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Abstract. In an early approach, we proposed a kinetic model with multiple transla-
tional temperature [K. Xu, H. Liu and J. Jiang, Phys. Fluids 19, 016101 (2007)]. Based
on this model, the stress strain relationship in the Navier-Stokes (NS) equations is re-
placed by the translational temperature relaxation terms. The kinetic model has been
successfully used in both continuum and near continuum flow computations. In this
paper, we will further validate the multiple translational temperature kinetic model to
flow problems in multiple dimensions. First, a generalized boundary condition incor-
porating the physics of Knudsen layer will be introduced into the model. Second, the
direct particle collision with the wall will be considered as well for the further modifi-
cation of particle collision time, subsequently a new effective viscosity coefficient will
be defined. In order to apply the kinetic model to near continuum flow computations,
the gas-kinetic scheme will be constructed. The first example is the pressure-driven
Poiseuille flow at Knudsen number 0.1, where the anomalous phenomena between
the results of the NS equations and the Direct Simulation Monte Carlo (DSMC) method
will be resolved through the multiple temperature model. The so-called Burnett-order
effects can be captured as well by algebraic temperature relaxation terms. Another test
case is the force-driven Poiseuille flow at various Knudsen numbers. With the effec-
tive viscosity approach and the generalized second-order slip boundary condition, the
Knudsen minimum can be accurately obtained. The current study indicates that it is
useful to use multiple temperature concept to model the non-equilibrium state in near
continuum flow limit. In the continuum flow regime, the multiple temperature model
will automatically recover the single temperature NS equations due to the efficient
energy exchange in different directions.
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1 Introduction

The transport phenomena, i.e., mass, heat, and momentum transfer, in different flow
regime is of a great scientific and practical interest. The classification of various flow
regimes is based on the dimensionless parameter, i.e., the Knudsen number, which is a
measure of the degree of rarefaction of the medium. The Knudsen number Kn is defined
as the ratio of the mean free path to a characteristic length scale of the system. In the
continuum flow regime, i.e., Kn < 0.001, the Navier-Stokes equations with linear rela-
tions between stress and strain and the Fourier’s law for heat conduction are adequate to
model the fluid behavior. For flows in the continuum-transition regime (0.1<Kn<1), the
Navier-Stokes equations are known to be inadequate. This regime is important for many
practical engineering problems, such as the simulation of microscale flows [10] and hy-
personic flow around space vehicles in low earth orbit [9]. Hence, there is a strong desire
and requirement for accurate models which give reliable solutions with lower computa-
tional costs.

Currently, the DSMC method is the most successful technique in the numerical pre-
diction of low density flows [3]. However, in the continuum-transition regime, especially
for the micro-channel flows, the DSMC suffers from statistical noise in the bulk velocity
because of the random molecular motion. When the bulk velocity is much slower than
the thermal velocity, many independent samples are needed to eliminate the statistical
scattering, as for the micro-electro-mechanical system (MEMS) simulation. Alternatively,
many macroscopic continuum model have been intensively developed in the literature,
which include the Burnett and super-Burnett equations [4, 18], Grad’s 13 moment equa-
tions [5], the regularized 13 equations [14], and many others. For high-order equations,
besides the difficulties in constructing the boundary condition, another assumption is
that any non-equilibrium state is only a certain perturbation of the equilibrium one. In
reality, the non-equilibrium state in the near continuum flow regime may not be able to
be recovered from a simple truncated expansion of an equilibrium state.

In [21], based on the gas-kinetic Bhatnagar-Gross-Krook (BGK) equation, a kinetic
model with multiple translational temperature for the continuum and near continuum
flow simulation was proposed. In this approach, the energy exchanges among x-, y-, and
z-directions are modeled through the particle collision. Based on the kinetic model, the
viscous term in the Navier-Stokes equations is replaced by the temperature relaxation
in the extended NS formulations. In the continuum flow regime, the standard Navier-
Stokes solutions are precisely recovered. The numerical results presented in [21] are in
good agreement with the DSMC data for a wide range of Kn numbers. The anomalous
temperature minimum phenomena in the force-driven Poiseuille flow case at Kn=0.1 be-
tween the Navier-Stokes solutions and the DSMC results are well captured by the multi-
ple temperature kinetic model. The current study is to further develop the multiple tem-
perature model by the following. First, in order to incorporate the flow physics near the
wall, such as the flow behavior inside the Knudsen layer, the particle-particle collision as
well as particle-wall collisions will be included in the current model through the modifi-
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cation of the particle collision time (viscosity coefficient) [6]. Second, in order to improve
the accuracy at boundary, a boundary condition based on the second-order derivatives
of flow variables will be implemented. Many tests will be conducted for the near contin-
uum flows. The first one is the pressure-driven Poiseuille flow at Kn=0.1. The standard
Navier-Stokes solutions present an opposite pressure curvature in the cross-stream di-
rection in comparison with the DSMC solutions [20, 24]. Even though this anomalous
phenomena can be resolved using the Burnett equations. However, with the use of mul-
tiple temperature the discrepancy can be much easily resolved using the current kinetic
model. The second example is the force-driven Poiseuille flow at various Knudsen num-
bers. With the effective viscosity approach and the generalized second-order slip bound-
ary condition, the well-known Knudsen’s minimum can be captured. The third example
is about the cavity flow in the transitional flow regime.

