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Abstract. This paper is concerned with the pattern dynamics of the generalized non-
linear Schrödinger equations (NSEs) related with various nonlinear physical problems
in plasmas. Our theoretical and numerical results show that the higher-order nonlin-
ear effects, acting as a Hamiltonian perturbation, break down the NSE integrability
and lead to chaotic behaviors. Correspondingly, coherent structures are destroyed
and replaced by complex patterns. Homoclinic orbit crossings in the phase space
and stochastic partition of energy in Fourier modes show typical characteristics of
the stochastic motion. Our investigations show that nonlinear phenomena, such as
wave turbulence and laser filamentation, are associated with the homoclinic chaos. In
particular, we found that the unstable manifolds W(u) possessing the hyperbolic fixed

point correspond to an initial phase θ = 45◦ and 225◦, and the stable manifolds W(s)

correspond to θ =135◦ and 315◦.
PACS: 47.54.-r, 05.45.Yv, 52.25.Gj, 52.35.Mw
Key words: Pattern dynamics, homoclinic chaos, nonlinear Schrödinger equations, plasma
waves.

1 Introduction

It is well known that the generalized nonlinear Schrödinger equation (NSE) [1–25] is of
the form

iEt+∂2
xE+F(|E|2)E=0, (1.1)
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where E(x,t) is the complex amplitude of waves, and t and x are time and space variables,
respectively. The function F is used to describe different physical processes [20–23], such
as plasma physics, nonlinear optics, fluid dynamics, superconductivity theory and Bose-
Einstein condensates (BEC) etc. The generalized NSE is one of the basic evolution models
for nonlinear process in various branches of the conservative systems. Early applications
of the NSE were in the context of nonlinear optics where it described the propagation of
light beams in nonlinear media [24]. Also it has been applied to gravity waves on deep
water, for which the predicted modulational instability and envelope soliton formation
have been clearly demonstrated experimentally [25]. In plasma physics, a large number
of nonlinear processes, such as nonlinear hydromagnetic waves [26], small-K condensa-
tion of weak turbulence in nonlinear plasmas, Langmuir waves in electrostatic plasmas,
femtosecond (fs) laser pulse in air, medium-intensity laser in underdense plasma and in-
tense laser pulse in relativistic plasmas, can all be effectively modeled by the generalized
NSE (1.1) with different potential function F.

For the generalized NSE (1.1), the Lagrangian density is

L=
i

2
(E∗Et−EE∗

t )−|Ex|
2+ f (|E|2), (1.2)

where f (|E|2) =
∫ |E|2

0 F(s)ds. The system described by it is a conservative system. Ac-
cording to the Norther theorem, we can obtain the following invariants: the quasiparticle
number

N =
∫

|E|2dx, (1.3)

the momentum

P= i
∫

E∗Exdx , (1.4)

and the Hamiltonian quantity

H =
∫

[|Ex|
2− f (|E|2)]dx. (1.5)

For such a conservative Hamiltonian system (1.1) or (1.2), the nonlinear dynamics in-
cluding solitary waves and patterns are very important. In nature, most nonlinear phe-
nomena, such as Langmuir wave collapse, laser self-focusing and filamentation, are all
associated with the basic nonlinear dynamics of the system and are the results of nonlin-
ear development of modulational instability. However, the latter has not been systemat-
ically studied, while previous work has concentrated on the solitary wave solutions and
the singular solutions. The study of complex dynamics including chaos and patterns for
the generalized NSE (1.1) associated with different physical problems is of interest to the
understanding of various nonlinear phenomena in plasmas.
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In 1992, we found for the first time that an one-dimensional cubic-quintic nonlin-
ear Schrödinger equation [1, 2] is non-integrable [3] due to high-order Hamiltonian per-
turbation. Physically, our results showed that the coherent pattern of plasma electron
(Langmuir) waves can be broken down due to high-order field interaction of Langmuir
waves and ion-acoustic waves. Then we completed some systematic investigations on
pattern dynamics of the generalized nonlinear Schrödinger equations [4–12], Zakharov
equations [13–15] and complex Ginzburg-Landau equations [16, 17] in one- and two-
dimensional spaces, respectively. Our investigations showed that nonlinear phenomena,
such as wave turbulence and laser filamentation, etc., are associated with the homoclinic
chaos. In particular, we found that the unstable manifolds W(u) possessing the hyperbolic
fixed point correspond to an initial phase θ=45◦ and 225◦, and the stable manifolds W(s)

correspond to θ = 135◦ and 315◦. Recently, we have applied our method to investigate
complex dynamics of femtosecond terawatt laser pulses in air [18] and relativistic lasers
in plasmas [19]. Our investigations further show that our previously theoretical meth-
ods and numerical strategies are applicable for the study of different physical systems.
Pattern dynamics in nonequilibrium system [27], in nonlinear optics [28], and in chemi-
cal systems [29] have been all reviewed. This paper mainly covers pattern dynamics of
the generalized nonlinear Schrödinger equations related to various nonlinear physical
problems in plasmas.

