
COMMUNICATIONS IN COMPUTATIONAL PHYSICS
Vol. 4, No. 5, pp. 1216-1244

Commun. Comput. Phys.
November 2008

An Optimization-Based Rezoning for ALE Methods†

Yibing Chen and Song Jiang∗

Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing
100088, China.

Received 25 March 2008; Accepted (in revised version) 30 July 2008

Available online 9 September 2008

Abstract. Based on the theory of optimization, we use edges and angles of cells to rep-
resent the geometric quality of computational grids, employ the local gradients of the
flow variables to describe the variation of flow field, and construct a multi-objective
programming model. The solution of this optimization problem gives appropriate
balance between the geometric quality and adaptation of grids. By solving the op-
timization problem, we propose a new grid rezoning method, which not only keeps
good geometric quality of grids, but also can track rapid changes in the flow field. In
particular, it performs well for some complex concave domains with corners. We also
incorporate the rezoning method into an Arbitrary Lagrangian-Eulerian (ALE) method
which is widely used in the simulation of high-speed multi-material flows. The pro-
posed rezoning and ALE methods of this paper are tested by a number of numerical
examples with complex concave domains and compared with some other rezoning
methods. The numerical results validate the robustness of the proposed methods.
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1 Introduction

Multi-material flows, where a moving interface exists between two immiscible fluids, can
be found in a variety of scientific and engineering problems. Development of numerical
accurate and computationally efficient algorithms for multi-material flow simulations re-
mains one of the challenging topics in computational fluid dynamics. Traditionally, nu-
merical methods for multi-material computations have fallen into two classes: Eulerian
methods and Lagrangian methods. Eulerian methods hold the mesh of cells fixed and a
fluid flows from one cell to another through cell edges via advection. Eulerian methods
are robust, capable of running under severe flow conditions (such as under large flow
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deformation), but may result in badly smeared material interfaces due to numerical dif-
fusion. For Lagrangian methods, cells flow with the fluid and no fluid moves across cell
edges. Material interfaces remain intact as they travel with cells. Lagrangian methods are
capable of producing sharp interfaces, but may result in mesh contortion and tangling,
causing inaccuracy and even breakdown of computation. Over the last decades, another
method has been developed that smoothly spans Eulerian and Lagrangian methods of-
fering the benefits of both: the Arbitrary Lagrangian-Eulerian (ALE) method proposed
by Hirt, Amsden and Cook (see [25, 33]). In the ALE method, the solution algorithm can
vary from pure Eulerian to pure Lagrangian through dynamic rezoning and remapping,
such that a smooth mesh topology can be maintained, increasing thus accuracy and ro-
bustness of the numerical algorithm. A general review of the ALE method can be found
in the paper by Benson [9]. There are further developments and applications of this ap-
proach, see, e.g., [4, 19, 23, 28, 32, 34, 37].

Generally, an ALE method consists of three phases: The explicit Lagrangian phase,
the rezoning phase (mesh movement) and the remapping phase. One of the key factors
to a successful ALE method is a robust rezoning algorithm in the rezoning phase that
does not require user intervention. In the early development of the ALE methods, the
rezoning phase was often carried out by employing a process of grid generation, for
which only the geometric quality of the grid was taken into account [1, 17, 20]. However,
the geometric quality of a grid is not the only factor that will affect simulation results.
From the numerical simulation point of view, it has become a common sense that a good
rezoned grid should in general satisfy the following four requirements:

(i) A rezoned grid should remain convex. A lack of control of grid skewness may
result in a major deficiency for some algorithms (see, e.g., [2]).

(ii) A rezoned grid should maintain the smoothness, orthogonality and uniformity to
increase the computational accuracy. The geometric quality of a grid affects the accuracy
of the Lagrangian phase in the ALE methods. In a non-Descartian grid, the numerical
error of the Lagrangian phase is not only induced by the truncation error of the used
schemes and the grid size, but also depends on the smoothness, orthogonality and uni-
formity of the grid.

(iii) In the regions where the gradients of the flow variables are large, the distance
between the rezoned grid and the old grid must be small in order to keep the remapping
error small. Some rezoning methods require that the rezoned grid should be close to the
Lagrangian grid, see, e.g., [22, 28, 42], and this idea works well in many cases. But, in
some cases other criteria of rezoning are better, see, e.g., [31]. By numerical tests we have
found that the distance between the old grid and the rezoned grid plays an important
role in resolving local gradients of the flow variables in the remapping phase.

(iv) A rezoned grid should be adaptive to resolve local gradients of the flow variables.
Recent progress in the development of r-adaptive methods (i.e., moving mesh methods)
shows that higher accuracy can be achieved by appropriate moving cells to regions of
rapid changes in the flow variables, see, e.g., [5, 26, 30, 37, 40].

In view of the above requirements and analysis, we see that a suitable grid movement
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is important to ensure both the geometric quality and the grid adaptation.
If only the geometric quality is taken into account, the rezoning phase is essentially

equivalent to a process of grid generation. With the development of grid generators, it is
now not difficult to find some grid generator which generates a grid satisfying any one
of the above four requirements. It is difficult to construct a grid generator that generates
a grid satisfying the above four requirements simultaneously.

In two-dimensions, grid generation is in general a process to find a one-to-one map-
ping (x(ξ,η),y(ξ,η)) from the physical space (x,y) to the logical space (ξ,η). For any
included angle in a cell, the following three quantities

g12 = xξ xη +yξyη , g11 = x2
ξ +y2

ξ , g22 = x2
η +y2

η

represent the degree of the angle, and the length of the two edges. The variational grid
generation, introduced by [41] and further developed in the last decades, is to control
following functionals:

Smoothness functional : I =
∫ 1

0

∫ 1

0

g11+g22

det(J)
dξdη with J =

[

xξ xη

yξ yη

]

