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Abstract. Based on the high order essentially non-oscillatory (ENO) Lagrangian type
scheme on quadrilateral meshes presented in our earlier work [3], in this paper we
develop a third order conservative Lagrangian type scheme on curvilinear meshes for
solving the Euler equations of compressible gas dynamics. The main purpose of this
work is to demonstrate our claim in [3] that the accuracy degeneracy phenomenon
observed for the high order Lagrangian type scheme is due to the error from the
quadrilateral mesh with straight-line edges, which restricts the accuracy of the result-
ing scheme to at most second order. The accuracy test given in this paper shows that
the third order Lagrangian type scheme can actually obtain uniformly third order ac-
curacy even on distorted meshes by using curvilinear meshes. Numerical examples
are also presented to verify the performance of the third order scheme on curvilinear
meshes in terms of resolution for discontinuities and non-oscillatory properties.
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1 Introduction

In numerical simulations of multidimensional fluid flow, there are two typical choices:
a Lagrangian framework, in which the mesh moves with the local fluid velocity, and
an Eulerian framework, in which the fluid flows through a grid fixed in space. More
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generally, the motion of the grid can also be chosen arbitrarily, this method is called the
Arbitrary Lagrangian-Eulerian method (ALE; see, e.g., [1, 7, 14]).

Lagrangian methods are widely used in many fields for multi-material flow simula-
tions such as astrophysics and computational fluid dynamics (CFD), due to their dis-
tinguished advantage of being able to capture the material interface sharply. In the
past years, many efforts have been made to develop Lagrangian methods. Some algo-
rithms are developed from the nonconservative form of the Euler equations, see, e.g.,
[10,13,22], while others start from the conservative form of the Euler equations, e.g. those
in [1, 4, 11, 12].

In our previous paper [3], we developed a class of Lagrangian type schemes on quadri-
lateral meshes for solving the Euler equations which are based on the high order essen-
tially non-oscillatory (ENO) reconstruction. Advantages for the schemes in [3] include
their conservativity for the density, momentum and total energy, their essentially non-
oscillatory performance, parameter-free implementation, and their formal high order ac-
curacy both in space and time. However, we also found that our third order Lagrangian
type scheme could only achieve second order accuracy on two dimensional distorted
Lagrangian meshes. We attributed this phenomenon to a fundamental problem in the
formulation of the Lagrangian schemes. Since in a Lagrangian simulation, each cell rep-
resents a material particle, its shape may change with the movement of fluid. Therefore,
a cell with an initially quadrilateral shape may not keep its shape as a quadrilateral at
a later time. It usually becomes a curved quadrilateral. Thus if during our Lagrangian
simulation the mesh is always kept as quadrilateral with straight-line edges, this approx-
imation of the mesh will bring second order error into the scheme. Finally we made a
conclusion that for a Lagrangian type scheme in multi-dimensions, it can be at most sec-
ond order accurate if curved meshes are not used. Meanwhile, we also predicted that our
scheme can be extended to higher than second order accuracy if curvilinear meshes are
used. In this paper, we explore curvilinear meshes to demonstrate our claim stated above.
We will develop a third order scheme on curved quadrilateral meshes in two space di-
mensions. The reconstruction is based on the high order WENO procedure [8,9] but with
simpler linear weights. The accuracy test and some non-oscillatory tests are presented to
verify our claim. The scheme can also be extended to higher than third order accuracy
if a higher order approximation is used on both the meshes and the discretization of the
governing equations.

An outline of the rest of this paper is as follows. In Section 2, we describe the individ-
ual steps of the third order Lagrangian type scheme on curvilinear meshes in two space
dimensions. In Section 3, numerical examples are given to verify the performance of the
new Lagrangian type method. In Section 4 we will give concluding remarks.

2 The third order conservative Lagrangian type scheme on

curvilinear meshes
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2.1 The compressible Euler equations in Lagrangian formulation

The Euler equations for unsteady compressible flow in the reference frame of a moving
control volume can be expressed in the integral form in the Cartesian coordinates as

d

dt

∫

Ω(t)
UdΩ+

∫

Γ(t)
FdΓ=0, (2.1)

where Ω(t) is the moving control volume enclosed by its boundary Γ(t). The vector of
the conserved variables U and the flux vector F are given by

U=





ρ
M

E



, F=





(u−ẋ)·nρ
(u−ẋ)·nM+pn

(u−ẋ)·nE+pu·n



, (2.2)

where ρ is the density, u is the velocity, M = ρu is the momentum, E is the total energy
and p is the pressure, ẋ is the velocity of the control volume boundary Γ(t), n denotes
the unit outward normal to Γ(t). The system (2.1) represents the conservation of mass,
momentum and energy.