The paper is organized as follows. In Section 2, we give a qualitative nonlinear anal-
ysis of NSE (1.1) and constitute an available phase space and initial condition to describe
its nonlinear behavior. In Sections 3-7, we analyze the dynamics in detail respectively of
cubic NSE (CNSE) for weak turbulence in plasmas, quintic NSE for langmuir waves in
plasmas, higher-order NSE for fs laser pulse in air, exponential NSE for medium-intensity
laser in underdense plasmas and relativistic NSE (RNSE) for intense laser in relativistic
plasmas. Some conclusion and discussion are given in Section 8.

2 Qualitative analysis

For the continuum Hamiltonian system (1.1) or (1.2), the dynamic description is depen-
dent on the choice of the initial condition. In particular, we cannot give a reasonable
explanation if we take an arbitrary initial condition. Therefore, it is necessary that we
choose an available initial condition and constitute a reasonable phase space in order to
discuss the nonlinear evolution properties of this system. For definitiveness, we only
deal with the developing behavior of an initial homogeneous state due to the modula-
tional instability. In other words, we consider the nonlinear modulation of the plane
wave solution as in [3]

Es(t)=E0exp(iλt), (2.1)

where λ= F(|E0|2) for E0 6=0.
In the presence of small perturbations, we can write

E(x,t)=Es(t)+δE(x,t), (2.2)
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where δE(x,t)≪ Es(t). Linearizing the NSE (1.1), we obtain the eigen equation for the
perturbation field δE(x,t) as

(

i∂t+∂2
x+L L

L −i∂t+∂2
x+L

)(

δE
δE∗

)

=0, (2.3)

where L= F′(|E0|2)|E0|2 and F′(u)=∂uF.
For periodic boundary conditions, the eigenfunction δE(x,t) can be defined [3–12] as

(

δE
δE∗

)

=

(

ǫexp(iµt)
ǫ∗exp(−iµ∗t)

)

cos(kx), (2.4)

where ǫ and ǫ∗ are small parameters, and k is the wave number of the perturbation. Some
algebra yields the eigenvalue [5]

µ=2
[

F′(|E0|
2)|E0|

2−k2
]

±i
√

k2 [2F′(|E0|2)|E0|2−k2], (2.5)

and the growth rate

Γ= Im(µ)=
√

k2 [2F′(|E0|2)|E0|2−k2]. (2.6)

The wave number of the most unstable mode is then Kmax =
√

f ′(|E0|2)|E0|2. Inserting
Eqs. (2.4) and (2.5) into Eq. (2.3), we easily obtain that [3]

δE/δE∗=±i. (2.7)

To analyze the nonlinear behavior of the system (1.1), we construct phase space (|E|,
dt|E|) at x = 0 [10, 11, 13, 30]. From Eq. (2.5), we see that the eigenvalue µ has a pair of
conjugated complex roots, thus we can determine that (E0,0) is associated with a saddle
(or hyperbolic fixed) point in phase space [3]. Furthermore, from Eq. (2.4) the initial
condition can be chosen as

E(x,0)=E0+ηexp(iθ)cos(kxx). (2.8)

We therefore find that the unstable manifolds W(u) possessing the hyperbolic fixed point
correspond to θ=45◦ and 225◦, and the stable manifolds W(s) correspond to θ=135◦ and
315◦ [3–12].

3 Cubic NSE for coherent solitons in plasmas

The dynamical structure of Hamiltonian systems is sensitive to initial conditions [31–
33]. The analysis above gives us a practical initial condition as well as a suitable phase
space for describing the nonlinear behavior of the system that can be described by the
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generalized NSE (1.1). Using such an initial condition and phase space, we can study
various physical systems, once its potential function F in NSE (1.1) is determined.

First, for the cubic NSE (CNSE), the potential function is taken as

(i) F(|E|2)=α|E|2, (3.1)

where α is a parameter and the Hamiltonian can be written as

H0 =
∫

(

|Ex|
2−

1

2
α|E|4

)

dx, (3.2)

which is integrable. The cubic NSE has been widely studied in nonlinear optics and
fibers etc. [34,35]. Recently, the stabilization of high-order solutions of the cubic NSE has
been discussed [36]. In nonlinear plasmas, it describes the nonlinear interaction between
Langmuir wave and ion-acoustic wave in the subsonic regime, where the interaction of
the second-order fields is only considered. In the initial stages of field evolutions, many
physical phenomena, such as solitons developed by modulational instabilities, can be
explained in terms of this model.
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Figure 1: Stable W(s) and unstable W(u) manifolds of the hyperbolic fixed point (E0,0) with θ =45◦ and 225◦

for the CNSE [Eq. (1.1) combined with Eq. (3.1)], where the solid curve is computed with t>0 and the dashed
curve is computed with t<0.