,

Length functional : I =
∫ 1

0

∫ 1

0
(g11+g22)dξdη,

Area functional : I =
∫ 1

0

∫ 1

0
J2dξdη,

Orthogonality functional : I =
∫ 1

0

∫ 1

0
g2

12dξdη,

which measure the smoothness, length, area and orthogonality of grids, respectively. The
corresponding Euler-Lagrangian equations of these functionals and their different com-
binations have led to a number of grid generators, see, e.g., [3, 10–12, 38, 41]. Such grid
generators can generate smooth, uniform and orthogonal grids in many cases, and they
work well in regular domains. However, as observed in [15, 22, 29, 42], they often fail in
complex domains because the grids generated by these methods may become folded in
the vicinity of a corner. To circumvent this drawback, Charakhch’yan and Ivanenko pro-
posed a generalized Winslow (GWinslow) method [15], which could generate a convex
and smooth grid for many complex domains. We should point out here that in the meth-
ods given in [3,15,38,41], only the geometric quality of grids has been addressed, but the
orthogonality is not taken into account. To reach higher accuracy for the ALE methods,
Knupp et al. have recently proposed the the reference Jacobian matrix (RJM) method [28];
the basic idea of which is to ensure the geometric quality of a rezoned grid, while keep-
ing the rezoned grid as close as possible to the old grid. This method and some other
similar methods [22, 42] perform well and have been applied to the ALE codes. On the
other hand, since the rezoned grid has to be close to the Lagrangian grid, the constraint
conditions for grid rezoning in [22, 28, 42] seem too strict, so that the adaptation of grids
seems difficult to be considered simultaneously.
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In the past decades, various adaptive methods have been developed and success-
fully applied to a wide range of fluid dynamical problems. Among adaptive methods,
moving mesh methods (i.e., r-adaptive methods) have attracted more and more atten-
tion. The basic idea of moving mesh methods is that a fixed number of nodes with fixed
connectivity is moved within the computational domain to resolve local gradients of the
flow variables and to increase numerical accuracy. A moving mesh method can be used
as an independent module to an existing code without any change of the data structure,
making it practical in applications. We refer the reader to the paper [24] for a review
on the early developments, and the papers [13, 14, 30] and the references cited therein
on the recent developments for moving finite difference and finite element methods.
Most of these studies concentrate on unstructured triangular meshes. Based on differ-
ent strategies, several moving mesh methods on structured meshes have been studied
recently [5–7, 39, 40] which are of great interest in applications, since there are many ap-
plied CFD codes which still use structured meshes. The moving mesh method proposed
in [39,40] is easy to code and work quite well in regular computational domains, but may
fail in complex domains (see the numerical examples in Section 5). On the other hand,
the method of Azarenok et al. [5,7] can handle complex domains, but does not satisfy the
aforementioned four requirements since their method is extended from Charakhch’yan
and Ivanenko’s generalized Winslow method and possesses the smoothness property of
grids only. The methods in [5–7, 39, 40] have shown success for some fluid problems in
the Eulerian framework. In the ALE framework, a good grid may contort and tangle in
the next time step in the Lagrangian phase, so the mesh movement is more subtle. Jin and
Xu [27] combined the mesh redistribution used in Tang and Tang [39, 40] with Hui’s uni-
fied coordinates method [21] to simulate dynamics of a freely falling plate, and obtained
good numerical results in comparison with the experiment. However, a problem similar
to the mesh redistribution used in Tang and Tang [40] will appear when extending their
simulation to more complex domains. In [31], Lipnikov and Shashkov presented a one-
dimensional moving mesh method for the ALE codes, which is shown numerically to be
superior to many existing rezoning methods.

Inspired by the work of Lipnikov and Shashkov [31], in this paper we will propose
a new two-dimensional rezoning (mesh movement) method, which is not based on the
traditional variational method but on the theory of optimization. Particular attention is
paid to satisfy the aforementioned four requirements. Consequently, based on our rezon-
ing method, a new moving mesh method for the ALE codes is obtained. We have tested
our method by a number of numerical examples, which demonstrate that the proposed
method performs well for both regular and complex computational domains.

The outline of this paper is as follows. In the next section we briefly describe an ALE
method to be used in our rezoning method. In Section 3, we present our optimization-
based rezoning (mesh movement) method. In Section 4 we test our method by a number
of numerical examples, and compare it with the Winslow and GWinslow methods as well
as the mesh redistribution used by Tang and Tang [40]. The proposed rezoning method
is also tested under the ALE framework described in Section 2.
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2 An ALE method for compressible flows

The aim of this paper is to give a new rezoning method in the rezoning phase of the ALE
methods. For completeness we recall in brief an ALE method for the two-dimensional
compressible Euler equations [16], in which the physical quantities such as the density,
pressure and energy are defined at the cell center, while the velocity is defined at the
cell nodes. We will incorporate our rezoning method in this ALE method to give three
numerical tests for the Euler equations.

The two-dimensional Euler equations for the ALE methods can be written as:

∂ρ

∂t
+∇·(ρ~D)=−∇·(ρ~w), (2.1)

ρ
( ∂vx

∂t
+~D·∇vx

)

=−∂p

∂x
−ρ~w·∇vx, (2.2)

ρ
( ∂vy

∂t
+~D ·∇vy

)

=−∂p

∂y
−ρ~w ·∇vy, (2.3)

∂(ρe)

∂t
+∇·(ρe~D)=−p∇·~v−∇·(ρe~w) (2.4)

with the equation of state

p=(γ−1)ρ

(

e− 1

2

∣

∣

∣

⇀

v
∣

∣

∣

2
)

, (2.5)

where ~w =~v−~D ≡ (wx,wy), and ρ, e, ~v = (vx,vy), p, and ~D are the density, the specific
internal energy, and the fluid velocity, the pressure, and the mesh velocity, respectively.

Next, we describe the discretization of (2.1)-(2.4). In view of great success of the
DYNA code by Hallquist [20], we will use here the same discretization as that in DYNA,
i.e., the finite volume discretization for the mass and energy equations, together with the
finite element discretization for the momentum equation. Such discretization for (2.1)-
(2.4) is widely used in the simulation of high-speed multi-material flows.