The set of equations is completed by the addition of an equation of state (EOS) with
the following general form

p= p(ρ,e), (2.3)

where e = E/ρ− 1
2 |u|2 is the specific internal energy. Especially, if we consider the ideal

gas, then the equation of state has a simpler form,

p=(γ−1)ρe,

where γ is a constant representing the ratio of specific heat capacities of the fluid.
This paper focuses on solving the governing equations (2.1)-(2.2) in a Lagrangian

framework, in which it is assumed that ẋ = u, and the vectors U and F then take the
simpler form

U=





ρ
M

E



, F=





0
pn

pu·n



. (2.4)

2.2 The third order conservative Lagrangian type scheme on curvilinear
meshes in two space dimension

The 2D spatial domain Ω is discretized into Nx×Ny computational cells. Ii+1/2,j+1/2

is a generalized quadrilateral cell, with each edge being a quadratic curve. This
curved quadrilateral cell is uniquely identified by its four vertices {(xi,j,yi,j),
(xi+1,j,yi+1,j), (xi+1,j+1, yi+1,j+1), (xi,j+1,yi,j+1)} and the four middle points of its
four quadratic edges {(xi+1/2,j, yi+1/2,j), (xi+1,j+1/2, yi+1,j+1/2), (xi+1/2,j+1,yi+1/2,j+1),
(xi,j+1/2,yi,j+1/2)}. Si+1/2,j+1/2 denotes the area of the cell Ii+1/2,j+1/2 with i = 1,··· ,Nx,
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j = 1,··· ,Ny. For a given cell Ii+1/2,j+1/2, the location of the cell center is denoted by
(xi+1/2,j+1/2,yi+1/2,j+1/2). The fluid velocity (ui,j,vi,j) is defined at the vertex of the mesh
and (ui+1/2,j,vi+1/2,j),(ui,j+1/2,vi,j+1/2) define the fluid velocities at the middle points of
the curvilinear edges of the cell. We consider only the non-staggered mesh, with all the
variables except velocity stored at the cell center of Ii+1/2,j+1/2 in the form of cell av-
erages. For example, the values of the cell averages for the cell Ii+1/2,j+1/2 denoted by

ρi+1/2,j+1/2, M
x
i+1/2,j+1/2, M

y
i+1/2,j+1/2 and Ei+1/2,j+1/2 are defined as follows

ρi+1/2,j+1/2 =
1

Si+1/2,j+1/2

∫∫

Ii+1/2,j+1/2

ρdxdy,

M
x
i+1/2,j+1/2 =

1

Si+1/2,j+1/2

∫∫

Ii+1/2,j+1/2

Mxdxdy,

M
y
i+1/2,j+1/2 =

1

Si+1/2,j+1/2

∫∫

Ii+1/2,j+1/2

Mydxdy,

Ei+1/2,j+1/2 =
1

Si+1/2,j+1/2

∫∫

Ii+1/2,j+1/2

Edxdy,

where ρ, Mx, My and E are the density, x-momentum, y-momentum and total energy,
respectively.

2.2.1 Spatial and time discretizations

The conservative semi-discrete scheme for Eqs. (2.1) and (2.4) has the following form on
the 2D non-staggered mesh

d

dt











ρi+1/2,j+1/2Si+1/2,j+1/2

M
x
i+1/2,j+1/2Si+1/2,j+1/2

M
y
i+1/2,j+1/2Si+1/2,j+1/2

Ei+1/2,j+1/2Si+1/2,j+1/2











=−
∫

∂Ii+1/2,j+1/2

F̂dl =−
∫

∂Ii+1/2,j+1/2











f̂D(U−
n ,U+

n )
f̂Mx(U−

n ,U+
n )

f̂My(U−
n ,U+

n )

f̂E(U−
n ,U+

n )











dl. (2.5)