In [10], we gave the solution of the CNSE [Eqs. (1.1) and (3.1)] by taking the initial
condition (2.8) and choosing E0 = 1, α = 1, η = 0.1, θ = 45◦ and 225◦ respectively. The
standard splitting-step spectral method [3, 10, 11] is improved [12] in order to better pre-
serve the conserved quantities (1.3)-(1.5). The spatial period of the system is taken to
be L = 2π/Kmax. From Fig. 1, we see the theoretical analysis in Section 2 is completely
verified. The CNSE is fully integrable due to the existence of Lax pair, i.e., H0 is inte-
grable. One solution corresponding to the periodic oscillations is shown in Fig. 2. The
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corresponding phase-space trajectory is a homoclinic orbit (HMO). The stable manifold
smoothly joins the unstable manifold at the saddle point (E0,0), i.e., HMO connection,
and the well-known Fermi-Pasta-Ulam (FPU) recurrence exists, as shown in Fig. 2(b).
The fundamental frequency of the periodic solution is shown in Fig. 2(c). Because of the
exact FPU recurrence, a spatially coherent pattern appears, shown in Fig. 2(d).

Figure 2: Dynamics of the CNSE [Eqs. (1.1) and (3.1)] for E0=1, η=0.1 and θ=45◦. (a) the evolution of laser
field envelope at x = 0; (b) the trajectories of the phase space (E(0,t), d|E(0,t)|/dt); (c) the corresponding
power spectra; and (d) the corresponding spatial patterns.

To display this recurrence, the evolution of the energy contained in Fourier modes
was measured. In Fourier space, the energy of the system is defined as

H=∑
n

HKn =∑
n

|EKn |
2, (3.3)

and the initial energy is added to the mode Kmax. From Fig. 3, we observe that a large
part of the energy in the system lies in the first and second modes. Furthermore, the
evolution of the energy in all modes is periodic, which is consistent with the periodic re-
currence. This means that the unstable modulation first grows exponentially as predicted
by Benjamin and Feir [37] but eventually the solution would demodulate and return to
a near-uniform state. Thus, solitons developed by modulational instability keep their
spatially coherent structures and temporally periodic evolutions.
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Figure 3: The energy evolution in the first four Fourier modes for the CNSE [Eqs. (1.1) and (3.1)], where the
parameters are the same as Fig. 2.

4 Quintic NSE for Langmuir waves in electrostatic plasmas

For Langmuir waves in electrostatic plasmas, the beat-frequency interaction between
large amplitude parts of high frequency fields and particles can occur in strong turbu-
lent stage of plasma instability. The other physical effects, for example, damping and
dissipation, have to be considered and the CNSE is no longer valid. Under the static
approximation, from Vlasov-Maxwell equations, He [1] has obtained a quintic NSE de-
scribing the nonlinear interaction between Langmuir waves and electrons in plasmas,
where the potential F(|E|2) can be expressed as

(ii) F(|E|2)= |E|2−g|E|4, (4.1)

where E(x,t) is the slowly-varying complex amplitude of Langmuir wave fields, and g is
the coupling constant of Langmuir wave fields with electrons, which depends on electron
temperature and density, etc. The Hamiltonian of the quintic NSE [Eq. (1.1) combined
with the potential (4.1)] can be written as

H = H0+H1, (4.2)
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Figure 4: Dynamics of the quintic NSE [Eqs. (1.1) and (4.1)] for E0=1, η=0.1 and θ=45◦. (a) the trajectories
of the phase space (E(0,t), d|E(0,t)|/dt); (b) the evolution of laser field envelope at x=0; (c) the corresponding
power spectra; and (d) the corresponding spatial patterns.

where H0 is the one for the integrable CNSE [Eq. (3.2) with α=1] and

H1 =
∫

1

3
g|E|6dx (4.3)

acts as a quintic Hamiltonian perturbation to H0.
Much attention has been focused on analyzing the behavior of high-order NSEs in-

volving quintic terms [38, 39]. In 1992, we [3] systematically studied the dynamic prop-
erties of such quintic NSE for Langmuir waves in plasmas. We found that due to H1,
the NSE integrability is broken down and chaos and complex patterns of wave fields are
formed. Fig. 4(a) clearly illustrates the chaotic behavior of the wave fields. Fig. 4(b)
shows the presence of irregular HMO crossings, where the irregular motions appear
nearby HMO. These demonstrate the presence of stochastic motions for complex dy-
namics. The power spectra [Fig. 4(c)] also clearly indicate the broadband structures and
noiselike spectra being typical of chaotic evolutions. Fig. 4(d) shows that the Langmuir
wave field patterns are no longer coherent but still keep their spatially localized struc-
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tures. Physically, this means that the high-order nonlinear effects occurring during the
long-term evolution of Langmuir waves in plasmas result in the conversion of wave field
patterns from coherence to turbulence. Furthermore, the conversion is chaotic but keeps
their spatially localized structures.

