly reduce
the total computational cost. We demonstrate and discuss our time algorithm through
hybrid simulation of channel flow driven by a sinusoidally moving top wall. Con-
verging results are achieved for cases of large separation of time scale with much less
computational cost than with the original hybrid simulation without time extrapola-
tion.
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1 Introduction

Continuum hydrodynamics with simple constitutive relations and no-slip boundary con-
ditions is quite successful in describing macroscopic fluid flows, but may fail in many
situations in micro and nano engineering where molecular detail is important. In prin-
ciple, classical molecular dynamics (MD) can provide all the detailed information and
is capable of resolving all the problems. However, performing a MD simulation on the
required spatial and temporal scales is computationally impractical due to the extremely
tiny spatial and temporal scales associated with molecular motion. It has been observed
that in many common scenarios, molecular details are required only in small spatial re-
gions such as solid-fluid or fluid-fluid interfaces, while the continuum descriptions are
still accurate in the remaining bulk regions. Therefore, it is desirable to develop a hybrid
method to combine the efficiency of continuum hydrodynamics and accuracy of MD sim-
ulation.

Several hybrid schemes have been developed for simulating dense liquid systems in
the last decade. Most are based on “domain decomposition”, in which the simulation
domain is decomposed into two regions. MD is adopted in small crucial regions where
molecular details are important and continuum hydrodynamics is used in the remaining
bulk regions. A coupling algorithm must be developed to ensure the consistency of these
two completely different descriptions, and this is the heart of all hybrid methods.

O’Connell and Thompson [1] suggested coupling via a finite overlap region to avoid
sharp transitions and used a relaxation method to ensure consistency of velocities be-
tween MD and continuum regions. They successfully implemented their approach in
simulating simple one dimensional Couette flow. Hadjiconstantinou and Patera [2] in-
troduced a Maxwell Demon method and they employed a momentum reservoir to con-
strain the particle velocities. The Schwarz iteration method was adopted to ensure MD
and continuum descriptions were consistent. Examples of steady state channel flow
with obstacles [2] and moving contact-line problems [3] were used to demonstrated their
method. Flekkoy et al. [4] proposed a coupling scheme based on the continuity of mass
and momentum fluxes for simulating compressible flows. In their recent works [5, 6],
they also accounted for the energy flux in their examples. Buscalioni and Coveney [7, 8]
also adopted the flux coupling scheme and demonstrated their approach by simulation
of transversal and longitudinal waves.

More recently, Nie et al. [9] developed a coupling scheme using Lagrange multipli-
ers for simulating isothermal, incompressible flows. In their approach, the particle ve-
locities were constrained in the overlap region such that the average particle velocities
were equivalent to the instantaneous continuum velocities. They have successfully im-
plemented their approach for simulating driven cavity flow [10, 11] and moving contact-
line problems. Most recently Liu et al. [12] extended the scheme developed in [9] to
incorporate thermal effects. Based on Nie et al. ’s work [9], several minor modifications
of the constrained equations have also been proposed. Wang and He [13] proposed a
dynamic coupling model in which the coupling parameter in the constrained equations
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was determined dynamically at each time step based on the current state. Yen et al. [14]
suggested that a time-averaged value should be adopted in evaluation of the constrained
force to reduce the statistical fluctuations and improve the convergence rate. However,
since the time scales of atomistic and continuum simulations are still coupled in their
schemes, the separation of time scales limited the application of their methods to either
dynamic problems with a short time period or steady state problems.

Ren and E [15] proposed a very different hybrid scheme. Instead of decomposing
the simulation domain into MD and continuum parts, they employed the continuum
solver in the entire domain. Missing information, such as the momentum fluxes and
boundary conditions was extracted from local MD simulations. While they claimed this
approach decoupled the time scales, they only demonstrated their approach on steady
state problems. A detailed discussion and comparison of their scheme with other hybrid
schemes can be found in a recent review article [16].

Here we propose a time scheme to further accelerate the hybrid scheme developed in
[9] that is similar in concept to the “equation free” approach proposed by Kevrekidis et al.
[17]. The scheme is based on the fact that the macro time step associated with continuum
calculations is generally orders of magnitude larger than the micro time step associated
with molecular dynamics. We thus assume that the evolution of molecular dynamics can
be treated as quasi-steady state. Therefore, instead of performing the MD simulation in
the entire macro time step, we merely conduct the MD in two successive shorter time
periods. Through linear extrapolation of macroscopic variables and re-initialization of
the molecular dynamics, the total computational cost of the hybrid simulations can be
significantly reduced while atomistic details are still retained.