In this paper, Section 2 presents the kinetic multiple translational temperature model
and the kinetic scheme to solve the new model. Section 3 is about the implementation
of effective viscosity approach near the wall with the inclusion of both particle-particle
and particle-wall collisions. At the same time, a generalized second-order slip boundary
condition is presented. Numerical results are shown in Section 4. The last section is the
conclusion.

2 Multiple translational temperature kinetic model and its

numerical scheme

In this section, we briefly review the construction of the multi-temperature (multi-T) ki-
netic model for monatomic gas and the construction of the corresponding finite volume
gas-kinetic scheme.

2.1 Multi-temperature gas-kinetic model

For non-equilibrium flow in the near continuum regime, one of the traditional approach
is to derive the macroscopic governing equation based on the Boltzmann equation. In
the process of deriving the macroscopic governing equations, the gas distribution func-
tion is usually approximated by an expansion around an equilibrium state, such as the
Maxwellian distribution function. The main reason underlying this approach is that it
has been proved that the Maxwellian is the only and unique one where the system will
approach to eventually for an isolated system. However, for a non-equilibrium flow, the
competition between the particle collisions to get to equilibrium and the particle trans-
port to deviate away from the equilibrium, will make the gas stay in a non-equilibrium
state forever. In this case, the purely mathematical expansion of a gas distribution around
a Maxwellian may not be appropriate. A physical model with the consideration of spe-
cific non-equilibrium properties may become necessary. In the current study, we are go-
ing to adopt a two step approximation. In the first step, it will be assumed that the gas
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distribution function will approach to a multiple translational temperature equilibrium
state. Then, the multiple temperature equilibrium state relaxes to a equal temperature
Maxwellian. The deviation between the multiple temperature ”equilibrium” and the ab-
solute Maxwellian depends on the local Knudsen number. The above multistage kinetic
model corresponds to an extended Navier-Stokes equations, where the stress strain rela-
tionship will be replaced by the temperature relaxations. In the following, the detailed
kinetic model will be presented.

This paper mainly concerns the 2-D flow simulation. In the following, the multiple
temperature model in 2-D will be presented. The generalized BGK model can be derived
from the original BGK model [2],

∂ f

∂t
+u

∂ f

∂x
+v

∂ f

∂y
=

f eq− f

τ

=
g− f

τ
+

f eq−g

τ

=
g− f

τ
+Q, (2.1)

where the equilibrium state f eq is the single temperature Maxwellian, and the multiple
temperature state g has a general form

g=
ρ

(2π)3/2

1

|ǫ|1/2
exp

(

− 1

2
(ui−Ui)iλij(uj−Uj)

)

,

where ǫ=λ−1. The above distribution function has the similarity with Holway’s ES-BGK
model [8], but it comes from different physical consideration in the description of gas
relaxation process. The detailed differences will be pointed out at the end of this subsec-
tion. In the current paper, we only consider a simple case, where the above temperature
tensor is diagonal matrix and has the following form,

g=ρ
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Here lx =m/(2kTx),ly =m/(2kTy), and lz =m/(2kTz) are related to the translational tem-
perature Tx,Ty, and Tz in x−, y− and z−directions. In order to determine all unknowns
in the corresponding macroscopic variables, such as ρ,U,V,Tx,Ty, and Tz, we propose the
following moments for the collision term in the BGK model,
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The first four moments on the right hand side of Eq. (2.3) are the conservative moments
of the mass, momentum, and total energy. The last two moments are related to the energy
exchange among different directions. The equilibrium energies ρE

eq
x and ρE

eq
y in Eq. (2.3)

have the forms

ρE
eq
x =

1

2
ρU2+

ρ

4leq

and

ρE
eq
y =

1

2
ρV2+

ρ

4leq
,

which are constructed based on the assumption that the system will approach to an equal
temperature equilibrium state. The single equilibrium temperature leq is determined by
equally distributing thermal energy in all directions,

ρ
3

4leq
=ρE− 1

2
ρ(U2+V2),

where ρE is the total energy, i.e.,

ρE=
∫

1

2
(u2+v2+w2) f dudvdw=

∫

1

2
(u2+v2+w2)gdudvdw.