5 Higher-order NSE for femtosecond laser pulse in air

Propagation of femtosecond (fs) Terawatt (TW) laser pulses [23] in air has attracted wide
interest due to its applications in lightning discharge control and atmospheric remote
sensing [40–42]. Self-channeling of initial laser pulse experiences an early self-focusing
(SF) stage caused by the Kerr response of air, which leads to a sharp increase of laser
intensity. When laser intensity increases close to the ionization threshold, χ(5) suscep-
tibility originated from expansion of the nonlinear polarization vector and multiphoton
ionization (MPI) of air molecules play important roles in the propagation dynamics [43].

Recently, we [18] applied the above method to investigate the complex dynamics of
such laser pulses in air by considering the NSE (1.1) with the potential function

(iii) F(|E|2)=α|E|2−ǫ|E|4−γ|E|2K, (5.1)

which includes Kerr focusing of air, χ(5) susceptibility originated from expansion of non-
linear polarization, and plasma generation by MPI of air molecules. It is noted that the
time variable t in Eq. (1.1) has been replaced with the propagation distance z for the fol-
lowing problems. For pulse duration tp = 250fs and wavelength λ0 = 800nm, their coef-

ficients take values α=0.446, ǫ=7.3×10−7[cm2/w2
0] and γ=8.4×10−40[cm2(K−2)]/w2k−2

0

with w0 laser beam transverse width in unit of cm. The variables z, x and E are nor-

malized by the units of 4z f , w0, and
√

Pcr/4πw2
0, respectively, where z f = πw2

0/λ0 is the

Rayleigh length and Pcr =2.55GW the critical power for SF.

The Hamiltonian of such a NSE [Eqs. (1.1) and (5.1)] can also be written as Eq. (4.2),
where

H1 =
∫

(

1

3
ǫ|E|6 +

1

K+1
γ|E|2K+2

)

dx. (5.2)

If only the Kerr effect is considered, H = H0 [Eq. (3.2)] is integrable corresponding to
a CNSE. χ(5) susceptibility and MPI effect act as a Hamiltonian perturbation H1 to H0.
Fig. 5(a) gives comparisons of these three effects for different laser intensities I0. For
I0 < 1012W/cm2, purely Kerr nonlinearity plays a major role with H ≈ H0 integrable.
For 1012

< I0 < 2×1013W/cm2, χ(5) susceptibility starts to act as a small perturbation
H1. For I0 > 2×1013W/cm2, MPI appears, laser propagation is governed by all three
effects with H nonintegrable. When I0 further increases to larger than 5×1013W/cm2,
MPI dominates χ(5) susceptibility and laser beams reveal complex dynamics, including
SF and filamentation.
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Our numerical results given in Fig. 5(b) completely verify the theoretical analysis
obtained in Section 2, where W(u) possessing the hyperbolic fixed point correspond to
θ = 45◦ and 225◦, and W(s) correspond to θ = 135◦ and 315◦. Fig. 5(c) plots the unsta-
ble growth rate Γ for different I0. From Figs. 5(c) and (a), we can understand that laser
pulse with lower intensity (I0 <1012W/cm2) follows the early SF caused by purely Kerr
response of air, which compresses laser beam in the transverse plane and increases the
intensity sharply [see Fig. 5(c), Γ is very large for I0 = 1011W/cm2]. With increasing I0,
both χ(5) susceptibility and MPI become important mechanisms, the growth of laser field
amplitude is quickly arrested by such two effects [see Fig. 5(c), Γ much decreases when
I0 increases, in particular, for I0 =3×1013W/cm2].

Figure 5: (a) Comparison of three nonlinear effects for different I0 in Eq. (5.1). Asterisk symbols mark the points

with I0 respectively of 5.82×1011, 1.13×1013, 4.6×1013 and 6×1013W/cm2. (b) Stable W(s) and unstable

W(u) manifolds for the saddle point (E0, 0) with θ=45◦ and 225◦, where the solid curve is calculated by NSE’s
(1.1) and (5.1) with z>0 and the dashed curve with z<0. (c) The growth rate Γ with the corresponding I0.

We choose input laser power Pin = 10Pcr (E0 = 8.94) with noise level 0.01 (η = 0.089),
initial phase θ = 45◦, and consider the most unstable mode with k = Kmax. Initial laser
intensities I0 = 1011, 3×1012, 8.5×1012 and 3×1013W/cm2 are considered, respectively.
Figs. 6 and 7 plot the solutions. For I0 = 1011W/cm2, as analyzed above, the laser prop-
agation obeys an integrable CNSE with only Kerr effect. Laser fields reveal periodic
oscillation with the maximum intensity Imax =5.82×1011W/cm2 [see Fig. 6(a) and point
“A” in Fig. 5(a)]. The phase trajectory is a HMO connection [see Fig. 6(b)]. Fig. 7(a) shows
its spatially coherent pattern structure of the laser fields.