Here U± = (ρ±,M±
x ,M±

y ,E±) are the values of mass, x-momentum, y-momentum and

total energy at two sides of the boundary. U±
n = (ρ±,M±

n ,E±), where M±
n are the left

and right component values of the momentum which is normal to the cell boundary, i.e.
M±

n =(M±
x ,M±

y )·n. f̂D, f̂Mx , f̂My and f̂E are the numerical fluxes of mass, x-momentum,
y-momentum and total energy across the cell boundary respectively. Here in the La-
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grangian formulation, we have



















f̂D(Un,Un)=0,

f̂Mx(Un,Un)= pnx,

f̂My(Un,Un)= pny,

f̂E(Un,Un)= pun,

(2.6)

where un =u·n is the normal velocity at the cell boundary.

Similar to [3], we use the high order WENO reconstruction with Roe-type character-
istic decomposition [21] to obtain U± and U±

n at the boundary and also use sufficiently
high order quadrature to construct schemes up to the expected third-order spatial accu-
racy. The Dukowicz flux [5] and the Lax-Friedrichs (L-F) flux are used in this paper for
numerical tests. To save space, in the following we will only list the difference in the
procedure of constructing the scheme on the curved quadrilateral meshes from that on
the straight-line edged quadrilateral meshes. We refer to [3] for the other details.

Since calculating the integral of the numerical flux and determining the reconstruc-
tion polynomials in the scheme (2.5) involve the integration on each curved quadrilat-
eral cell, firstly we should know the accurate description of each curvilinear cell with
quadratically-curved edges by the information of the coordinates of its four vertices
and the four middle points of its four edges. We accomplish this procedure by a map-
ping from a canonical square to a curved quadrilateral cell. For simplicity, here we de-
note the coordinates of the four vertices of the concerned cell as {(xm,ym),m = 1,2,3,4},
{(ξm,ηm),m = 1,2,3,4} and the middle points of its four edges as {(x12,y12), (x23,y23),
(x34,y34), (x41,y41)}, {(ξ12,η12), (ξ23,η23), (ξ34,η34), (ξ41,η41)} in the (x,y)-plane and
(ξ,η)-plane respectively (see Fig. 1). Then the shape of this curvilinear cell can be de-
termined by the following interpolation function:

x=
4

∑
m=1

ϕmxm+ ∑
n=m+1(mod4)

ϕmnxmn,

y=
4

∑
m=1

ϕmym+ ∑
n=m+1(mod4)

ϕmnymn,

(2.7)

where

ϕm =−1

4
(1+ξmξ)(1+ηmη)(1−ξmξ−ηmη), m=1,2,3,4,

ϕmn =
1

2
(1+ξmnξ+ηmnη)(1−ξ2

mnη2−η2
mnξ2), n=m+1(mod4), −1≤ ξ, η≤1.

For each boundary edge Γm of the 4 curved edges in ∂Ii+1/2,j+1/2, the curvilinear integral
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Figure 1: Mapping from a canonical square to a curved quadrilateral with quadratically-curved edges.

of the numerical flux F̂ is discretized by a 3-point Gaussian quadrature,

∫

Γm

F̂dl =
∫ 1

−1
F̂

√

(

dx

dζ

)2

+

(

dy

dζ

)2

dζ

≈
3

∑
k=1

ωkF̂(Un(Gk))

√

(

dx

dζ

)2

(Gk)+

(

dy

dζ

)2

(Gk), (2.8)

where ζ = ξ if the edge Γm corresponds to a ξ line, ζ = η if the edge Γm corresponds to
an η line. Gk =−1,0,1 are the Gaussian quadrature (Simpson’s rule) points at this edge.
{ωk,k=1,3} are the weights with the values of 1/3,4/3,1/3 respectively.

The integral of the reconstruction polynomial p(x,y) on the curved quadrilateral cell
can be computed in the (ξ,η) coordinates for example by a 4×4-point Gaussian integra-
tion formula

∫

Ii+1/2,j+1/2

p(x,y)dxdy =
∫ 1

−1

∫ 1

−1
p(x,y)|J|dξdη

≈
4

∑
k,l=1

ωkωl p(Gk,l)|J(Gk,l)|, (2.9)

where J is the Jacobian matrix, Gk,l = (ξ(k),η(l)) are the Gaussian quadrature points of

the cell in the (ξ,η)-plane with ξ(1) = η(1) =−1, ξ(2) = η(2) =−
√

5
5 , ξ(3) = η(3) =

√
5

5 ,

ξ(4) = η(4) = 1, and {ωk,k = 1,4} are the weights which have the values ω1 = 1
6 , ω2 = 5