In this contribution, we first briefly outline the “domain decomposition” and “con-
strained dynamics”, and then focus on the proposed time scheme in Section 2. In Section
3, we demonstrate our hybrid scheme through simulation of channel flow driven by os-
cillatory wall motion. The conclusions and discussions are presented in the last section.

2 Numerical algorithm

2.1 Domain decomposition and coupling scheme

Fig. 1 is the schematic of the “domain decomposition” applied in our calculations. As il-
lustrated, the total computational domain is spatially divided into two parts: the particle
part indicated by dots and the continuum part represented by shading. MD simulations
are performed in the particle domain and continuum fluid dynamics equations are solved
in the continuum domain. Both descriptions are integrated in an overlap region, which
typically extends several continuum grid sizes between particle and continuum domains.
This overlap region plays a key role in our hybrid scheme. As described in the following,
consistency between MD and continuum domains is ensured through communication
between these two domains in the overlap region.

As displayed in Fig. 1, the particle domain contains two layers of solid wall molecules
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Figure 1: Schematic of “domain decomposition”. The shadowed region is treated by the continuum description
and the dotted region is treated by the atomistic description. In the enlarged overlap region (right), at P→C
coarse-grained MD solutions provide boundary conditions for continuum simulations, and in C→ P molecular
motion is constrained according to continuum solutions in the corresponding region. A staggered grid is employed
in continuum simulations, in which p is defined at cell centers (triangles) and velocity components at the middle
of the perpendicular cell edges (crosses and asterisks).

and an ensemble of fluid molecules above it. The arrangement of the solid molecules
follows the fcc (111) crystal lattice, and they are kept stationary at their equilibrium posi-
tions during the simulations. Fluid molecules are distributed above the solid wall and the
interaction forces between fluid molecules are modeled with the truncated and shifted
Lennard-Jones potential,

VLJ(r)=4ǫ
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, (2.1)

where ǫ is the characteristic binding energy and σ is the characteristic length, represent-
ing the fluid molecule diameter. To reduce the computational cost, the interaction forces
are set to zero when the distance between molecules is more than a cutoff length rc=2.2σ.
We set the fluid density ρ = 0.81mσ−3 to be consistent with previous simulations [9–12],
where m is the particle mass. The interaction forces between solid and fluid molecules are
also modeled with a shifted Lennard-Jones potential (2.1) with the characteristic binding
energy ǫw f =0.6ǫ and characteristic length σw f =σ. This selection of parameters leads to
a no-slip boundary condition at the fluid-solid interface.

The motion of fluid particles follows Newton’s laws. The equations of motion are
integrated using the velocity-Verlet scheme with a time step of ∆tMD =0.005τ, where τ=
(mσ2/ǫ)1/2 is the characteristic time of the Lennard-Jones potential. Periodic boundary
conditions are applied in both x and z directions. We maintain the system at constant
temperature T, although our time scheme could readily be extended to studies of thermal
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transport. A Langevin thermostat [18] with damping rate τ−1 is applied in the flow-
irrelevant z direction. As in previous studies [9–11], T=1.1ǫ/kB where kB is Boltzmann’s
constant. At this T, the fluid’s dynamic viscosity is µ = 2.14ǫτσ−3 [1] and this value is
applied in the following continuum equations.

In the continuum domain, the dynamics are effectively two-dimensional (2D) because
there is no variation along z. The following 2D incompressible Navier-Stokes equations
are solved

{

∇·u=0,

∂tu+u·∇u=− 1
ρ∇p+ν∇2u,

(2.2)

where u is the fluid velocity, p corresponds to pressure and ν = µ/ρ = 2.64ǫτ/m is the
kinematic viscosity of the fluid. The N-S equations are solved on a staggered grid [19] in
which pressure is defined at the center of the grid and velocities in the middle of the sides
of the grid as indicated in Fig. 1. A no-slip boundary condition is imposed at the top wall
and periodic boundary conditions are applied along the x (streamwise) direction.