When I0 increases to greater than 1012W/cm2, χ(5) susceptibility and MPI play roles
as a Hamiltonian perturbation H1, we see from Figs. 6(d)-(l) that HMO connection is
broken down, laser fields oscillate aperiodically and irregular motions appear. For I0 =
2×1012W/cm2, we see in Fig. 6(d) that laser fields oscillate quasi-periodically with Imax=
1.13×1013W/cm2, where χ(5) susceptibility starts to act [see point “B” in Fig. 5(a)]. Fig. 6(e)
shows the typical weak chaotic behavior [31]: the phase trajectory is a band, the KAM
torus has a small thickness but is not completely broken down. Fig. 7(b) shows that laser
field pattern structure still remains fairly coherent, but irregular sub-structures appear.

For I0 =8.5×1012 and 3×1013W/cm2, laser fields oscillate aperiodically with respec-
tively Imax =4.6×1013 and 6×1013W/cm2 [see Figs. 6(g) and (j)], MPI effect appears [see
point “C” in Fig. 5(a)] and dominates [see point “D”], it combined with χ(5) susceptibil-
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Figure 6: Complex dynamics of laser fields in air with I0 respectively of 1011 [(a)-(c)], 2×1012 [(d)-(f)], 8.5×1012

[(g)-(i)] and 3×1013W/cm2 [(j)-(l)]. (a), (d), (g) and (j) are evolutions of laser field envelope; (b), (e), (h)
and (k) are the phase-space trajectories; (c), (f), (i) and (l) are the power spectra.

ity completely breaks down KAM tori and strong chaos occurs. Irregular HMO crossings
exist in phase space [see Figs. 6(h) and (k)], demonstrating the presence of stochastic mo-
tions for complex dynamics. The power spectra [Figs. 6(i) and (l)] indicate broadband
structures and noiselike spectra being typical of strong chaos. Such strong chaos corre-
sponds to complex patterns with coherence completely broken down, shown in Figs. 7(c)
and (d). Figs. 7 (e)-(h) show the evolution of the energy in the first four Fourier modes, in
which the system’s energy is defined as Eq. (3.3). It shows that coherent, near-coherent
and complex patterns are relevant to the stochastic evolution of the energy in the third
and fourth modes.

These complicated dynamical phenomena are the characteristic of laser propagation
in air. It clearly illustrates that laser filamentation phenomena are associated with the
homoclinic chaotic behaviors of laser fields. Furthermore, it shows that the nonlinear
dynamical behavior of laser fields depends on the intensity of laser pulses. Physically,
the complex pattern of laser filamentation is attributed to the stochastic partition of the
system energy in Fourier modes.
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Figure 7: The corresponding complex patterns of laser fields in air [(a)-(d)], and the energy evolution in the
first four Fourier modes [(e)-(h)] for the same parameters as Fig. 6.

6 Exponential NSE for medium-intensity laser in underdense

plasmas

For a laser pulse with intensity from 1015 to 1017W/cm2 interacting with underdense
plasmas, considering the Maxwell equations and the electron motion equations, one can
also obtain the dimensionless NSE (1.1) in static approximation to describe its dynamics,
where the potential function is [10, 11]

(iv) F(|E|2)=1−Ne =
1

2g
(1−e−2g|E|2). (6.1)

Here g is a parameter. When g = 0, the exponential NSE (ENSE) [Eqs. (1.1) and (6.1)]
becomes the above well-known integrable CNSE. The Hamiltonian perturbation here can
be written as

H1=
∫

{

1

2
|E|4−

1

2g

[

|E|2+
1

2g
(e−2g|E|2−1)

]}

dx. (6.2)

where H0 is also the one (3.2) of CNSE with α=1.
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Figure 8: Solutions of Eqs. (1.1) and (6.1) with η = 0.1, θ = 45◦ and g = 0.1. (a) phase trajectories illustrate
the irregular HMO crossings; (b) propagation of the field amplitude; (c) continuous power spectrum shows the
chaotic characteristic; (d) complex patterns with coherence broken down.

In 1994 [11], we also studied the complex dynamics of such laser pulse propagation
in plasmas by numerically solving the ENSE [Eqs. (1.1) and (6.1)]. According to the the-
oretical results obtained in Section 2, the initial condition here should be

