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Abstract. A hybrid lattice-Boltzmann finite-difference method is presented to simu-
late incompressible, resistive magnetohydrodynamic (MHD) flows. The lattice Boltz-
mann equation (LBE) with the Lorentz force term is solved to update the flow field
while the magnetic induction equation is solved using the finite difference method to
calculate the magnetic field. This approach is methodologically intuitive because the
governing equations for MHD are solved in their respective original forms. In addi-
tion, the extension to 3-D is straightforward. For validation purposes, this approach
was applied to simulate the Hartmann flow, the Orszag-Tang vortex system (2-D and
3-D) and the magnetic reconnection driven by doubly periodic coalescence instabil-
ity. The obtained results agree well with analytical solutions and simulation results
available in the literature.

PACS: 47.11.-j, 47.65.-d

Key words: Lattice Boltzmann method, LBM, hybrid, finite difference method, Magnetohydro-
dynamics, MHD.

1 Introduction

In recent years, the lattice-Boltzmann method (LBM) has experienced enormous success
in the simulations of various flow problems [1, 2] and attempts have been made to de-
velop LBM algorithms for MHD problems. Chen et al. [3] and Martinez et al. [4] employed
the bidirectional streaming for 2-D MHD problems where the distribution function is
propagated into two different directions associated with the velocity and magnetic field.
The former used 37 discrete velocities while the latter reduced it to 13. Schaffenberger
and Hanslmeier [5] later reduced the number of velocities even further to nine by em-
ploying the standard streaming rule on a 2-D square lattice. Dellar [6] developed a new
method, where two distribution functions are utilized to represent the hydrodynamic
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momentum and the magnetic induction. The hydrodynamic part is simulated using the
conventional low Mach number LBM, and the magnetic field is represented by a separate
vector-valued magnetic distribution function, which obeys the vector Boltzmann-BGK
equation. This method has been later extended to 3-D by Breyiannis and Valougeor-
gis [7].

In all the afore-mentioned methods, the magnetic induction problem as well as the
flow problem is dealt with by a lattice kinetic approach. While employing LBM for the
Boltzmann equation is natural, the use of a kinetic approach for solving the magnetic in-
duction equation is not quite intuitive because, after all, the Boltzmann equation and the
magnetic induction equation constitute a set of governing equations for MHD. In other
words, a lattice kinetic approach does not need to be used always for the magnetic in-
duction problem even though all-kinetic approaches are more consistent and have many
advantages in many cases. In fact, other numerical methods, such as the finite difference
method, can be easily employed to solve the magnetic induction equation with equal or
better accuracy because those methods are well established.

In this article, the authors present an alternative hybrid method, where the flow field
is obtained by LBM and the magnetic induction equation is solved by a finite difference
method. Therefore, the fundamental governing equations for MHD are solved without
introducing a lattice kinetic approach in the calculation of the magnetic field. This ap-
proach can be easily extended to 3-D. In this study, this method is applied to Hartmann
flow, Orszag-Tang vortex system (both 2-D and 3-D) and magnetic reconnection problem
for validation purposes. The obtained results agree well with analytical solutions and the
numerical solutions available in the literature.

2 Mathematical model

The Boltzmann transport equation with the Bhatnagar-Gross-Krook (BGK) collision term
is written as:

∂ f

∂t
+ξ ·∇x f +a·∇ξ f =− f − f eq

λ
, (2.1)

where f = f (x,ξ,t) is the single-particle distribution function in both physical space and
phase space, x is the position vector, ξ is the microscopic velocity, a is the acceleration
due to the external force exerting on the particles, λ is the relaxation time due to colli-
sions and f eq is the equilibrium distribution function, which is described by the Maxwell-
Boltzmann distribution as follows:

f eq =
ρ

(2πRT)D/2
exp

[

− (ξ−u)2

2RT

]

, (2.2)

where ρ,u,T,R,D are density, macroscopic velocity, temperature, gas constant and dimen-
sion of space respectively. For MHD flows, the acceleration a can be written as:

a=
1

ρµ
(∇×B)×B, (2.3)
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where B is magnetic induction and µ is magnetic permeability. The evolution of mag-
netic field is obtained by solving the magnetic induction equation, which is derived from
Maxwell’s equations with the assumption of ∂E/∂t=0 [8]:

∂B

∂t
=η∇2B+(B·∇)u−(u·∇)B, (2.4)

where η is magnetic diffusivity and is expressed as η = (µσ)−1. Here σ is the electrical
conductivity. Fluid density and momentum can be retrieved by taking velocity moments
of the distribution function as follows:

ρ=
∫

f dξ, (2.5)

ρu=
∫

ξ f dξ, (2.6)

Eqs. (2.1)-(2.6) form a closed mathematical system that describes the general MHD flows.