The key issue for any hybrid scheme lies in the coupling of atomistic and continuum
descriptions in the overlap region. The molecular dynamics and continuum hydrody-
namics mutually provide boundary conditions to each other. As indicated in Fig. 1, at
the lower edge of the continuum domain, y = y0, the coarse-grained MD values of y
direction velocities at crosses along y = y0 and x direction velocities at asterisks along
y=y0−∆y/2 are fed into the continuum calculation as boundary conditions. The coarse-
graining process includes averaging spatially over the volume of a grid cell ∆x×∆y×∆z
that is centered on the point of interest and temporally over time intervals as described
in Sec. 2.2. In addition, to reduce noise and make use of parallel processors, an ensemble
of Nensemble realizations of the MD region is simulated and the results averaged.

In the region between y1 and y2, the continuum solutions in each grid cell serve as
boundary conditions for MD simulation. This is achieved through so-called “constrained
dynamics”. Suppose uJ is the average continuum velocity in cell J. Then continuity of
the mean velocity requires that the coarse-grained particle velocity in this cell is equal
to uJ . As shown in [9], finding the extremum of the time integral of the Lagrangian for
particles subject to this nonholonomic constraint leads to modified equations of motion
for the i-th particle in cell J:

ẍi =
Fi

m
− 1

NJm

NJ

∑
k=1

Fk+
DuJ(t)

Dt
, (2.3)

where Fi is the sum of Lennard-Jones forces (2.1) from other particles, Fi=− ∂
∂xi

∑j 6=iV
LJ

(

rij

)

,
NJ is the number of particles in cell J, and D/Dt denotes the material derivative. The two
extra terms at the end of (2.3) ensure that the mean particle velocity follows the contin-
uum solution.

To prevent particles from leaving the domain, an external nonlinear force is applied
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in the region between y2 and y3:

Fy =−αp0σ
(y−y2)

1−(y−y2)/(y3−y2)
. (2.4)

Here p0 = 3.16ǫ/σ3 is the equilibrium pressure of the fluid and α is a constant of order
one. As discussed in [12], this nonlinear force in the region above y2 ensures that the
particle density is constant over the constraining region (y1 < y < y2). Then the density
decays smoothly and rapidly to zero over about 1σ above y2. Another effect of this buffer
region y> y2 is to help equilibrate particles that are added to the system as explained in
the following.

To account for mass flux, the particle flux across the MD-continuum interface y = y2

is calculated from the continuum velocity field. The change in the number of particles in
a cell during ∆tFD is

∆n=−Aρuy∆tFD/m, (2.5)

where A is the area of the cell perpendicular to the interface. The change in number is
integrated until its magnitude exceeds an integer n′. If n′ is negative, the n′ atoms closest
to y3 are removed. If n′ is positive, n′ atoms are inserted at evenly spaced time intervals
over the relaxation period described in Sec. 2.2. The fractional remainder is added to
the flux at the next time interval. Particles are added at random positions in the x−z
plane and 1σ above the particle in the cell that has the largest y. The initial velocity of
an inserted particle is equal to the continuum velocity in the corresponding cell, and the
peculiar velocities in the buffer region are coupled to a Langevin thermostat which has
the same temperature as the remaining MD region.

2.2 Time algorithm

The time scheme implemented in our simulations is illustrated in Fig. 2. The extension of
our method to heat transfer problems is straightforward, therefore, we will only focus our
discussion on isothermal systems. The spatial decomposition is indicated on the x axis
and the temporal decomposition is illustrated on the t axis. As shown, ∆tMD = 0.005τ
represents the time step used in MD calculations which is associated with microscopic
molecular motions. ∆tFD is the time step adopted in the continuum calculation which
is associated with macroscopic flow. For small Reynolds number flows, the continuum
time step ∆tFD must be smaller than the characteristic time of flows on the grid scale
ρ∆x∆y/µ. The basic motivation of the time algorithm is based on the fact that there is a
large time separation between continuum time step ∆tFD and MD time step ∆tMD . Due
to the time separation and large number of molecular particles contained in the particle
region, the dominant computational cost of previous methods is in the MD domain even
though this region may be very small spatially compared with the remaining continuum
region.
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Figure 2: Schematic of the time scheme implemented in this paper. The x axis indicates the spatial decomposi-
tion and the t axis indicates temporal separation. ∆tFD is the continuum time step and ∆tMD is the molecular
simulation time step. The MD is performed in time intervals of ∆t1 and ∆t2 starting at the midpoint between
continuum time steps. U1 and U2 are the respective coarse-grained velocities. They are used to linearly extrap-
olate coarse-grained velocities to values U3 at the start of the next MD interval (2.6). MD is performed over a
short relaxation period ∆tr to produce an initial microscopic state consistent with the U3.