E0 =
√

(1/2g)ln(1−2g)−1 for 0≤ g<
1

2

and [
√

(1/2g)ln(1−2g)−1,0] corresponds to a saddle point in phase space. We choose an
initial position that lies in the nearby saddle point (E0,0), that is, η =0.1, θ =45.225◦ . For
g=0, The ENSE [Eqs. (1.1) and (6.1)] becomes a CNSE, the HMO connection is shown in
Fig. 1 and the coherent pattern is shown in Fig. 2(d) in Section 3. As g 6=0, however, we
find that the stable and unstable manifolds in phase space do not smoothly join together
and the irregular HMO crossings exist as shown in Fig. 8(a), which illustrates that the
current system is nonintegrable. |E(0,z)| experiences stochastic oscillations [see Fig. 8(b)]
with a continuous nonperiodic spectrum [see Fig. 8(c)]. Fig. 8(d) shows the irregular
patterns with coherence broken down. Similarly to the above, the irregular patterns are
associated with the partition of energy in Fourier modes. As shown in Fig. 9, the energy
in the system, which is initially confined to the master mode, would spread to many
slaved harmonic modes because of the nonlinear interaction, but would not regroup into
the original lowest mode.
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To illustrate the route to spatial chaos by the Hamiltonian perturbation H1 (6.2), we
further fix parameters θ = 45.225◦, η = 0.1 and vary g. From Fig. 10, we find the foun-
dational frequency ω0 = 0.2513 for g = 0. When g = 0.0002, the wave field still seems to
propagate with periodic behavior, but some small peaks in the power spectrum appear
and the base frequencies are not uniquely defined. When g=0.0008, in particular, more
peaks are produced (but still countable), although the solution does not recur within the
finite distance. In a sense, these solutions are called quasiperiodic solutions. With the in-
crease of parameter g, the continuous power spectrum reveals the chaotic behavior (see
Fig. 10, in the case of g=0.01, and Fig. 8). From the standpoint of nonlinear dynamics, the
base frequency of the cubic NSE is unique (ω0) for our parameter due to the integrability
of the system. However, the nonintegrable perturbation H1 (6.2) will make the frequency
shift, that is, ωi =ω0+△ωi. When the parameter g is quite small, there exist finite count-
able frequencies. With the increase of g, the oscillatory overlapping of the modes could
occur [31], which leads to the formation of the stochastic layer and appearance of the
continuous power spectrum.
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Figure 9: Propagation of energy in the first four Fourier modes, where the parameters are the same as Fig. 8.

In fact, for medium-intensity laser propagation in plasma, the response of the plasma
density to the laser fields is only exhibited by the nonlinear ponderomotive force, which
corresponds to the exponential nonlinear term in Eq. (6.1). From the investigation, we
understand that such a response would act as a nonintegrable perturbation H1 (6.2) and
lead to the stochastic propagation of laser beams.
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Figure 10: The periodic solution, quasiperiodic solutions, and chaotic solutions for Eqs. (1.1) and (6.1) with
η =0.1 and θ =45.225◦. (a) Propagation of the field amplitude; (b) power spectrum.

7 Relativistic NSE for intense laser pulse in plasmas

Interest in the interaction of relativistically intense laser (RIL, at intensities 1018 W/cm2

or above) with plasma has been stimulated by the rapid development of high-power
lasers and their applications to fast ignition of fusion fuel, compact X-ray sources and
particle accelerators, etc. [23,44,45]. In the RIL the field, electron quiver velocity is highly
relativistic and the ponderomotive pressure is much stronger than the plasma pressure.
The propagation dynamics of RIL in plasmas are still unclear.

Recently, we [19] also studied the dynamics of RIL in plasmas by using the above
method. Considering a circularly-polarized RIL in an initially-homogeneous underdense
plasma and introducing the normalizations E→me0ωcE/e, x→k−1

p x, and z→2kk−2
p z, we

obtain the RNSE describing the evolution of laser-field envelope [22,46–48], i.e., NSE (1.1)
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combined with the potential function

(v) F(|E|2)=1−
Ne

γ
=1−

max[0,1+∂2
x

√

1+|E|2]
√

1+|E|2
, (7.1)

where the laser intensity is given by I =(|E|2×1.37×1018/λ2) W/cm2. The system (1.1)
and (7.1) include the effects of relativistic mass variation and ponderomotive force, as
well as diffraction caused by the finite pulse aperture. The Hamiltonian perturbation is

H1 =
∫

[

1

4
|E|4+2(

√

1+|E|2−1)−|E|2−

∣

∣

∣

∣

∂x

√

1+|E|2
∣

∣

∣

∣

2
]

dx, (7.2)

where H0 expressed as Eq. (3.2) with α = 1/2 is the integrable Hamiltonian for CNSE.
Fig. 11 of W(u) and W(s) manifolds is also completely consistent with the theoretical re-
sults in Section 2.

1.6 2.0 2.4 2.8 3.2 3.6 4.0
−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

|E(0,z)|

d|
E

(0
,z

)|
/d

z

W(u)W(s)

W(s)W(u)

Figure 11: Stable W(s) and unstable W(u) manifolds of the hyperbolic fixed point (E0,0) with θ=45◦ and 225◦

for the RNSE [Eqs. (1.1) and (7.1)]. The solid curve is for z>0 and the dashed curve is for z<0.