The tendency for the gas distribution function to approach to a common Maxwellian
determined by (ρ,U,V,λeq) means that the H-theorem for the system (2.1) and (2.3) is sat-
isfied. Note that the last two moments on the right hand side of Eq. (2.3) is due to the term
Q in the collision term of the BGK equation (2.1). Therefore, there is no source term con-
tribution for the term (g− f )/τ, and this property is precisely used in the development
of the numerical scheme. The numerical scheme based on Eqs. (2.1) and (2.3) for the time
evolution of macroscopic physical quantities will be presented later. The physical idea in
our kinetic model is that the thermal equilibrium between x-, y-, and z-directions will be
achieved through the particle collisions, and there is a time delay to achieve the temper-
ature equilibrium. However, in the Navier-Stokes equations, it is assumed that the same
equilibrium temperature is obtained instantaneously. The Navier-Stokes assumption be-
tween the stress and the velocity gradient is only valid in the continuum flow limit. The
real viscosity terms in the NS equations are replaced by the temperature relaxation term
from the current model.

Remark 2.1. Even though there is similarity between the mid-equilibrium state g in the
current model and Holway’s ES-BGK model [8], the physical consideration is different.
In the ES-BGK model, the only collision process is from f to g and this collision term
cannot generate the compatibility condition in Eq. (2.3), where the non-zero terms are
solely from the non-conservative process from g to f eq.

Remark 2.2. In this paper, the original BGK collision term is divided into two sub-
processes. For a nonlinear gas system, this division, even zero-added mathematically,
will be different physically due to different gas evolution path. Also, the current model
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has advantages when handling diatomic gas, where the relaxation times for different
physical processes, such as rotational equilibrium, may be different.

Remark 2.3. The current model explicitly presents the different temperature concept and
considers it as a physical reality. In Holway’s ES-BGK model, a single translational tem-
perature is actually used. The stress tensor and a free parameter are introduced into the
ellipsoid distribution function in order to fix the Prandtl number in its Chapman-Enskog
expansion up to the Navier-Stokes order. For a gas with unit Prandtl number, the ES-BGK
model will shrink to the original BGK model exactly. However, for the current multiple
translational temperature model, even with unit Prandtl number, different temperatures
are still there. Based on the Chapman-Enskog expansion, the ES-BGK model basically
recovers the Navier-Stokes equations [8] with a variable Prandtl number. To the same or-
der in the Chapman-Enskog expansion, the current model will generate a much enlarged
system and there are individual governing equation for each temperature in different
direction.

Remark 2.4. In the current paper, only three temperatures are introduced to model the
non-equilibrium flow properties in the near continuum regime. Theoretically, the real
temperature should be a three-by-three symmetric tensor and there are six independent
components.

2.2 Finite volume scheme for multi-T kinetic model

The kinetic model constructed in the previous subsection is solved based on the gas-
kinetic BGK scheme [17]. It is a conservative multi-scale finite volume method, where
the update of the macroscopic flow variables is through the numerical fluxes, which are
evaluated based on the time-dependent gas distribution function at cell interfaces. Since
we use a directional splitting method to solve Eq. (2.1), the kinetic model in x-direction
can be written as,

ft+u fx =(g− f )/τ+Q,

where g is the multiple temperature equilibrium state (2.2). Taking moments φ to the
above equation in a control volume x∈ [xj−1/2,xj+1/2] and time interval t∈ [tn,tn+1], the

update of the macroscopic flow variables, i.e., W = (ρ,ρU,ρV,ρE,ρEx ,ρEy)T inside each
numerical cell [xj−1/2,xj+1/2] from time step tn to tn+1, becomes

Wn+1
j =Wn

j +
1

∆x

∫ tn+1

tn
(Fj−1/2(t)−Fj+1/2(t))dt+Sn

j ∆t, (2.4)

where Fj+1/2 is the corresponding fluxes at a cell interface, which can be evaluated based
on the gas distribution function f j+1/2 there,

F=
∫

uφ f j+1/2dudvdw.
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The source term is due to the moments of the collision term in Eq. (2.3) which has the
form

S=(0,0,0,0,(ρE
eq
x −ρEx)/τ,(ρE

eq
y −ρEy)/τ)T.