2.1 Mass equation

First, we use a finite volume method to discretize the mass equation (2.1). We integrate
(2.1) over a cell Ω(t) (see Fig. 1(a)) to deduce that

∫

Ω(t)

(∂ρ

∂t
+∇·(ρ~D)

)

dV =−
∫

Ω(t)
∇·(ρ~w)dV. (2.6)

Here the left hand side of (2.6) at t= tn is approximated as follows:

∫

Ω(tn)

(∂ρ

∂t
+∇·(ρ~D)

)

dV =
dM

dt

∣

∣

∣

t=tn
≈ Mn+1−Mn

△t
, (2.7)
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Figure 1: (a) Cell Ω(t) with four nodes. (b): Four cells around a node. (c). Four neighboring cells of Ω(t).

where M =
∫

Ω(t)ρdV is the mass in Ω(t) and Mℓ =
∫

Ω(tℓ)ρdV (ℓ= n,n+1). Moreover, the

right-hand side is discretized as follows:

∫

Ω(tn)
∇·(ρ~w)dV =

∫

Ω(tn)
(ρ~w)·~ndV≈

4

∑
i=1

ρn
i,i+1(wn

y∆x−wn
x∆y)i,i+1, (2.8)

where~n is the outer normal vector, i is the node number of the cell Ω(tn),

(wn
y)i,i+1 =

(wn
y)i+(wn

y)i+1

2
, (wn

x)i,i+1 =
(wn

x)i+(wn
x)i+1

2
,

(wn
x)i is the value of wx at the node i and time tn, and ρn

i,i+1 is the value of the density at
the center of the boundary segment (i,i+1).

We can apply the second-order MUSCL scheme to calculate ρn
i,i+1 in our simulations

[8]. Without loss of generality, we discuss how to obtain ρ4,1 only (see Fig. 1(c)), and the
other ρn

i,i+1 can be calculated in a similar manner. Denote by ρ1, ρΩ and ρ3 the density in
Ω1, Ω(t) and Ω3, and by V1, VΩ and V3 the volume of Ω1, Ω(t) and Ω3 respectively, see
Fig. 1(c). We now define the discrete derivative of ρ by

(

∂ρ

∂V

)

Ω(t)

:=
1

2

(

1+sign(sa ·sb)
) sa ·sb

sa+sb
,

where

sa =
ρ1−ρΩ

1
2(V1+VΩ)

, sb =
−ρ3+ρΩ

1
2(V3+VΩ)

.

Thus, the piecewise linear reconstruction of the density at the boundary segment l4,1 and
l3,2 of Ω(t) is given by

ρ̃Ω(t),l4,1
:=ρΩ(t),l4,1

− 1

2

(

∂ρ

∂V

)

Ω(t)

·VΩ(t),

ρ̃Ω(t),l3,2
:=ρΩ(t),l3,2

+
1

2

(

∂ρ

∂V

)

Ω(t)

·VΩ(t).
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In the same way, we can obtain ρ̃Ω1 ,l4,1
. Finally, we take ρ4,1 to be

ρ4,1 :=

{

ρ̃Ω(t),l4,1
, if ~w4,1 ·~n4,1 >0,

ρ̃Ω1,l4,1
, otherwise,

where~n4,1 is the outer normal vector of the edge l4,1.
Inserting (2.7) and (2.8) into (2.6), we obtain the discretization form of (2.1), where the

unknown is the mass in a cell:

Mn+1 = Mn−∆t
4

∑
i=1

ρn
i,i+1(wn

y∆x−wn
x∆y)i,i+1. (2.9)

2.2 Energy equation

We still use a finite volume method to discretize the energy equation. Integrating (2.4)
over a cell Ω(t), we have

∫

Ω(t)

(∂ρe

∂t
+∇·(ρe~D)

)

dV =−
∫

Ω(t)
∇·(ρe~w)dV−

∫

Ω(t)
p∇·~vdV. (2.10)

Here the left hand side and the last term on the right hand side at time tn are approxi-
mated as follows:

∫

Ω(tn)

(∂ρe

∂t
+∇·(ρe~D)

)

dV =
dE

dt

∣

∣

∣

t=tn
≈ En+1−En

∆t
(2.11)

with E=
∫

Ω(t)ρedV ≈ e(t)
∫

Ω(t)ρdV = e(t)M(t) being the internal energy in Ω(t), and

−
∫

Ω(tn)
p∇·~vdV≈−pn+1/2

∫

Ω(tn)
∇·~vdV≈− (pn+pn+1)

2

∆Vn+1/2

∆t
, (2.12)

where ∆Vn+1/2 = V(ΩL(tn+1))−V(Ω(tn)), ΩL(tn+1) is the quadrilateral formed by the
vertices~rn+1

L =~rn +∆t~vn,~rn are the vertices of the quadrilateral Ω(tn). Throughout this
section V(G) denotes the volume of G.

The discrete form for the first term on the right hand side of (2.10)

ge(tn) :=−
∫

Ω(tn)
∇·(ρe~w)dV

can be obtained in the same manner as that for
∫

Ω(tn)∇·(ρ~w)dV. Substituting (2.11) and

(2.12) into (2.10), we obtain the discrete form of (2.4), in which the unknown is the internal
energy defined at the center of the cell:

En+1−En

∆t
=−

( pn +pn+1

2
+qn+1/2

)∆Vn+1
L

∆t
+ge(tn), (2.13)
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where we have added some artificial viscosity qn+1/2 to eliminate possible numerical
oscillations across strong discontinuities, and in our simulations qn+1/2 is chosen to be
the Von Neumann and Richtmyer viscosity [9]:

qn+1/2 =

{

0, if ∇·~vn ≥0,

ρn+1/2ln+1/2 |∇·~vn|(q1ln+1/2 |∇·~vn|+q2cn+1), otherwise,
(2.14)

where q1 and q2 are constant parameters, which are taken as q1 = 1.5 and q2 = 0.6 in our
simulations; ln+1/2 =

√
2Sn+1/2/ln+1/2

max , and Sn+1/2 is the area of the cell at time tn+1/2,
ln+1/2
max is the maximal length of diagonals of the cell, cn+1 is the speed of sound at time

tn+1.

2.3 Momentum equations

We use a finite element method to discretize the momentum equations (2.2) and (2.3).
The corresponding finite element space is given by

Uh ={vh |vh ∈C(∪kΩ̄k), vh is a bilinear function in every Ωk}.