The fact that the variation of macroscopic velocities associated with molecular dy-
namics must be small during one continuum time step allows us to treat the molecu-
lar dynamics as quasi-steady state. Then, in the MD domain the macroscopic velocities
evolve linearly with time during the continuum time step ∆tFD. Therefore, as shown
in Fig. 2, during one iteration of the hybrid calculation in the particle domain (includ-
ing the overlap region), instead of performing MD simulation in the entire time ∆tFD ,
we conduct molecular simulation in two shorter successive time intervals ∆t1 and ∆t2.
The first starts at the midpoint between continuum time steps and uses velocity bound-
ary conditions obtained by extrapolating the continuum solution from the two previous
macro time steps. Coarse-grained velocities U1 and U2 for each grid cell are obtained
from the MD simulation by averaging spatially over the cell and temporally over ∆t1

and ∆t2, respectively. Then Ui represents the macroscopic velocity at a time in the cen-
ter of the corresponding averaging interval. The goal is to use these velocities to obtain
appropriate states for MD simulations at the midpoint of the next continuum time inter-
val. Coarse-grained velocities U3 for each cell at this later time are obtained by a linear
extrapolation:

U3 =U2+(U2−U1)
∆tFD−∆t1−∆t2/2

∆t1/2+∆t2/2
. (2.6)

The FD equations are then integrated one step and extrapolated to obtain new continuum
boundary conditions for the MD simulations.
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The above steps specify the coarse-grained state of the system at the time correspond-
ing to U3. The final step of the algorithm is creation of microscopic particle configurations
and velocities that are consistent with U3 and can be used as initial conditions for the next
MD simulation interval. We call this the re-initialization process. The simplest approach
would be to take the final state from ∆t2 and shift the velocity of each atom by the change
in coarse-grained velocity in its cell. This produces discontinuities in local velocity at cell
boundaries and led to numerical instabilities. Instead, we used a relaxation process that is
equivalent to accelerating the time. The MD equations were integrated over a relaxation
time ∆tr during which the mean velocities in all cells were constrained to change linearly
to U3 from their values at the end of ∆t2. The constraint dynamics were the same as in
the previous section, with the material derivative in Eq. (2.3) calculated as (U3−U2)/∆tr .
The value of ∆tr must be chosen to be much larger than the velocity autocorrelation time
and the time for sound propagation across the cell in order to be sure that transients have
relaxed. As noted above, particles are added or subtracted to match the continuum flux
at the outer boundary of the overlap region during the re-initialization process. Because
we consider incompressible flows, changes in the number of particles in other cells can
be neglected.

3 Results and discussions

Finite spatial and temporal averages of particle velocities necessarily include thermal
noise. For instance, the averaged velocity U1 in a cell can be written as U1 = Ū1+∆U1 in
which Ū1 is the desired signal while ∆U1 is the thermal noise. During the linear extrap-
olation in Eq. (2.6) the thermal noise is also exaggerated. The ratio between noise and
signal in the velocity change between MD intervals is defined as

[〈

(∆U2−∆U1)
2
〉]0.5

Ū2−Ū1
=

√
2∆U(∆tAV)

Ū2−Ū1
, (3.1)

where angular brackets indicate a statistical average, ∆tAV = ∆t1 = ∆t2 is the averaging
time, ∆U1 and ∆U2 are assumed to add incoherently, and ∆U is the rms error in each
interval. The thermal noise

∆U(∆tAV)=
uT√

Ncell Nensemble

√
∆tAV /tvv

, (3.2)

where uT =
√

mkBT is the rms variation in each component of the velocity associated
with the fluid temperature, Ncell is the number of atoms in each grid cell, Nensemble is
the number of independent ensembles in our calculation and tvv is the velocity auto-
correlation time. For our situation tvv ∼0.14τ [1]. The absolute error in the extrapolated
velocity is increased by the ratio of the extrapolation time to the averaging time.