6 ,

ω3 = 5
6 , ω4 = 1

6 .
The procedure of choosing the candidate stencils for a third order WENO reconstruc-

tion in our framework is discussed in detail in [2], in the context of remapping. Briefly
described, we start from the family of candidate stencils for the second-order approx-
imation, and determine the smoothest stencil for the linear reconstruction in the cell
Ii+1/2,j+1/2, for example the smoothest stencil might consist of Cell ‘0’ (i.e. Ii+1/2,j+1/2),
Cell ‘1’, and Cell ‘2’, see Fig. 2. Extending from these three cells, we can then choose the
following three sets of stencils which come from different directions for the third order
reconstruction in Cell ‘0’,

{A : 0,1,2,3,4,6}, {B : 0,1,2,5,8,9}, {C : 0,1,2,7,8,12}.
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Figure 2: The potential cells for the candidate stencils.

Among these stencils, we can see Stencil A represents a central stencil and the other two
are biased stencils.

The ENO procedure in [3], which chooses one stencil out of the candidates mentioned
above based on the local smoothness of the solution, can be used to obtain our third order
reconstructions. However, our computational experience indicates that accuracy degen-
eracy and even occasional instability might develop, because the stencil chosen might
correspond to a linearly unstable one too often. We refer to [15,17] for more details of this
phenomenon. Although the introduction of a biasing factor into the ENO procedure to
favor the central or upwind linearly stable stencil will help to resolve this problem [2,17],
we have found through our numerical experiments that the following simple WENO
procedure is more robust.

The WENO procedure here is similar to that in [3] except that different weights are
used. In this procedure, the coefficients of the reconstruction polynomial are chosen
as the weighted averages of those determined by the above final three possible sten-
cils. Here we use different weights to make our third order scheme on curved meshes
more stable. To be specific, we use density as an example. To determine the coeffi-
cients {amn,m+n≤2} of the quadratic polynomial reconstruction function inside the cell
Ii+1/2,j+1/2,

ρi+1/2,j+1/2(x,y)= ∑
m+n≤2

amn(x−xi+1/2,j+1/2)
m(y−yi+1/2,j+1/2)

n,

suppose the coefficients of the reconstruction polynomials of the three candidate stencils
are ai

mn,i=1,2,3, then we choose amn =∑
3
i=1wiai

mn where the weights wi are chosen as

wi =
w̃i

∑
3
j=1w̃j

, w̃j =
cj

∑1≤m+n≤2(SD)m+n−1|aj
mn|2+ǫ

, (2.10)

where cj are the linear weights, SD is the total area of the computational domain which is
introduced to preserve the self-similarity property of the reconstruction, and we typically
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choose ǫ =10−6. In order to improve the linear stability of the scheme, we choose c1 =2
to increase the linear weight of the central stencil A in the reconstruction and c2 = c3 =1
for the other two stencils. This crude WENO reconstruction, which does not theoretically
increase the accuracy of each candidate stencil but is very easy to compute, performs
nicely in our numerical experiments. We refer the readers to the review paper [19] for
more details regarding various types of WENO schemes and the mechanism to design
nonlinear weights for achieving accuracy and non-oscillatory performance. The advan-
tage and disadvantage of the way we have chosen the linear weights here are discussed
in Section 2.3.3 in [19].

We also use the third order TVD Runge-Kutta method [20] for the time discretization
of the scheme, see [3] for the implementation details.

2.2.2 The determination of the velocity

The vertex velocity of the mesh is determined in the same way as in [3]. For the velocity
of an edge’s middle point, the tangential velocity is defined as the arithmetic average of
the tangential velocities from its two sides. As to the normal velocity, for the Dukowicz
flux, we obtain it as a by-product of the approximate Riemann solver and for the L-F flux,
we obtain it by a Roe average of the normal velocities from its two sides.

In our numerical non-oscillatory tests, we found that the velocity at the middle point
of an edge should be limited in order to avoid the edge from dramatic curving, which
may lead to a degeneracy of the cell (i.e. different sides of the cell intersect each other
inside). We perform the limitation on the movement of the middle point as described
below, which does not destroy the formal accuracy of the numerical scheme.