On the reference element {−1<ξ,η <1} in the reference space (ξ,η), we define the refer-
ence shape functions:

ψi(ξ,η)=
1

4
(1+ξξi)(1+ηηi), i=1,2,3,4,

where (ξ1,ξ2,ξ3,ξ4)=(−1,1,1,−1) and (η1,η2,η3,η4)=(−1,−1,1,1).

Let (xi,yi) (i=1,2,3,4) denote the coordinates of the four vertices of a quadrilateral ele-
ment Ω(t) in the space (x,y) (see Fig. 1(a)). The element Ω(t) is projected to the reference
space (ξ,η) by the following coordinate transform, denoted by F,

x=
4

∑
i=1

xiψi(ξ,η), y=
4

∑
i=1

yiψi(ξ,η).

We define

ψi(ξ,η)=ψi(ξ(x,y),η(x,y))=: φi(x,y),

and choose φi(x,y) (i=1,2,3,4) as the basis of the finite element space.

Let N be an inner node, and A1,··· ,A4 the surrounding elements around N (see
Fig. 1(b)). Each element Aj (1≤ j≤4) is projected onto the reference element in the space
(ξ,η) by the transform Fj. We define the test function ϕN corresponding to the node N by

ϕN =

{

φi,j, if (x,y)∈Aj and the vertex N is the ith node of Aj, 1≤ j≤4,
0, otherwise.
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We now multiply Eq. (2.3) by ϕN and integrate the resulting equation over A(t):=∪4
j=1 Aj≡

∪4
j=1Aj(t) to deduce

∫

A(t)
ρ
( ∂vx

∂t
+~D·∇vx

)

ϕNdxdy=−
∫

A(t)

∂p

∂x
ϕNdxdy−

∫

A(t)
ρ~w ·∇vx ϕNdxdy, (2.15)

where all the terms in (2.15) are discretized as follows.

∫

A(tn)
ρ(

∂vx

∂t
+~D ·∇vx)ϕNdxdy≈

vn+1
x,N −vn

x,N

∆t

4

∑
k=1

1

4
M

n+ 1
2

k,A , (2.16)

where vx,i is the value of vx at the node i, and M
n+ 1

2

k,A is the mass in the cell Ak around the
node N (cf. Fig. 1(b));

∫

A(tn)

∂p

∂x
ϕNdxdy=−

∫

A(tn)
p

∂ϕN

∂x
dxdy=−

4

∑
i=1

(p
n+ 1

2
i +q

n+ 1
2

i )
y

n+ 1
2

i,2 −y
n+ 1

2
i,4

2
, (2.17)

where q
n+ 1

2
i is the artificial viscosity given by (2.14);

∫

A(tn)
ρ~w ·(∇vx)ϕNdxdy

=
4

∑
i=1

ρ
n+ 1

2
i

2
(vn

x,N−vn
x,i)

[

(wy)i(x
n+ 1

2
i,2 −x

n+ 1
2

i,4 )−(wx)i(y
n+ 1

2
i,2 −y

n+ 1
2

i,4 )
]

, (2.18)

where (x
n+ 1

2

i,k ,y
n+ 1

2

i,k ) is the coordinate (x,y) of the node k in the cell i at time tn+ 1
2 ,

(wy,x)i =
1

4

4

∑
k=1

(wn
y,x)i,k, (vx)i =

1

4

4

∑
k=1

(vn
x)i,k,

(wy)i,k, (vx)i,k are the value of wy and vx at the node k of the cell i and at time tn+ 1
2 ,

respectively.

Substituting (2.16)-(2.18) into (2.15), we obtain the discretization form for vn+1
x,N in

which the unknown is the value of the x-velocity vx at the node N. In the same man-
ner, we can obtain the discretization form for vn+1

y,N .

2.4 Solution procedure

In our moving mesh ALE formulation, the time evolution stage from tn to tn+1 consists
of three steps:
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(1) The grid and density at time tn+1 are obtained by an explicit Lagrangian step
as follows:

~rn+1 =~rn+∆t·~vn , ~r =(x,y);

ρn+1
j =ρn

j V(Ωn
j )/V(Ωn+1

j ).

(2) The new grid at time tn+1 is updated by our rezoning method which will be
introduced below. Thus, the mesh velocity ~D is obtained.

(3) Solve numerically Eqs. (2.1)-(2.4) to update all the physical quantities by the
ALE method described above (see [16] for more details).

3 An optimization-based rezoning method

For the sake of presentation we first describe the idea of our rezoning (mesh movement)
method in the case that only the geometric quality of grids is taken into account. Then,
in Subsection 3.2 we extend our method to the general case where both the geometric
quality and the adaptation are taken into account.

3.1 Based on the geometric quality only

Roughly speaking, our idea is to build a new framework to describe the geometric qual-
ity, and to show then that the adaptation can be easily incorporated into this framework.
For this purpose, we require that a rezoned grid should possess the properties: 1. Un-
foldness/convexity, 2. Orthogonality, 3. Smoothness and 4. Uniformity [29].

Let Ω(t) be a cell in a structured quadrilateral grid with four included angles and
four edges (cf. Fig. 1(a)). We will use included angles and edges of the grid to describe
the above mentioned four properties. To this end, first, given the direction (clockwise or
anticlockwise), we require that four included angles of the cell Ω(t) should be smaller
than π. This guarantees the convexity of the grid. Second, to maintain the orthogonality,
we require that all included angles of the grid with the common vertex should be as close
in size to each other as possible. In fact, the orthogonality always implies the smoothness
of the grid. Finally, In order to assure the uniformity, we require that all edges of the
grid conjunct to the same vertex should be as close in length to each other as possible.
Next, we discuss how to rezoning the grid according these principles. We begin with the
simple case.

3.1.1 Movement of a single node

Consider four cells with nine nodes A,B,C,D,E,F,G,H,P, see Fig. 2. Corresponding to
these four cells, there are sixteen angles and twelve edges. Assume that the node P can
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Figure 2: Octagon ABCDEFGH consists of four cells.

move within the octagon ABCDEFGH. Obviously, twelve of the sixteen angles and the
four edges meeting at the node P vary with movement of P.