Physically, the relativistic mass variation and ponderomotive nonlinearities cannot be
separated, since they are from the same electron dynamics. However, in order to see their
individual contributions to the complexity of the laser-plasma interaction and formation
of spatial chaos and patterns, we numerically solve the RNSE [Eqs. (1.1) and (7.1)] with
the two cases: (i) the purely relativistic mass variation nonlinearity, and (ii) the combined
relativistic mass variation and ponderomotive nonlinearities.

The RNSE [Eqs. (1.1) and (7.1)] with only the relativistic mass variation nonlinearity
becomes

iEz+Exx+

(

1−
1

√

1+|E|2

)

E=0 (7.3)
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Figure 12: The solutions of the CNSE [(a)-(c)], Eq. (7.3) [(d)-(f)], RNSE [Eqs. (1.1) and (7.1)] [(g)-(i)], for
E0 = 0.5 and θ = 45◦, at x = 0. (a), (d), and (g) show the evolution of laser field envelope. (b), (e), and (h)
show the structures of the phase space (E(0,z), d|E(0,z)|/dz). (c), (f), and (i) show the corresponding power
spectra. (h) indicates the irregular homoclinic orbit crossings.

by ignoring the ponderomotive nonlinearity. Eq. (7.3) is physically valid if the condition
k−2

p ∇2γ≪1 is satisfied [49], where the relativistic nonlinearity prevails over the pondero-
motive nonlinearity.

In the weakly relativistic regime with laser intensity I≤1.37×1018 W/cm2, i.e., |E|≤1,
we can expand Eq. (7.3) to obtain the CNSE [Eqs. (1.1) and (3.1)]. One can then treat
the higher-order relativistic mass variation and ponderomotive nonlinearities as Hamil-
tonian perturbations H1. We choose parameters E0=0.5 (corresponding to I0=6.85×1017

W/cm2), η =0.1, and θ =45◦. As analyzed in Section 3, the CNSE is fully integrable, one
solution corresponding to the periodic oscillations is shown in Figs. 12(a) and (b). How-
ever, the integrability breaks down if high-order relativistic mass variation and pondero-
motive nonlinearities are taken into account. With the full but only purely relativistic
mass variation nonlinearity [Eq. (7.3)], the phase-space trajectory is in the form of a band,
the KAM tori becomes thicker but are not completely destroyed [as shown in Fig. 12(e)],
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since the solution now contains more subharmonics [see Fig. 12(f)]. This represents a
non-chaotic “quasiperiodic” behavior. Under the combined action of the relativistic mass
variation and ponderomotive nonlinearities [RNSE’s (1.1) and (7.1)], the periodic oscilla-
tions disappear and stochastic behavior occurs, as can be seen in Fig. 12(g). On can see
from Fig. 12(h) that irregular HMO crossings appear in the phase space. The correspond-
ing dynamical system then is a chaotic one. The power spectra in Fig. 12(i) also shows
typical noisy behavior of chaotic motion.

If the laser intensity I is greater than 1.37×1018 W/cm2, corresponding to |E0|> 1,
both the relativistic mass variation and ponderomotive nonlinearities are important. We
use the parameters E0 = 2 (or I0 = 2.75×1018 W/cm2), η = 0.1, and θ = 45◦ for numerical
calculation. For Eq. (7.3), an interesting phenomenon can be seen in Figs. 13(a) and (b),
pseudo-recurrence appears with the laser field exhibiting almost periodic behavior and
the phase trajectories are nearly regular with the motion being smooth in small regions.
This means that the KAM tori are not completely destroyed by only the relativistic mass
variation. However, with both nonlinear relativistic mass variation and ponderomotive
effects taken into account [Eqs. (1.1) and (7.1)], the KAM tori are completely destroyed.
The laser field envelope displays typical chaotic behavior, as can be seen in Fig. 13(d).
Fig. 13(e) shows the irregular HMO crossings in the phase space. Fig. 13(f) shows the
broadband structure and the noisy spectra that are typical of chaotic motion.
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Figure 13: The solutions of Eq. (7.3) [(a)-(c)] and RNSE [Eqs. (1.1) and (7.1)] [(d)-(f)] for E0=2.0 and θ=45◦

at x=0. (a) and (d) show the evolution of laser field envelope, (b) and (e) show the structures of phase space,
(c) and (f) show the power spectra corresponding to (a) and (d), respectively.

The chaotic behavior of the RNSE leads to the appearance of complex patterns for RIL
wave field in plasmas. Fig. 14 shows the pattern structures of the CNSE, Eq. (7.3) and the
RNSE [Eqs. (1.1) and (7.1)], respectively. With only the fully relativistic mass variation
effect, because the KAM tori is not completely destroyed and laser field evolution is only
weakly chaotic, its pattern structure in general remains fairly coherent, but irregular sub-
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Figure 14: Spatial patterns: (a) and (b) show the coherent patterns of the CNSE for E0 =0.5 and θ =45◦, (c)
and (d) show the nearly coherent patterns of Eq. (7.3) with only the relativistic mass variation effect, and (e)
and (f) show the complex patterns of the RNSE [Eqs. (1.1) and (7.1)] with both the relativistic mass variation
and ponderomotive nonlinearities, for E0 =2.0 and θ =45◦.