It is clear from the above equations that errors can be reduced by increasing the cell
volume, averaging time, or number of ensembles. While this also increases the compu-
tational cost, the savings relative to methods that do not use a multi-timescale algorithm
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grows as the separation between continuum and molecular time scales increases. As
explained in Section 2.2, the continuum time step scales with the characteristic time of
flows on the grid size, ρ∆x∆y/µ for low Reynolds number flow. A longer macroscopic
time scale allows both ∆tFD and Ncell to be increased. This in turn allows larger averaging
times, and all of these changes reduce the noise. To illustrate the importance of time scale
separation in the numerical accuracy, we test our method for two different grid sizes and
macroscopic time scales.

3.1 Channel flow with small separation of time scales

To demonstrate our time scheme, we first simulate channel flow with a relatively small
channel width Ly = H = 109.5σ. Periodic boundary conditions with period Lx = 15.6σ
and Lz = 4.82σ are applied along x and z directions. As described in Section 2.1, the
whole simulation domain is divided into two regions. For y < 93.9σ MD simulation is
used, and for y > 46.9σ the continuum NS equations (2.2) are solved with a grid size of
∆x = ∆y = 15.6σ. The bottom wall is always kept stationary, and the flow is driven by
moving the top wall in the x direction at velocity Uw. At t=0, the top wall starts moving,
and the evolution is described by

Uw(t)=2.5
[

1−cos
(

2πt/tp

)]

σ/τ, (3.3)

where tp=1000τ is the period of the wall motion and represents the time scale associated
with macroscopic motion.

Since the characteristic time of flow on the grid scale is ρ∆x∆y/µ∼ 90τ, we choose
the continuum time step as ∆tFD =10τ. MD simulations are performed over two shorter
time intervals of ∆t1 = ∆t2 = 0.5τ before extrapolation. The microscopic state is then re-
initialized over the relaxation time of ∆tr = 1.0τ. Therefore, during each iteration, MD
calculations are performed for a total time of only 2τ instead of 10τ.

The simulation results are presented in Fig. 3. We show only the MD domain re-
sults and each line represents the time evolution of the streamwise velocity at a different
height. The bottom line represents the velocity at y=∆y/2, and y increases by ∆y for each
successive line. For reference purposes, the original hybrid simulation where the MD is
integrated over the entire ∆FD [9] was performed in the same geometry and the results
are shown by dashed lines in Fig. 3. Ten independent simulations (Nensemble = 10) in the
MD region were used to reduce statistical fluctuations.

Although time extrapolation gives larger fluctuations in the lower regions compared
with the original hybrid results, the essential features of the macroscopic flow are cap-
tured. Furthermore, the results in the coupling region (top line) agree remarkably well
with original hybrid results. From the arguments leading to (3.1) and (3.2) we expect the
extrapolation to introduce errors of order ∆U(∆tAV)∆tFD/∆tAV ∼0.1σ/τ. This is compa-
rable to the fluctuations found at the smallest y.

To estimate the fractional error, (3.1), we must divide the thermal fluctuations by the
expected change in velocity, Ū2−Ū1. Assuming that the velocity changes linearly with



1288 J. Liu et al. / Commun. Comput. Phys., 4 (2008), pp. 1279-1291

t/τ

U
τ

/σ

0 1000 2000 3000 4000
0

0.5

1

1.5

2

2.5
original

extrapolated

no extrap.

Figure 3: The time evolution of streamwise velocities in a relatively small simulation cell H=109.5σ. Velocities
at grid centers within the MD domain are shown and higher velocities correspond to larger y. The dashed
black lines represent results from the original hybrid method [9] and the thin red lines are the results with time
extrapolation. The dotted green line shows the velocity at the second grid center for an algorithm that did not
use extrapolation to reinitialize the MD simulations. All results were averaged over ten independent MD runs
to reduce thermal fluctuations.

height y, Ū2−Ū1∼ (y/H)2πA/tp, and the fractional error from (3.1) is about 6.4. At first
it is surprising that the method is stable when the signal is smaller than the noise. The
reason is that the noise from different intervals and cells adds incoherently and there are
many time steps per period. Thus the absolute errors remain bounded and the results
follow the correct solution.