We first set a reference circular arc for each curvilinear edge which is on the same
side of the line connecting the two end-points of the edge. The reference circular arc
is determined by the two end-points of the edge and another point which is preset at
the normal direction of the above mentioned line from its middle point. The distance
between this point and the middle point of the line is as follows,

d= c∆l2, (2.11)

where ∆l is the straight-line length of the edge, c is a parameter which can be used to de-
termine the allowed amplitude of the circular arc. For the edge with two fixed end points,
if c is larger, then the radius of the reference circular arc (we call it as the reference cur-
vature radius) is smaller, and vice versa. After we obtain the new position of the related
points at each Runge-Kutta time step, we check the curvature radius of the curvilinear
edge at its middle point. If it is less than its pre-set reference curvature radius, we move
this middle point to the location of the middle point of the pre-set reference circular arc.
We can control the extent of this modification by choosing an adequate pre-set c. In par-
ticular, we remark that any choice of c>0 will not destroy the asymptotic formal accuracy
when the solution is smooth, as a Taylor expansion indicates that the actual curvature ra-
dius for a smooth solution corresponds to a distance d in (2.11) of the size O(∆l3), which
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is asymptotically smaller than c∆l2 with any c >0, hence the limiter is never enacted for
smooth solutions and small enough ∆l. This is verified numerically in our accuracy test
in next section.

3 Numerical results in two space dimensions

In this section, in the accuracy test we will only show the results obtained by the Dukow-
icz flux because the results by other fluxes introduced in [3] are quite similar. In the
non-oscillatory tests, we will show the results obtained by the Dukowicz flux and the L-F
flux.

3.1 Accuracy test

Here we choose the two-dimensional vortex evolution problem [18] for our accuracy test.
The vortex problem is described as follows: The mean flow is ρ=1, p=1 and (u,v)=(1,1)
(diagonal flow). We add to this mean flow an isentropic vortex perturbations in (u,v)
and the temperature T = p/ρ, no perturbation in the entropy S= p/ργ .

(δu,δv)=
ǫ

2π
e0.5(1−r2)(−y,x), δT =− (γ−1)ǫ2

8γπ2
e(1−r2), δS=0,

where (−y,x)=(x−5,y−5), r2 = x2+y2, and the vortex strength is ǫ=5.
The computational domain is taken as [0,10]×[0,10], and periodic boundary condi-

tions are used. In this test, the Courant number is chosen as 0.5 and the parameter c in
(2.11) for the limitation on the movement of the middle points at the cell edges is set to
be 0.4.

x

y

4 6 8

4

6

8

x

y

4 6 8

4

6

8

Figure 3: The local mesh of the vortex problem at t=1. Left: quadrilateral; Right: curved quadrilateral.

For comparison, we compute the third order scheme with the Dukowicz flux and
the above mentioned WENO reconstruction both on the straight-line edged quadrilateral
meshes and the curved quadrilateral meshes. Fig. 3 shows the local meshes simulated by
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Table 1: Errors of the third order scheme on 2D straight-line edged quadrilateral meshes for the vortex problem
using Nx×Ny initially uniform mesh cells.

Nx = Ny Norm Density order Momentum order Energy order

20 L1 0.31E-2 0.56E-2 0.11E-1
L∞ 0.29E-1 0.50E-1 0.16E+0

40 L1 0.77E-3 2.00 0.14E-2 2.05 0.28E-2 2.03
L∞ 0.94E-2 1.64 0.19E-1 1.39 0.55E-1 1.55

80 L1 0.19E-3 2.05 0.32E-3 2.07 0.67E-3 2.06
L∞ 0.23E-2 2.04 0.46E-2 2.06 0.12E-1 2.17

160 L1 0.45E-4 2.03 0.79E-4 2.03 0.16E-3 2.04
L∞ 0.58E-3 1.98 0.11E-2 2.09 0.27E-2 2.19

Table 2: Errors of the third order scheme on 2D curved quadrilateral meshes for the vortex problem using
Nx×Ny initially uniform mesh cells.