In this study, the acceleration term a·∇ξ f in Eq. (2.1) (which couples hydrodynamics
and magnetic induction) is evaluated by adopting the following assumption [9]:

∇ξ f ≈∇ξ f eq =− ξ−u

RT
f eq. (2.7)

Then, Eq. (2.1) can be re-written as

∂ f

∂t
+ξ ·∇x f =− f − f eq

λ
+

a·(ξ−u)

RT
f eq. (2.8)

The above equation can be discretized as [10]:

fα(x+eα△t,t+△t)− fα(x,t)=− 1

τ

{

fα(x,t)−
[

1+3τ△t
(eα−u)·a

c2

]

f
eq
α

}

, (2.9)

where τ is the dimensionless relaxation time and eα is the discrete microscopic velocity.
In a D2Q9 lattice model, eα is given as:

eα =























(0,0) if α=0,

c

(

cos

[

π(α−1)

2

]

,sin

[

π(α−1)

2

])

if α=1,2,3,4,

√
2c

(

cos

[

π(α−5)

2
+

π

4

]

,sin

[

π(α−5)

2
+

π

4

])

if α=5,6,7,8.

(2.10)

The discretized equilibrium distribution function under the low Mach number assump-
tion is:

f
eq
α =ωαρ

[

1+
3(eα ·u)

c2
+

9(eα ·u)2

2c4
− 3u2

2c2

]

. (2.11)
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In Eq. (2.11) , the coefficient ωα is 4/9 for α = 0, 1/9 for α = 1 : 4, and 1/36 for α = 5 :
8. c = △x/△t, where △x is the lattice spacing and △t is the time step. The particle
distribution function is updated by Eq. (2.9) through the standard streaming step and
collision step [11]. The macroscopic density and momentum can be retrieved by:

ρ=∑
α

fα, (2.12)

ρu=∑
α

eα fα. (2.13)

The magnetic induction equation (Eq. (2.4)) is solved by the conventional finite difference
method. In two dimensions, for example, the x−component of Eq. (2.4) is written as:

∂Bx

∂t
=

1

µσ

(

∂2Bx

∂x2
+

∂2Bx

∂y2

)

+Bx
∂ux

∂x
+By

∂ux

∂y
−ux

∂Bx

∂x
−uy

∂Bx

∂y
. (2.14)

The following discretized equation is obtained if the central difference scheme is em-
ployed:

∂(Bx)i,j

∂t
=

1

µσ

[

(Bx)n
i+1,j−2(Bx)n

i,j+(Bx)n
i−1,j

(△x)2
+

(Bx)n
i,j+1−2(Bx)n

i,j+(Bx)n
i,j−1

(△y)2

]

+(Bx)
n
i,j

(ux)n
i+1,j−(ux)n

i−1,j

2△x
+(By)

n
i,j

(ux)n
i+1,j−(ux)n

i,j−1

2△y

−(ux)
n
i,j

(Bx)n
i+1,j−(Bx)n

i−1,j

2△x
−(uy)

n
i,j

(Bx)n
i,j+1−(Bx)n

i,j−1

2△y
. (2.15)

Note that all the terms on the right hand side are evaluated at time step n using the fluid
velocity calculated by the lattice Boltzmann solver. Eq. (2.15) can be re-written as follows:

∂(Bx)i,j

∂t
= R((Bx)

n). (2.16)

In this study, the time derivative on the left hand side is discretized by the second-order
Runge-Kutta method:

(Bx)
n+1/2 =(Bx)

n+
△t

2
R((Bx)

n),

(Bx)
n+1 =(Bx)

n+△tR
(

(Bx)
n+1/2

)