One might be tempted to skip the extrapolation step when the fractional error is
greater than one. This does reduce the noise in the velocity, but it also introduces a
significant time lag into the equations. To illustrate this we reran the simulation using
the extrapolated boundary conditions from the continuum regime, but not constraining
velocities in the remainder of the MD region during the relaxation time. The time depen-
dence of the streamwise velocity in the second grid layer is shown as a dotted green line
in Fig. 3. This curve lags the other results by about a quarter of the period and the mean
value of the velocity is also depressed. There is a clear benefit to using the extrapolated
velocities even though they increase noise.

3.2 Channel flow with large separation of time scales

In the second example, we simulate a system with twice the channel width Ly = H =
218.9σ. The dimensions in the x and z directions are Lx = 31.3σ and Lz = 4.28σ. The
larger width allows us to double the grid size ∆x = ∆y = 31.3σ. A much larger time
step ∆tFD = 50τ and a correspondingly larger average time ∆t1 = ∆t2 = 2.5τ can then be
used. The relaxation time after extrapolation is chosen as ∆tr = 5.0τ in this simulation.
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As in the first example, the bottom wall is always kept stationary and the top wall moves
sinusoidally with time according to

Uw(t)=5.0
[

1−cos
(

2πt/tp

)]

σ/τ. (3.4)

The amplitude of oscillation is doubled so that the shear-rate in the simulations is the
same and the period is increased in proportion to other times, tp =5000τ.

The results are shown in Fig. 4. As before, the original hybrid simulation that inte-
grates MD equations for all times is performed first as a reference and the results are dis-
played as dashed lines. Successively higher lines represent the time evolution of stream-
wise velocities at successively higher grid centers. Ten independent simulations in the
MD region were used to reduce thermal fluctuations. As shown in Fig. 4, the agreement
between extrapolated and original algorithms is much better than the first example with
smaller grid size.

t/τ

U
τ
/σ

0 5000 10000 15000
0

1

2

3

4

5

original

extrapolated

Figure 4: The time evolution of streamwise velocities in a larger simulation cell H =218.9σ. Velocities at grid
centers within the MD domain are shown and higher velocities correspond to larger y. The dashed black lines
show results from the original hybrid method [9] and the thin red lines are the results with time extrapolation.
All results were averaged over ten independent MD runs to reduce thermal fluctuations.

Increasing the grid size reduces thermal noise in our time scheme in two ways. First,
the increasing separation between the continuum time step and MD time step allows us
to average over longer times. Second, increasing the grid size also increases the num-
ber of particles Ncell in (3.2), and this also improves the signal to noise ratio. Since the
ratio ∆tFD/∆tAV is the same as in the first example, the absolute error in the velocity
decreases in proportion to the reduction in ∆U(∆tAV). The 4-fold increase in Ncell and
5-fold increase in ∆tAV reduce the estimate of the noise by

√
20 to 0.026σ/τ. As above,

this is comparable to the fluctuations in the results for the smallest y. The estimated frac-
tional error from (3.1) is reduced to 0.7. While this is still large, the effect on the results is
reduced because of the incoherent addition of errors at different times and cells.
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4 Conclusions

In this paper, we have implemented a multi-timescale algorithm to further improve the
efficiency of the hybrid method developed in [9] for simulating dynamic micro/nano flu-
idics. In this scheme, molecular dynamics is adopted in small crucial regions and contin-
uum hydrodynamics is employed in the remaining bulk regions. The coupling between
these two descriptions is through “constrained dynamics”. Our time approach is based
on the observation that the continuum macro time step is typically orders of magnitude
larger than molecular micro time step. This separation of time scales allows us to treat
the molecular dynamics during each macro time step as in quasi-steady state. Therefore,
during each iteration of the hybrid calculation, instead of performing the MD simulation
in the entire macro time step, we perform MD calculations in two short time intervals
and linearly extrapolate the macroscopic velocities over the macro time step. The particle
velocities are then re-initialized based on the extrapolated macroscopic velocities to start
the next iteration.

We demonstrated the implementation of our time scheme in hybrid simulations using
examples of isothermal channel flow driven by sinusoidal wall motion. The results show
that time extrapolation increases thermal fluctuations. However, the essential character-
istics of macro motion can still be captured with reduced computational effort. Moreover,
as shown in Figs. 3 and 4, comparison between results with small and large time sepa-
ration reveals that the results converge to the correct solution with increasing time sepa-
ration. Our results indicate that through combination of this time approach and hybrid
“domain decomposition”, both the temporal and spatial scales accessible to molecular
simulations can be substantially extended without significantly increasing computational
cost.
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