Nx = Ny Norm Density order Momentum order Energy order

20 L1 0.14E-2 0.31E-2 0.63E-2
L∞ 0.12E-1 0.28E-1 0.70E-1

40 L1 0.20E-3 2.81 0.48E-3 2.73 0.90E-3 2.81
L∞ 0.33E-2 1.89 0.75E-2 1.89 0.21E-1 1.71

80 L1 0.26E-4 2.93 0.60E-4 2.98 0.11E-3 2.98
L∞ 0.58E-3 2.49 0.12E-2 2.63 0.35E-2 2.59

160 L1 0.35E-5 2.91 0.80E-5 2.91 0.15E-4 2.95
L∞ 0.12E-3 2.26 0.22E-3 2.43 0.66E-3 2.41

these two kinds of schemes at t = 1. The convergence results at t = 1 are listed in Tables
1-2 respectively. In Table 1, we can only see second order accuracy just as the result in [3],
while in Table 2 we can see the desired third order accuracy at least in the L1 norm which
verifies our claim.

We also study the convergence property of our algorithm on a non-uniform initial
mesh which is obtained by performing a random perturbation with the amplitude of ten
percent of the mesh size along both x and y directions to each inner node of the above
used uniform initial mesh. The convergence results of our scheme by using this kind
of non-uniform initial mesh are shown in Tables 3-4. We can see that the result on the
curved meshes here is similar to that with the uniform initial mesh while the result on
the straight-line edged meshes using the non-uniform initial mesh is worse than that
using the uniform initial mesh, especially in the L∞ norm.

Remark 3.1. In fact, we have also experimented with another type of WENO reconstruc-
tion described below: Denote the Cell ‘0’ to be Ii+1/2,j+1/2, then we choose four central
stencils and four biased stencils for our WENO reconstruction from the information on
the cell ‘0’ and its 12 neighboring cells (see Fig. 2). The stencils we use are as follows:
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Table 3: Errors of the third order scheme on 2D straight-line edged quadrilateral meshes for the vortex problem
using Nx×Ny initially non-uniform mesh cells.

Nx = Ny Norm Density order Momentum order Energy order

20 L1 0.31E-2 0.57E-2 0.11E-1
L∞ 0.31E-1 0.57E-1 0.15E+0

40 L1 0.82E-3 1.90 0.14E-2 2.00 0.28E-2 1.98
L∞ 0.10E-1 1.60 0.21E-1 1.45 0.57E-1 1.35

80 L1 0.23E-3 1.83 0.38E-3 1.89 0.70E-3 2.02
L∞ 0.34E-2 1.61 0.65E-2 1.67 0.13E-1 2.20

160 L1 0.78E-4 1.55 0.12E-3 1.62 0.18E-3 1.92
L∞ 0.22E-2 0.65 0.29E-2 1.15 0.60E-2 1.05

Table 4: Errors of the third order scheme on 2D curved quadrilateral meshes for the vortex problem using
Nx×Ny initially non-uniform mesh cells.

Nx = Ny Norm Density order Momentum order Energy order

20 L1 0.15E-2 0.32E-2 0.63E-2
L∞ 0.15E-1 0.28E-1 0.73E-1

40 L1 0.20E-3 2.84 0.48E-3 2.75 0.90E-3 2.80
L∞ 0.35E-2 2.15 0.74E-2 1.93 0.20E-1 1.88

80 L1 0.26E-4 2.94 0.60E-4 2.99 0.11E-3 2.98
L∞ 0.63E-3 2.47 0.12E-2 2.62 0.35E-2 2.50

160 L1 0.35E-5 2.91 0.81E-5 2.90 0.15E-4 2.95
L∞ 0.12E-3 2.34 0.21E-3 2.55 0.64E-3 2.45

Central stencils:

{0,1,2,3,4,5}, {0,1,2,3,4,6}, {0,1,2,3,4,7}, {0,1,2,3,4,8},

Biased stencils:

{0,1,2,8,9,12}, {0,1,4,5,9,10}, {0,3,4,6,10,11}, {0,2,3,7,11,12}.

We can obtain eight reconstruction polynomials from these eight stencils. Then the
final nonlinear WENO reconstruction polynomial is obtained by a combination of these
eight polynomials by using similar smoothness indicators and nonlinear weights as those
in Hu and Shu [8]. To be more specific, we define the following smoothness indicator to
measure the smoothness.