.
(2.17)

3 Numerical tests

3.1 Hartmann flow

For validation purposes, the 2-D Hartmann flow is simulated because its analytical so-
lution can be easily obtained. Hartman flow is a channel flow induced by a uniform
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magnetic field(B0) applied perpendicular to the flow direction. For 2-D Hartmann flows,
velocity has only one component in the channel direction u = (ux,0,0) and this flow in-
duces additional magnetic field in the flow direction. Therefore, magnetic field can be
written as B = (Bx,B0,0). The magnetic induction equation and the hydrodynamic mo-
mentum equation can be simplified as follows:

1

µσ

d2Bx

dy2
+B0

dux

dy
=0, (3.1)

ρν
d2ux

dy2
+

B0

µ

dBx

dy
= g, (3.2)

where ν is kinematic viscosity and g = dp/dx is the constant pressure gradient used to
drive the flow along the x−direction. By using the following boundary conditions

{

ux =0 at y=±L,
Bx =0 at y=±L,

(3.3)

the analytical solutions to Eqs. (3.1) and (3.2) are obtained as:

ux(y)=
gM

σB2
0

coth(M)

[

cosh(My/L)

cosh(M)
−1

]

, (3.4)

Bx(y)=− gµL

B0

[

sinh(My/L)

sinh(M)
− y

L

]

, (3.5)

where M = B0L
√

σ/ρv is the Hartmann number. If there is no external magnetic field,
the Hartmann number becomes zero and the flow reduces to the Poiseuille flow, which
has solutions of ux(y)= g(L2−y2)/2ρv and Bx =0.

For the LBM simulation of the Hartmann flow, the initial distribution function is set
to the equilibrium distribution function with constant density, ρ = 1.0, ux and Bx are set
to zero. A uniform magnetic field B0 is applied in the y−direction. The bounce-back
condition is used for wall boundaries while the periodic boundary condition is used at
the inlet and the outlet [12]. The simulation is terminated when a steady state is reached.
To drive the flow, the driving pressure gx is added to the external force as follows:

ρa= J×B+gêx , (3.6)

where êx is the unit vector in the x−direction.
Figs. 1 and 2 present simulation results of ux and Bx respectively, where solid lines

denote analytical solutions given by Eqs. (3.4) and (3.5). As clearly seen, the simulation
results agree well with the analytical solutions for all Hartmann numbers considered. In
this simulation, a 200×20 grid is used and the parameters of τ=0.635, σ=10 and g=2.5×
10−5 are adopted. The Hartmann numbers of 0, 1, 2, 5, 10 and 20 are considered. Note that
the Hartmann number can be changed by varying the magnitude of the applied magnetic
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Figure 1: Velocity profiles for different Hartmann
numbers: M = 0 (squares), M = 1 (circles), M =
2(upper triangles), M = 5 (lower triangles), M = 10
(diamonds), M =20 (stars). The solid lines show the
analytical solutions.
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Figure 2: Profiles of x−component magnetic field for
different Hartmann numbers: M = 1(circles), M =
2(upper triangles), M = 5 (lower triangles), M = 10
(diamonds), M =20 (stars). The solid lines show the
analytical solutions.

field B0. In Fig. 1, it is shown that as the Hartmann number increases the velocity profile
becomes flatter, which can be explained by Eq. (3.4). Clearly, the applied magnetic field
(B0) tends to reduce the magnitude of x−component velocity. If the Hartmann number
is finite, the velocity profile cannot be entirely flat even for very large Hartmann numbers
and there must be a region with a large velocity gradient because velocity is forced to be
zero due to the no slip boundary conditions. Fig. 2 presents the magnetic field induced
by the flow for a variety of Hartmann numbers, the simulation results agree with the
analytical solutions very well.