For the current multi-T model, the evaluation of the gas distribution function f at a cell
interface is similar to the BGK-NS method in [17], where the only difference between
them is that three temperatures Tx, Ty, and Tz have to be accounted for, see [21] for more
details. After the determination of f at a cell interface, we can explicitly evaluate the
heat flux there as well. In order to simulate the flow with any realistic Prandtl number,
a modification of the heat flux in the energy transport, such as that used in [17], is also
implemented in the present study. Therefore, the current model can simulate flow with
any Prandtl number.

3 Effective viscosity coefficient and the generalized second-order

slip boundary condition

It is well known that the physical significance of the viscosity is its effect on the momen-
tum exchange between the fluid molecules. From kinetic theory, the viscosity coefficient
µ is related to the mean free path l of gas molecules, such as µ = δc̄ρl, where c̄ is the
mean molecular speed, ρ is the gas density and δ is taken to be a constant with a value of
0.499 [4]. In the near-wall region, however, the presence of a solid boundary will have a
significant impact on the average distance a gas molecule can travel between successive
collisions with either another gas molecule or the solid wall. To enable the Navier-Stokes
equations to capture the velocity profile in the Knudsen layer, the construction of effective
viscosity has been investigated in [11, 22]. Here we use the method recently proposed by
Guo et al. [6]. Let us consider a gas bounded by two parallel walls located at z = 0 and
z= H, respectively. The effective viscosity µe is defined by [6]

µe(z)=µ0

[

1+
1

2

(

(α−1)e−α+(β−1)e−β−α2Ei(α)−β2Ei(β)
)

]

, (3.1)

where α=z/l0 and β=(H−z)/l0, and Ei(x) is the exponential integral function given by

Ei(x)=
∫

∞

1
t−1e−xtdt. (3.2)

The generalized second-order slip boundary condition is also adopted in our numerical
simulation:

u|s−u|w =

(

l(
∂u

∂z
)− 1

2
l

∂

∂z
(l

∂u

∂z
)

)

w

(3.3)

with l = l0µ/µ0. The validity of the above effective viscosity method as well as the gener-
alized slip boundary condition has been presented in [6].
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Figure 1: Nondimensional density (left) and velocity (right) profiles in the cross-stream direction at x=0, solid
line is multi-T model solution and circle is DSMC data [24].
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Figure 2: Nondimensional temperature (left) and pressure (right) profiles in the cross-stream direction at x=0,
solid line is multi-T model solution and circle is DSMC data [24]. The averaged temperature T on the left
figure is defined by T =(Tx+Ty+Tz)/3.

4 Numerical experiments

4.1 Pressure-driven Poiseuille flows at Kn=0.1

It is generally recognized that in the slip flow regime with Knudsen number Kn≤0.1, the
Navier-Stokes equations with the slip boundary condition is capable to accurately sim-
ulate the microchannel flow. However, for the simple force-driven and pressure-driven
Poiseuille flows in the slip flow regime with relative small gradients and Knudsen num-
ber, the Navier-Stokes equations give qualitatively incorrect predictions [23, 24]. In the
force-driven case, they fail to reproduce the central minimum in the temperature profile
and non constant pressure profile, which are both predicted by the kinetic theory and
observed in the DSMC simulation [1, 7, 12, 15, 16]. In the pressure-driven case, the pres-
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Figure 3: Nondimensional density (left) and velocity (right) profiles in the stream-wise direction at y=0, solid
line is multi-T model solution and circle is DSMC data [24].
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Figure 4: Nondimensional temperature (left) and pressure (right) profiles in the stream-wise direction at y=0,
solid line is multi-T model solution and circle is DSMC data [24]. The averaged temperature T on the left
figure is defined by T =(Tx+Ty+Tz)/3.

sure profiles in the cross-stream direction from the Navier-Stokes solutions and DSMC
data have the opposite curvature [20, 24]. Furthermore, it is not possible to correct this
failure by modifying the equation of state, transport coefficients or boundary conditions,
and the discrepancy is solely caused by the governing equations themselves. In order
to understand these phenomena, many analysis have been done. For example, the non-
constant pressure is well explained based on the Burnett equations [16], and the temper-
ature minimum at the center is explained only through the kinetic theory [1, 7, 12, 15], or
the super-Burnett solution [18]. As an excellent test for capturing non-equilibrium phe-
nomena, the current multi-temperature model will be used to study the pressure-driven
Poiseuille flows at Kn=0.1.