SI = ∑
1≤|α|≤2

∫

Ii+1/2,j+1/2

|Si+1/2,j+1/2||α|−1(Dα p(x,y))2dxdy (3.1)

where α is a multi-index and D is the derivative operator, for example, when α = (1,1)
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Table 5: Errors of the third order scheme in the Remark 3.1 on 2D straight-line edged quadrilateral meshes for
the vortex problem using Nx×Ny initially uniform mesh cells.

Nx = Ny Norm Density order Momentum order Energy order

20 L1 0.31E-2 0.56E-2 0.12E-1
L∞ 0.30E-1 0.41E-1 0.13E+0

40 L1 0.73E-3 2.10 0.13E-2 2.13 0.27E-2 2.20
L∞ 0.82E-2 1.86 0.13E-1 1.60 0.41E-1 1.67

80 L1 0.18E-3 2.04 0.31E-3 2.04 0.64E-3 2.07
L∞ 0.18E-2 2.18 0.36E-2 1.89 0.98E-2 2.06

160 L1 0.45E-4 2.00 0.77E-4 2.01 0.16E-3 2.01
L∞ 0.45E-3 2.02 0.91E-3 1.99 0.24E-2 2.04

Table 6: Errors of the third order scheme in the Remark 3.1 on 2D curved quadrilateral meshes for the vortex
problem using Nx×Ny initially uniform mesh cells.

Nx = Ny Norm Density order Momentum order Energy order

20 L1 0.14E-2 0.30E-2 0.58E-2
L∞ 0.11E-1 0.30E-1 0.64E-1

40 L1 0.11E-3 3.71 0.25E-3 3.54 0.47E-3 3.63
L∞ 0.13E-2 3.14 0.32E-2 3.23 0.75E-2 3.10

80 L1 0.60E-5 4.16 0.16E-4 4.01 0.27E-4 4.12
L∞ 0.75E-4 4.12 0.21E-3 3.95 0.51E-3 3.88

160 L1 0.39E-6 3.93 0.10E-5 3.92 0.17E-5 4.02
L∞ 0.61E-5 3.61 0.14E-4 3.91 0.36E-4 3.82

then |α|=2 and Dα p(x,y)=∂p2(x,y)/∂x∂y. The nonlinear weights are then defined as

ωk =
ω̃k

∑l ω̃l
, ω̃l =

cl

(ǫ+SIl)2
(3.2)

where {cl ,l = 1,8} are the linear weights. Here we set cl = 2 for the central stencils and
cl = 1 for the biased stencils. Tables 5-6 contain the error results of the third order code
with this WENO reconstruction on the straight-line edged quadrilateral meshes and the
curved quadrilateral meshes respectively. We can see our third order scheme on the
curved meshes can yield higher than third order accuracy for all the concerned quan-
tities both in the L1 norm and in the L∞ norm while the corresponding scheme on the
quadrilateral meshes still only achieves second order accuracy. These accuracy results
reinforce our claim on the reason of the accuracy degeneracy problem in the Lagrangian
type scheme being on the quadrilateral meshes with straight-line edges.

Unfortunately, we also find out that the smoothness indicator (3.1)-(3.2), which is de-
veloped mainly for the regular Eulerian meshes, does not seem to perform well in the
Lagrangian type scheme framework when simulating problems with strong discontinu-
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ities which cause meshes to generate severe aspect ratios and distortions. It seems that a
new way to measure smoothness taking the mesh distortion and large aspect ratios into
account is necessary, however we will not perform such an investigation in this paper. In
the following non-oscillatory tests, we apply the WENO reconstruction introduced in the
previous section rather than the WENO reconstruction in this remark.

3.2 Non-oscillatory tests

We test our third order scheme on two examples with discontinuous solutions. The pur-
pose here is to assess the non-oscillatory property of the scheme, rather than to show any
advantage of higher order schemes. In fact for such test cases with strong shocks and
relatively simple solution structure, high order schemes have very little advantage over
a good first or second order scheme.

Example 3.1. (The Saltzman problem [6]).
We solve the Euler equations (2.1)-(2.4), with γ=5/3, in the initial region [0,1]×[0,0.1].

The left end of the computational box is a piston, which moves to the right with a constant
velocity of 1.0. The initial mesh, shown in Fig. 4, is 100 cells in the x-direction and 10 cells
in the y-direction, defined by

x(i, j)=(i−1)∆x+(11− j)sin(0.01π(i−1))∆y, y(i, j)=(j−1)∆y

where ∆x=∆y=0.01. We note that the initial mesh is deliberately distorted to set it as a
more demanding test case. The initial condition is a stationary gas with a unity density
and an internal energy of 10−4. Reflective boundary conditions are used on the right,
upper and lower boundaries.