To describe the convexity of the grid, we require that all twelve angles that vary with
movement of P should be smaller than π. Thus, we define that the set S⊂R

2 is feasible, if
for any node P∈S , all twelve angles ∠ABP, ∠PBC, ∠BCD, ∠CDP, ∠PDE, ∠DEF, ∠EFP,
∠PFG, ∠FGH, ∠HGP, ∠PHA, and ∠HAB are smaller than π. Evidently, a convex grid
is obtained if P moves within S . Hence, we can easily draw the following conclusion.

Proposition 3.1. For a given grid, if there exists a feasible set S , then S is convex.

The proof of Proposition 3.1 will be given in Appendix. Next, to assure the orthogo-
nality, smoothness and uniformity of the grid, we propose the following two criteria:

1. All angles with the common vertex should be as close in size to each other as possible;
2. All edges meeting at a node should be as close in length to each other as possible.

In view of these criteria, we define the angle function fαB corresponding to the node
B, which controls the variation of the angles ∠ABP and ∠CBP, by

fαB :=
∠ABP2+∠CBP2

∠ABP·∠CBP
.

The value of fαB varies in the interval [2,∞] (cf. Fig. 3), and fαB reaches its minimum
when two angles ∠ABP and ∠CBP are equal. In the same manner, we can define the
angle functions fαD, fαF and fαH corresponding to the nodes D, F and H, respectively.
Since the movement of the node P can affect all angles with vertex P, we define the angle
function fαP corresponding to P differently. Denoting

minPα =min{∠BPH,∠BPD,∠DPF,∠FPH},

maxPα =max{∠BPH,∠BPD,∠DPF,∠FPH},

we define

fαP :=
(minPα)2+(maxPα)2

minPα ·maxPα
.
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Figure 3: Range of values of the angle function fαB.

The function fαP reaches its minimum when all the angles with vertex P are equal. Finally,
we define the angle function f P

α by

f P
α = fαB+ fαD + fαF + fαH + fαP.

To control the variation of four edges meeting at the node P, we define the length
function f P

l by

f P
l :=

√

( |BP|2+|FP|2
|BP|·|FP|

)2
+

( |DP|2+|HP|2
|DP|·|HP|

)2
,

which reaches its minimum when all the edges have the same length.
Thus, our rezoning method is to move the node P in the feasible set S , such that the

following multi-objective programming model is solvable.

J =min
P∈S

{ f P
α , f P

l }, such that the angles∈ (0,π), (3.1)

where the angles mean all angles that affect the movement of the node P. A non-inferior
solution of the problem (3.1) gives a suitable balance among the orthogonality, smooth-
ness and uniformity, while the constraint condition (i.e., the angles ∈ (0,π)) guarantees
the convexity of the grid. However, there may have infinite many non-inferior solu-
tions to the problem (3.1). To circumvent this shortcoming, instead of using the multi-
objective programming model (3.1), we consider the following single-objective program-
ming model:

J =min
P∈S

( f P
α · f P

l ), and the angles∈ (0,π), (3.2)

where S is the feasible set of the octagon ABCDEFGH and the angles mean all angles
that affect the movement of the node P. We have the following proposition.

Proposition 3.2. There exists an optimal solution of the problem (3.2) which is also a
non-inferior solution to the problem (3.1).
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We will prove Proposition 3.2 in Appendix. By Proposition 3.2, we only need to solve
the problem (3.2) whose solution controls the grid movement. Because the feasible set S
is convex, the problem (3.2) can be considered as an unconstrained optimal programming
model in the interior of the feasible set S . Thus, the classical numerical methods, such as
the steepest decent method and the conjugate gradient method, can be used to solve (3.2)
numerically. The algorithm of the steepest decent method can be briefly described by the
following loop.

(a) Given the initial data P(1)∈S and the iteration error ε>0, set k=1.

(b) Compute the search direction d(k) =−∇( f P
α · f P

l )(P(k)).

(c) If ‖d(d)‖<ε, then stop the loop. Otherwise, use the line search method to find
λk by solving

f P(k)

α f P(k)

l (P(k)+λkd(k))= min
λ≥0,P(k)+λkd(k)∈S

f P(k)

α f P(k)

l (P(k)+λkd(k)).

Then, let P(k+1) = P(k)+λkd(k) and k := k+1, goto the step (b).

3.1.2 General case

The rezoning method by a suitable movement of a single node described in the above
subsection can be easily extended to all nodes.

Let Pi, i=1,··· ,N, denote the interior nodes of the grid, and fαPi
and flPi

the angle and
length functions corresponding to the node Pi, respectively. We construct the following
multi-objective programming model to control movement of all the interior nodes:

J = min
{P1,P2,···,PN}

{{ f P1
α , f P1

l },··· ,{ f PN
α , f PN

l }}, such that the angles∈ (0,π), (3.3)

where the angles mean all included angles of the grid. Similar to (3.2), we can also deduce
a single-objective programming model corresponding to (3.3) as follows.

J = min
{P1,P2,···,PN}

N

∑
i=1

( f Pi
α · f Pi

l )2, such that the angles∈ (0,π). (3.4)

Analogous to Proposition 3.2, we can also show the following proposition, the proof of
which will be given in Appendix.

Proposition 3.3. There exists an optimal solution of the problem (3.4) which is also a
non-inferior solution of the problem (3.3).

The algorithm for the above optimal problem can be described by the following loop.
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(a) Given the iteration error ε>0, set k=1.

(b) Let k:=k+1 and Qi=P
(k)
i (1≤i≤N). For i=1,··· ,N, solve the optimal problem

J =min
{Qi}

N

∑
i=1

( f Qi
α · f Qi

l )2, such that the angles∈ (0,π). (3.5)

The algorithm for solving (3.5) is the same as the loop described at the end of
Section 3.1.1.

(c) Let P
(k)
i = Qi, i = 1,··· ,N. If (∑

N
i=1(P

(k+1)
i −P

(k)
i )2)1/2 < ε, then stop the loop.

Otherwise, goto (b).