The set up of the Poiseuille flows is given in [23]. The simulation fluid is a hard sphere
gas with particle mass m=1 and diameter d=1. At the reference density of ρ0=1.21×10−3,
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Figure 5: Nondimensional pressure profile in the cross-stream direction at x =0, solid line is BGK-NS solution
and circle is DSMC data [24].

the mean free path is l0 =m/(
√

2πρ0d2)=186. The distance between the thermal walls is
Ly=10l0 and their temperature is T0=1. The reference fluid speed is U0=

√
2kT0/m=1, so

Boltzmann constant is taken as k=1/2. The reference sound speed is c0=
√

γkT0/m=0.91
with γ=5/3 for a monatomic gas. The reference pressure is p0=ρ0kT0/m=6.05×10−4. For
the pressure-driven case, dp/dx≈1.08×10−7 with pin= 3

2 p0, pout=
1
2 p0 and Lx=3Ly=30l0.

In these cases the Knudsen number is Kn = l0/Ly = 0.1 and the Reynolds number is of
order one. In all calculations, the cell size takes the size of one fifth of the mean free path
under the initial flow condition. Maxwell diffusive kinetic boundary condition [20] with
the accommodation coefficient σ=1 is used.

The results for the pressure-driven case from the multi-T kinetic model are shown in
Figs. 1-2 and 3-4. Although the Navier-Stokes equations give opposite-curvature pres-
sure profile in comparison with the DSMC data, see Fig. 5, the agreement between the
results from the multi-T kinetic model and the DSMC method is quite good (Fig. 2, right),
which shows the multi-T model has the advantage over the Navier-Stokes equations in
capturing the non-equilibrium physical phenomena in the near continuum flow regime.
The distributions of flow variables along the stream-wise direction also agree well with
DSMC results which are shown in Figs. 3-4.

4.2 Force-driven Poiseuille flow at various Knudsen numbers

The force-driven Poiseuille flow at different Knudsen numbers is calculated using the
multi-T kinetic model as well. The accurate analysis of the problem has been carried out
by many authors [10]. One of the benchmark results is the solution of the Boltzmann
equation, which has been obtained by Ohwada et al. [13] for hard-sphere (HS) molecules.
In our computation, the working gas is argon with molecular mass m = 6.63×10−26 kg.
The dynamical viscosity coefficient for HS gas is µ = 2.117×10−5

√
T/273Ns/m2. The
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Figure 6: Nondimensional velocity profiles for force-driven Poiseuille flow at Knudsen numbers of 0.113, 0.226,
0.451, 0.677, 0.903, and 1.13. Circle is the solution of the linearized Boltzmann equation by Ohwada et al. [13],
and solid line is from the multi-T kinetic model.

mean free path is defined by

l0 =
16

5

(

1

2πRT

)1/2 µ

ρ0
, (4.1)

where R is the gas constant, and T and ρ0 are temperature and density, respectively.
The density ρ0 has a value corresponding to the pressure of 1 atm and T = 273K. The
accommodation coefficient is taken as σ=1 for both walls, and the effective viscosity and
the generalized slip boundary condition are employed in our numerical simulation.
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multi-T kinetic model.

The velocity distributions for both the linearized Boltzmann equation by Ohwada et
al. [13] and the multi-T kinetic model at different Knudsen numbers are shown in Fig. 6.
For this problem, the nondimensional velocity is defined as U/Ua, where Ua is the mean
velocity across the channel. As expected, the discrepancy between our predictions and
the solution of the linearized Boltzmann equation increases with the Knudsen number.
However, our numerical results are comparable with those using the wall-function ap-
proach in [22], which has significant improvement over the conventional Navier-Stokes
slip-flow solution. The normalized mass flow rate is shown in Fig. 7, from which we can
see that the well-known Knudsen’s minimum is well captured by the kinetic model.

Figure 8: Cavity flow.