structures appear, as shown in Figs. 14(c) and (d). This near-coherent behavior can also
be seen in Figs. 15(b): the energy evolution is periodic in the first two Fourier modes, but
aperiodic in the third and fourth modes. With both the fully relativistic mass variation
and ponderomotive nonlinearities, the KAM tori are completely destroyed and strong
chaos occurs. The corresponding complex patterns can be seen in Figs. 14(e) and (f).
The localized structures remain but they are rather irregular. Fig. 15(c) shows that the
evolution of the energy in the first mode is quasi-periodic, so that spatially localized
structures remain. However, the evolution of the energy in the second and higher modes
exhibits stochastic, resulting in irregular complex patterns.

All these show that the relativistic mass variation and ponderomotive nonlinearities
in the RNSE (7.1) lead to the chaotic behaviors of laser fields. Coherent structures are
replaced by complex patterns, HMO crossings exist in the phase space and stochastic
partition of energy in Fourier modes occurs. Furthermore, the ponderomotive nonlinear-
ity plays a more important role in completely destroying the periodicity of laser field and
forming chaos and complex patterns. With only the relativistic mass variation nonlinear-
ity, laser field tends to remain pseudo-periodic with pseudo-recurrent phase orbit, and
the patterns remain fairly coherent.
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Figure 15: Energy evolution of the first four Fourier modes for the CNSE, Eq. (7.3), and RNSE [Eqs. (1.1) and
(7.1)] The parameters are the same as in Fig. 14.

8 Conclusion and discussion

We have given a systematic review of the complex dynamics including chaos and pat-
terns of a series of generalized NSEs with different potential functions for various nonlin-
ear physical problems in plasmas. Our studies from the early Langmuir wave turbulence
to the recent laser filaments in plasmas all show that the high-order nonlinear effects,
acting as the Hamiltonian perturbation, break down the NSE integrability and lead to
the chaotic behaviors of the system. The corresponding nonlinear phenomena are just as-
sociated with this homoclinic chaos. In particular, we found that the unstable manifolds
W(u) possessing the hyperbolic fixed point correspond to an initial phase θ=45◦ and 225◦,
and the stable manifolds W(s) correspond to θ=135◦ and 315◦. We believe these findings
are general and will give useful implication to the understanding of nonlinear wave and
laser propagation dynamics in plasmas.

As far as various branches of physics are concerned, the presence of the stochastic
wave fields (Langmuir wave field or laser wave field) depends on the evolution processes
of systems. In other words, the lowest order nonlinear term |E|2E is the predominant



B. Qiao, C. T. Zhou, X. T. He and C. H. Lai / Commun. Comput. Phys., 4 (2008), pp. 1129-1150 1149

nonlinear mechanism in the evolving initial stages. Some important phenomena, such
as coherent structures and Langmuir wave collapse, etc., can be reasonably explained
by making use of the cubic NSE. In the strongly nonlinear stages, other physical effects
could play an important role in the process of plasma instabilities. For example, Landau
damping of high-frequency waves, χ(5) susceptibility, multiphoton ionization, relativistic
ponderomotive force and so on become quite significant in different problems. These
higher-order nonlinear effects make complex dynamic behaviors occur. In a sense, these
complex dynamic phenomena are the characteristic of wave propagation. It is shown that
the focusing (or collapse) of wave becomes a chaotic oscillation, rather than a catastrophic
process due to the higher-order nonlinear effects. Moreover, the latter acts not only as a
locally saturating nonlinearity, but also as a global Hamiltonian perturbation resulting in
complex propagation dynamics.
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Rodriguez, L. Wöste, R. Bourayou, R. Sauerbrey, Phys. Rev. Lett. 92, 225002 (2004), also the
references therein.

[44] C. T. Zhou and X. T. He, Appl. Phys. Lett. 90, 031503 (2007); ibid. 92, 071502 (2008); ibid. 92,
151502 (2008); Opt. Lett. 32, 2444 (2007).

[45] C. T. Zhou, M. Y. Yu, X. T. He, J. Appl. Phys. 101, 103302 (2007); Europhys. Lett. 79,
35001(2007); Laser Part. Beam 25, 313 (2007); Phys. Plasmas 13 092109 (2006).

[46] G. Z. Sun, E. Ott, Y. C. Lee, P. Guzdar, Phys. Fluids 30, 526 (1987).
[47] A. B. Borisov, O. B. Shiryaev, A. McPherson, K. Boyer, C. K. Rhodes, Plasma Phys. Control.

Fusion 37, 569 (1995).
[48] M. Y. Yu, P. K. Shukla, K. H. Spatschek, Phys. Rev. A 18, 1591 (1978).
[49] P. Sprangle, A. Zigler, E. Esarey, Appl. Phys. Lett. 58, 346 (1991).