3.2 Based on both the geometric quality and the adaptation

In Subsection 3.1 we have presented our rezoning method by controlling only the ge-
ometric quality of grids, namely, angles and the length of edges of cells. Actually, the
adaptation of grids according to the variation of flow field can be easily incorporated
into our method.

Therefore, in this subsection we combine our method with adaptation to present a
rezoning method which takes into account both the geometric quality and the adaptation.
Our idea is to weight the length of each edge with a weighted monitor function, which
reflects the variation of the flow variables. We begin with the simple case of a single node
to describe the idea. To rezone a grid by controlling movement of a single node P, we
modify the multi-objective programming model (3.1) as follows:

J =min
P

{ f P
α , f P

lρ}, such that the angles∈ (0,π), (3.6)

where ρ is the density of the fluid, and

f P
lρ =

√

( |BPρ|2+|FPρ|2
|BPρ|·|FPρ|

)2
+

( |DPρ|2+|HPρ|2
|DPρ|·|HPρ|

)2
,

BPρ = BP· fρ, the weighted function fρ represents the variation of flow field. The choice
of fρ depends on problems under consideration. For our numerical examples in Section
4 we take

fρ =
√

1+aρ2, or fρ =
√

1+aρ2
ξ +bρ2

η , (3.7)

where a and b are constant parameters. To find a solution of (3.6), as discussed in Sub-
section 3.1, we need only to find an optimal solution of the following single-objective
programming model:

J =min
P

f P
α · f P

lρ, such that the angles∈ (0,π). (3.8)
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The above approach can be easily extended to the general case by modifying the op-
timization problem (3.4) as follows:

J = min
{P1,P2,···,PN}

N

∑
i=1

( f Pi
α · f Pi

lρ )2, such that the angles∈ (0,π). (3.9)

In the one-dimensional case, this choice represents the equi-distribution principle. In fact,
in this case we only need to consider the length function

J = min
{P1,P2,···,PN}

N

∑
i=1

( f Pi

lρ )2, (3.10)

where

f Pi

lρ =

∣

∣PiPi+1 · fi,i+1,ρ

∣

∣

2
+

∣

∣Pi−1Pi · fi−1,i,ρ

∣

∣

2

∣

∣PiPi+1 · fi,i+1,ρ

∣

∣

∣

∣Pi−1Pi · fi−1,i,ρ

∣

∣

.

By solving (3.10), we can get the traditional equi-distribution principle, namely,

|PiPi+1|· fi,i+1,ρ =constant.

In summary, our rezoning method is to move the grid in such a way that the single-
objective programming model (3.9) is solvable. In the next section we will test this re-
zoning method. We will see by numerical tests that an optimal solution of (3.9) will not
only keep good geometric quality of the grid, but also can track rapid changes in the flow
variables.

4 Numerical examples

In this section we present different numerical examples to validate the rezoning method
of this paper. We begin with the examples where the rezoning is carried out by taking
into account the geometric quality of grids only.

4.1 Rezoning based on the geometric quality only

4.1.1 Simple domains

First, we check the convergence of our method in the case of simple domains. In Fig.
4, the initial and the rezoned grids generated by the present method are shown, also
see [28] on the generation of the initial grids. Obviously, we see that the new rezoning
method converges to the uniform grid in both cases. In Figs. 5(a) and (b) the Lagrangian
grid generated by Sheshtakov [36] and the rezoned grid obtained by the present method
without moving the boundary nodes are given. We find that the cells near the boundary
are non-uniform when the boundary nodes are fixed. Fig. 5(c) shows the rezoned grid
with movement of the boundary nodes by using the same iterative steps of 5(b), and it is
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Figure 4: Comparison of Lagrangian and rezoned grids. Left, solid-line: a smooth Lagrangian grid; dash-line:
the rezoned grid. Right, solid-line: a random Lagrangian grid with skew cells; dash-line: the rezoned grid.

(a) (b)

(c)

Figure 5: (a): Sheshtakov’s grid. (b): The re-
zoned grid without movement of the boundary
nodes. (c): The rezoned grid with movement
of the boundary nodes.
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(a) (b) (c)

Figure 6: (a) Grid generated using the Winslow method and the close-up of the corner. (b) Grid generated
using the GWinslow method and the close-up of the corner. (c) Grid generated using the current method and
the close-up of the corner.

clear that the new grid possesses all the good geometric qualities we defined before, and
it will converge to the uniform grid if the iterative steps increase. These two examples
demonstrate the convergence of the new method.

4.1.2 Complex domains

In this subsection we compare the classical Winslow method [41], the generalized Winslow
(GWinslow) method [15] and our rezoning method in complex domains. The first exam-
ple is shown in Fig. 6 where the corner is a challenge for classical grid generators. In Fig.
6(a), the generated grid using the Winslow method is shown. Obviously, the grid folds
at the corner. The grids generated by the GWinslow and our methods are given in Figs.
6(b) and (c), respectively. Clearly, the GWinslow method generates a smooth and convex
grid, while the present method gives a grid which is not only convex and smooth, but
also uniform and orthogonal.

Numerical results for more complex domains are presented in Figs. 7(a)-(c). From
these results we can draw the same conclusion as above. We should point out here that
for the harmonic mapping method [30], even though the solution of the harmonic map-
ping results in an unfolded mapping, the generated grid may fold due to the use of an
improper discrete solver, also see [15].
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(a) (b) (c)

Figure 7: (a) Grid generated by the Winslow method and the close-up of the corner. (b) Grid generated by the
GWinslow method and the close-up of the corner. (c) Grid generated by the current method and the close-up
of the corner.

4.2 Rezoning based on both the geometric quality and adaptation

In this subsection we test our method for two examples in which both the geometric
quality and adaptation are taken into account. Using the examples, we will also compare
the current method with the mesh redistribution technique used in Tang and Tang [40].
As mentioned in the introduction, the mesh redistribution used in [40] performs well in
regular domains. We start with the comparison in simple domains.