4.3 2D cavity flow at Kn=0.1

The 2D cavity flow will be simulated here. Fig. 8 shows the schematic graph for this
case, where the upper wall keeps the temperature Tw = 273K and moves to the right
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Figure 9: Contours of the averaged temperature T, i.e. T =(Tx+Ty+Tz)/3, by DSMC (left) and the current
multi-T model (right). In both figures, 9 equally spaced contours from T =350K to T =530K are plotted.
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Figure 10: Contours of the temperature Tx by DSMC (left) and the current multi-T model (right). In both
figures, 9 equally spaced contours from Tx =350K to Tx =530K are plotted.

along positive x direction with the velocity Uw, and other three stationary walls keep
the temperature 2Tw = 2×273K. The working gas is argon with the dynamical viscosity
coefficient

µ=2.117×10−5

(

T

Tw

)ω

, (4.2)

where ω = 0.81. Initially, the gas is static with temperature Tw and pressure 1atm (or
101325Pa), and the density can be obtained from the equation of state for perfect gas
p = ρRT, where R is the gas constant defined by R = k/m with Boltzmann constant k
and molecular mass m. The numerical results are compared with DSMC solutions from
the variable hard sphere (VHS) model. For this model, the mean free path of the gas is
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Figure 11: Contours of the temperature Ty by DSMC (left) and the current multi-T model (right). In both
figures, 9 equally spaced contours from Ty =350K to Ty =530K are plotted.
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Figure 12: Contours of the temperature Tz by DSMC (left) and the current multi-T model (right). In both
figures, 9 equally spaced contours from Tz =350K to Tz =530K are plotted.

defined by

λ=
4(7−2ω)(5−2ω)

30
√

π
× µ

ρc
, (4.3)

where c is the most probable speed c =
√

2RT. From the initial condition, we can get
the corresponding mean free path λ0 = 4.82×10−8m, then the side length of cavity is
determined by L = λ0/Kn with a given Knudsen number Kn. Here we let Kn =0.1. The
velocity Uw of the upper moving wall is chosen so that the corresponding Mach number
Ma =Uw/

√
γRTw takes the value of 0.3 with γ=5/3.

The numerical results from both the current multi-T kinetic model and the DSMC
are shown in Figs. 9-12. These temperature contours show good agreement between the
multi-T model and DSMC solutions. In these cases, the different temperature (Tx,Ty,Tz)
distributions are clearly observed, especially for the temperature Tx and Ty.
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5 Conclusion

The kinetic model with multiple translational temperature [21] was applied for some
near continuum flow simulation. In the pressure-driven Poiseuille flow at Kn = 0.1, the
Navier-Stokes equations and the DSMC results present pressure profiles with opposite
curvature in the cross-stream direction. The multi-T kinetic model gives results which
agree well with the DSMC data. For the force-driven Poiseuille flow at various Knud-
sen numbers, with the effective viscosity approach and the generalized second-order slip
boundary condition [6], the well-known Knudsen’s minimum is captured by the current
model. Our numerical results indicate that the multiple temperature kinetic model and
its numerical method provide a useful tool for the study of micro-flows in the near con-
tinuum flow regime.

The success of the current approach is mainly due to the following fact. Instead of
expanding the gas distribution function around a local Maxwellian distribution function,
such as the common approach used in the Chapman-Enskog expansion, we separate this
process into two steps. First, the expansion is around a state g with multiple translational
temperature. Then, this state will approach to a traditional equal-temperature equilib-
rium one f eq. The distance between these two states depends on the Knudsen number.
For a sustained non-equilibrium gas system in the near continuum flow regime, these
two states will never approach to each other and the multiple temperature effect will be-
come an important physical reality, such as the examples presented in this paper. In the
continuum flow regime, due to the closeness of these two states, the traditional Navier-
Stokes equations can be exactly recovered. The two steps approach may be useful also
to modify the well-developed Chapman-Enskog expansion and moment methods to get
the approximate solutions of the Boltzmann equation.

In the current paper, three individual temperatures in x−, y−, and z−direction for
the middle state g are used in the kinetic model. If g is replaced by a general Gaussian
distribution function with temperature as a symmetric tensor Tij, a generalized Navier-
Stokes system can be derived. In the non-equilibrium flow regime, the temperature Tij

represents the randomness of the particle motion which depends on the spatial orienta-
tion. The corresponding gas dynamic equations for this model have the same structure
as the Navier-Stokes equations, but the NS constitutive relationship,

σij =−pδij+µ(∂iUj+∂jUi−
2

3
∂kUkδij)

is replaced by temperature relaxation terms

σij =−ρRTij+ρR(Teqδij−Tij).

Also, in order to extend the current multiple translational temperature model to diatomic
gas [19], more temperature components, i.e., six translational, one rotational, and multi-
ple vibrational ones, have to be included.
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