X

0 0.2 0.4 0.6 0.8 1

Figure 4: The initial mesh of the Saltzman problem.

For this test case, it is necessary to first use a smaller Courant number in order to
maintain stability. The Courant number λ is set to be 0.01 initially and returns to be 0.5
after t = 0.01. We perform the limitation on the movement of the middle points at the
cell edges by choosing the parameter c = 0.4 in (2.11). By the analytical shock relation,
the post shock density is 4.0 and the shock speed is 1.333. The third order Lagrangian
numerical results for the Dukowicz flux and the L-F flux are shown in Figs. 5-6 for the
time t=0.6 respectively, corresponding to an analytical shock location at x=0.8. We can
observe that our third order scheme preserves one-dimensional solution well except for
the region near the top and bottom wall boundaries where the result is affected by the
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Figure 5: The result of the Saltzman problem with the Dukowicz flux at t=0.6. Top: mesh; Bottom: density
contour plots from 1.2 to 4.8 with 12 equally spaced contours.
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Figure 6: The result of the Saltzman problem with the L-F flux at t=0.6. Top: mesh; Bottom: density contour
plots from 1.2 to 4.8 with 12 equally spaced contours.

boundary conditions. Fig. 7 shows the density results with both fluxes along the line
y = 0.05 at t = 0.6. Notice that, because of the grid distortion, the grid points are not on
this line and interpolation must be used to plot these cuts. Comparing with the exact
solution, we can see our simulation solutions are essentially non-oscillatory. The slight
post-shock oscillation is mainly due to the Lagrangian framework and distorted meshes,
and is present also for lower order simulations.
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Figure 7: The density results of the Saltzman problem along the line y = 0.05 at t = 0.6. The solid line is the
exact solution. Left: the Dukowicz flux; Right: the L-F flux.

Example 3.2. (The Sedov blast wave problem [16])
This example is the Sedov blast wave problem in a Cartesian coordinate system. It

models the expanding wave by an intense explosion in a perfect gas. The solution is
radial symmetric, however the simulation is performed on a Cartesian grid in order to
assess the stability and symmetry property of the scheme. The initial uniform grid con-
sists of 30×30 rectangular cells with a total edge length of 1.1 in both directions. The
initial condition is set to have unity density and zero velocity, and also to have zero spe-
cific internal energy except in the first zone, where it has a value of 182.09. The analytical
solution gives a shock at radius unity at time unity with a peak density of 6. In this test,
the Courant number λ is set to be 0.5. The parameter c in (2.11) for the limitation on the
movement of the middle points at the cell edges is chosen as 0.2. Figs. 8-9 show the re-
sults by the third order Lagrangian calculations with the Dukowicz flux and the L-F flux
at the time t=1 respectively.

4 Concluding remarks

In this paper we have developed a third order Lagrangian type scheme on the curved
quadrilateral meshes for solving Euler equations which are based on high order weighted
essentially non-oscillatory (WENO) reconstruction. This work is aimed to demonstrate
our claim in [3] where we attributed the accuracy degeneracy phenomenon observed in
the third order Lagrangian type scheme to the error from the quadrilateral meshes with
straight-line edges. Similar to the scheme on the quadrilateral meshes introduced in [3],
the scheme on the curved quadrilateral meshes is conservative for density, momentum
and total energy, are essentially non-oscillatory, and have no parameters to be tuned for
individual test cases. Besides, it can actually obtain the desired third order accuracy by
using the curvilinear meshes. Some accuracy and non-oscillatory tests are provided to
verify that the scheme achieves the designed third order accuracy and can also simu-
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Figure 8: The Sedov problem with Dukowicz flux at t = 1 . Left: the mesh; Middle: density contours; Right:
density as a function of the radius.
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Figure 9: The Sedov problem with L-F flux at t=1. Left: the mesh; Middle: density contours; Right: density
as a function of the radius.

late problems containing discontinuities. In future work we will study new smoothness
indicators in the WENO reconstruction, which take the mesh distortion and large aspect
ratios into consideration, in order to improve the robustness of the high order Lagrangian
type schemes for shock calculations.
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