In the first example, we generate grids for two given velocity distributions in a unit
square (see [40]):

u(x,y)=exp(−8(4x2+9y2−1)2), (4.1)

u(x,y)=exp(−100(y−x2+0.5)2). (4.2)

Generally speaking, the convergence speed may be accelerated or slowed down when
increasing or decreasing the parameter a in the monitor function (3.7). However, if a is
too big, the geometric quality of the generated grid may be affected. An appropriate
choice of a can balance both the convergence speed and the geometric quality of a grid,
and the choice of parameters often depends on problems under study and experience.
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For the current method, we take a=100 in the monitor function fρ. The numerical results
using the mesh redistribution in Tang and Tang [40] and our method are given in Fig. 8.
Although it is computationally somewhat more expensive than that used in [40] at each
single iterative step, the current method converges faster. As a result, the total computing
time for both methods is almost the same. From Fig. 8 we clearly see that the two methods
generate very similar grids.

(a)

(b)

Figure 8: (a) Generated grids for the velocity distribution (4.1). Left: the mesh redistribution given by [40].
Right: The current method. (b) Generated grids for the velocity distribution (4.2). Left: The mesh redistribution
given by [40]. Right: The current method.

In the second example, we compare both methods in a complex concave domain
shown in Fig. 9. We give a velocity distribution function

u(x,y)=exp(−8(9(x−3)2+9(y−3)2−1)2) (4.3)

in this complex domain. The numerical results using both methods are presented in Figs.
9(a) and (b), respectively. From Fig. 9(a) we find that the grid generated by the mesh
redistribution in [40] is folded at the four corners, while Fig. 9(b) clearly shows that the
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(a)

(b)

Figure 9: (a) Grid generated by the mesh redistribution used in [40] and the close-up of the corner. (b) Grid
obtained using the current method and the close-up of the corner.

grid generated using the current method not only well tracks the variation of the velocity
distribution, but also keeps good geometric quality.

4.3 Application to an ALE method

In this subsection we incorporate our rezoning method in the ALE method described
in Section 2 to numerically solve three well-known fluid Benchmark problems. We will
compare our ALE method with the Lagrangian method to validate robustness and adap-
tation of the current rezoning method. For all the numerical examples below, the re-
zoning phase in the ALE computation is carried out once every ten time steps, and the
parameters a and b in the monitor function fρ are taken to be 100.

A. SEDOV’S BLAST WAVE PROBLEM [1]

Sedov’s blast wave problem models the blast wave from an intense explosion in a
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perfect gas, so is an example of diverging shock waves. Consider a uniform medium in
space with zero initial pressure. A fixed amount of energy is deposited initially at the
origin. As time increases, a blast wave expands away from the origin. Because the ini-
tial pressure is zero, the shock associated with the blast wave is infinite in strength, and
a similarity solution for the post shock profile can be obtained. The solution was first
found by Sedov in 1959, and is particularly useful for testing the accuracy of multidi-
mensional computational schemes [1], and has been a standard Benchmark problem for
Lagrangian methods. Here we run a two-dimensional calculation using our ALE code
with the current rezoning method. An illustrative choice for a computational mesh is the
one in which the plane coordinates are ∆x = ∆y = 1/45 in a quadrant. A single unit of
energy is deposited in the central cell of the mesh. According to the analytic theory, the
blast shock wave should expand with radius equal to 1 at time t=1 and the maximum of
the density is 6.0.

Figure 10: Grids at t=1.0 for Sedov’s problem. Left: Lagrangian method. Right: ALE method.

The computational grids and the density profile at t=1.0 obtained by using the ALE
and Lagrangian methods are shown in Figs. 10 and 11, respectively. Comparing with the
analytic solutions, it is apparent that both methods perform well in capturing the location
of the shock wave. However, the ALE method is more accurate than the Lagrangian one
in the vicinity of the maximal density. Moreover, the Lagrangian grid becomes skew,
while the ALE grid not only keeps good geometric quality but also tracks the shock wave
as the Lagrangian method does. Fig. 12 shows the grids of the ALE and Lagrangian
methods at t=2. From Fig. 12 we see that the same conclusion as at t=1 can be drawn.

B. SALTZMAN’S PISTON PROBLEM [35]
This problem tests the ability of numerical methods to model shock waves that are

oblique to the mesh. The set-up of the problem is the following. An ideal gas with the
specific heat ratio γ = 5/3 is filled in the unit box, one end of which is a movable pis-
ton. The piston moves into the box with a constant velocity of 1.0 and a strong shock
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Figure 11: Density profile at t=1.0 for Sedov’s problem. Left: whole domain. Right: close-up near the maximal
value.

Figure 12: Grids at t=2.0 for Sedov’s problem. Left: Lagrangian method. Right: ALE method.

wave is generated from the moving end. On the upper and lower boundaries the sym-
metric boundary conditions are used. Initially, we use a 100×10 grid with the nodal x
coordinates

xij =(i−1)∆x+(11− j)sin
(π(i−1)

100

)

∆y

and the uniform nodal y coordinates.

In Figs. 13 and 15 the grids of the Lagrangian and ALE methods at t=0.5 and t=0.8
are presented, respectively. It is obvious to observe that the Lagrangian grid is getting
more and more skew, while the ALE grid preserves the good geometric quality. Fig. 14
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shows the pressure profiles of both methods at t=0.5. We find that the computed shock
wave by the Lagrangian method is smeared due to skewness of the grid, while the ALE
method resolves the shock wave well.

Figure 13: Grids at t=0.5 for Saltzman’s problem. Left: Lagrangian method. Right: ALE method.

Figure 14: Pressure profiles at t=0.5 for Saltzman’s problem. Left: Lagrangian method. Right: ALE method.

Figure 15: Grids at t=0.8 for Saltzman’s problem. Left: Lagrangian method. Right: ALE method.

C. DUKOWICZ’S PROBLEM [18]

This problem is a well-known shock refraction problem which tests the ability of
numerical methods for multi-fluid simulations. The initial mesh is composed of two
adjacent regions, each initially containing ideal gases with γ = 1.4 of different densities
but equal pressures, see Fig. 16. The nominal conditions are: incident shock with Mach
number Ms =2, interface density ratio ρ2/ρ1 =1.5, and shock-interface angle of incident
=60◦. Region 1 has a 36×30 mesh, with the left boundary vertical and the right bound-
ary slanted at 60◦ to represent the interface. Region 2 has a 40×30 mesh uniformly slated
at 60◦. The upper and lower boundaries are reflective, and the left boundary is a piston,
which moves to the right with a velocity of 1.48 units, driving a Mach 2 shock into Region
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Figure 16: Grids at t=0.0 for Dukowicz’s problem.

1. Fig. 17 shows that the density profile of the Lagrangian and ALE methods at t = 1.1.
We find that both methods can track the material interface quite intactly. However, the
computed shock wave by the Lagrangian method is somewhat smeared due to skewness
of the grid, while the ALE method well resolves the shock wave. Figs. 18 and 19 show the
grids of two methods at t=1.1 and the close-up of the material interface, respectively. It
is obvious that the Lagrangian grid becomes skew, while the ALE grid not only preserves
good geometrical quality but also moves the cells towards the shock wave.

Figure 17: Density contour at t=1.1 for Dukowicz’s problem. Left: Lagrangian method. Right: ALE method.

Figure 18: Grids at t=1.1 for Dukowicz’s problem. Left: Lagrangian method. Right: ALE method.

5 Conclusions

Based on the theory of optimization, we use edges and angles of cells to represent the
geometric quality of a computational grid, and utilize the local gradients of the flow vari-
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Figure 19: Grids for Close-up near the interface at t = 1.1 for Dukowicz’s problem. Left: Lagrangian method.
Right: ALE method.

ables to describe the variation of flow field to construct a multi-objective programming
model. The solution of this optimization problem controls movement of the grid in ac-
cordance to suitable balance between the geometric quality and adaptation of the grid.
By solving this optimization problem, we have thus obtained a new grid rezoning (grid
movement) method, which not only keeps good geometric quality of the grid, but also
tracks rapid changes in the flow field. At the same time, we have also incorporated the
rezoning method of this paper into an ALE method which is widely used in the simu-
lation of high-speed multi-material flows, and obtained a new ALE method. A number
of numerical examples, including some complex concave domains and multi-material
flows, have been carried out. The comparison of the current rezoning method with a few
others has been given. The numerical results demonstrate the robustness and adaptation
of the current rezoning and ALE methods.
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Appendix: Proof of Propositions 3.1 and 3.2

PROOF OF PROPOSITION 3.1. Given an octagon ABCDEFGH and a point P in it. Then
four quadrilaterals ABPH, BCDP, DEFP and FGHP are obtained (see Fig. 20). For an
angle we define its value in anticlockwise, for instance in Fig. 21, the angle ∠ROZ has
the beginning edge OR and ending edge OZ, and one has ∠ROZ∈ [0,2π) and ∠ZOR =
2π−∠ROZ. The angles affected by movement of P are ∠ABP, ∠PBC, ∠CDP, ∠PDE,
and ∠EFP, ∠PFG, ∠GHP, ∠PHA, ∠BPH, and ∠HPF, ∠FPD, ∠DPB.



Y. Chen and S. Jiang / Commun. Comput. Phys., 4 (2008), pp. 1216-1244 1241

Figure 20: Octagon ABCDEFGH, four
quadrilaterals meeting at a point P.

Figure 21: Angle ∠ROZ with the beginning
edge OR and the ending edge OZ.

Figure 22: Right half planes defined by the segments HG and HF.

The eight sides of the octagon and the four diagonals HB, BD, DF, FH form a set of
12 segments. Thus, any straight line which covers a segment divides the plane R

2 into
two half planes. We define the half plane as the right half plane the inner normal vector
of which directs to the inside of the octagon as shown in Fig. 22. Totally, we have such
12 right half planes. We denote by S∗ the intersection of these 12 right half planes. Since
any half plane is convex and the intersection of convex sets is still convex, the set S∗ is
convex. Next, we prove that S∗ is in fact the feasible set S (if there exists a feasible set S).

(i) We first show that if P∈S∗, then P∈S . To prove this, it is easy to see that it suffices
to show that the angles ∠ABP, ∠PBC, ∠CDP, ∠PDE, ∠EFP, and ∠PFG, ∠GHP, ∠PHA,
∠BPH, ∠HPF, ∠FPD, and ∠DPB are all less than π. To this end, we divide these 12
angles into two types: Type I consists of the angles with the vertex P, while the rest of the
12 angles constitutes Type II.

In the case of Type I, we only prove ∠HPF<π, and the same conclusion for the other
angles in Type I can be obtained in the same manner. If P locates at the right half plane
of the straight line containing the line FH, then ∠HPF is an interior angle of the triangle
∆FPH, and therefore ∠HPF is less than π. Otherwise, ∠FPH is an interior angle of the
triangle ∆FPH, and hence, ∠HPF=2π−∠FPH is larger than π.
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In the case of Type II, we only show ∠EFP < π, and the same conclusion for the rest
angles in Type II can be proved in the same way. If P locates at the right half plane of the
straight line containing the line EF, ∠EFP is an interior angle of the triangle ∆EFP, and
therefore ∠EFP is less than π. Otherwise, ∠PFE is an interior angle of the triangle ∆EFP,
and hence ∠EFP is larger than π.

Therefore, we have proved S∗⊂S .

(ii) Let P∈S . From (i) we can easily see that the proof procedure in (i) is reversible.
Hence, we have P∈S∗, i.e., S⊂S∗.

Thus, S=S∗, and the proof of Proposition 3.1 is complete. �

PROOF OF PROPOSITION 3.2. From the definition we can verify that f P
α , f P

l >0. Hence,
f P
α · f P

l > 0 and f P
α · f P

l > 0 has the infimum. Thus, there exists an optimal solution of the
problem (3.2).

On the other hand, assume that an optimal solution P∈S to the problem (3.2) is not a
non-inferior solution to the problem (3.1). Then, by virtue of the definition of non-inferior
solutions, there exists a point P∗∈S , such that f P∗

α ≤ f P
α and f P∗

l ≤ f P
l , and at least one of

two inequalities holds strictly. Therefore, f P∗
α · f P∗

l < f P
α · f P

l . This obviously contradicts the
assumption of the optimality of P. The proof of Proposition 3.2 is complete. �
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