3.2 Orszag-Tang vortex

As the second test problem, the Orszag-Tang vortex system (which is an unsteady, non-
linear MHD flow problem) was chosen. Since Orszag and Tang [13] first studied this
problem, it has become a popular benchmark problem because many aspects of MHD
turbulent flows appear in this problem, such as the dynamic alignment, selective decay
and magnetic reconnection [14]. In this study, a 2-D Orszag-Tang vortex problem is sim-
ulated with the following simple nonrandom deterministic initial conditions:

u0 =−u0(siny,−sinx),

B0 =−B0(siny,−sin(2x)),
(3.7)
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where u0 = 2.0 and B0 = 2.0 are the initial velocity and magnetic induction, respectively.
The simulation is performed on a square domain of 0≤x, y≤2π. A 512×512 uniform grid
is used and the periodic boundary conditions are applied on all boundaries. Kinematic
fluid viscosity and magnetic diffusivity are assumed to be the same (v=η =0.02), which
leads to the same Reynolds number (Re) and magnetic Reynolds number (Rem) at the
initial stage. With the initial conditions shown in Eq. (3.7), the evolution of the vorticity
of fluid (ω=∇×u) and the current density (j=∇×B/µ0) are demonstrated in Figs. 3 and
4, respectively. As shown in Figs. 3 and 4, initially both velocity field and magnetic field
have symmetric structures. As time elapses, the initial flow pattern becomes complicated
due to the nonlinear interactions between the velocity field and the magnetic field. In
Fig. 4, the existing current sheet at the center of the figure is enhanced and eventually, a
thin elliptic structure establishes due to the magnetic reconnection occurring there. At the
same time, a region of sheared flow coexists with the current sheet, which is shown as the
flat quadrupole-like configuration in Fig. 3. The contours of the vorticity and the current
density agree well qualitatively with the simulation results available in the literature [14].

t=0 t=0.369

t=0.738 t=1.00

Figure 3: Evolution of vorticity for the 2-D Orszag-Tang vortex (time in sec).

In order to validate this model quantitatively, this problem was simulated by using
the same parameters used in the paper by Dellar [6] (u0 =2.0,v=η=0.02 , and a 512×512
grid).The maximum vorticity value at t = 0.5 sec predicted by this model is 6.764 while
Dellar’s result gives a values of 6.758. At t = 1.0 sec, the values are 14.457 and 14.20
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t=0 t=0.369

t=0.738 t=1.00

Figure 4: Evolution of current density for the 2-D Orszag-Tang vortex (time in sec).

Table 1: Quantitative comparison of simulation results with Dellar’s work.

Time(sec) Max vorticity Max current |∇·B|
0.50 6.764 18.129 0.00463

Present results
1.0 14.457 45.963 0.00922

0.50 6.758 18.24 0.0062
Dellar’s results

1.0 14.20 46.59 0.0415

respectively. The maximum current densities are also compared and the values are given
in Table 1. In order to check if these two models satisfy the divergence-free property of
the magnetic field, the values of |∇·B| are calculated. The presented model gives 0.00463
at t=0.5 sec and 0.00922 at t=1.0 sec while Dellar’s results indicate 0.0062 and 0.0415 at
the corresponding times. Therefore, the presented model is validated quantitatively, too.

To show that this model can be easily extended to 3-D, the D3Q19 lattice model [15]
has been employed to solve the 3-D Orszag-Tang vortex problem with the following
initial conditions [16]:

u0 =(−2siny,2sinx,0),

B0 =0.8(−2sin(2y)+sinz,2sinx+sinz,sinx+siny).
(3.8)

A cubic domain of 2π×2π×2π is used and simulations are conducted on a 64×64×64
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(a) |ω| at t=0 sec (b) |j| at t=0 sec

(c) |ω| at t=0.598 sec (d) |j| at t=0.598 sec

(e) |ω| at t=0.598 sec with a 2D contour at z=0. (f) |j| at t=0.598 sec with a 2D contour at z=0.

Figure 5: Iso-surface contours of magnitudes of vorticity and current density at t=0 and t=0.598 sec for the
3-D Orszag-Tang vortex.
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t=3.27 t=4.49 t=5.10

t=6.27 t=7.53 t=9.75

Figure 6: Evolution of magnetic flux function for doubly periodic coalescence instability (time in sec).

grid. Periodic boundary conditions are used for all boundary surfaces and edges. Fig. 5a-
5b shows the initial contours of the magnitudes of vorticity (|ω|) and current density |j|
and Fig. 5c-5d are the same plots at t = 0.598 sec. To investigate the emergence of the
sheered current density and flow, the 2-D contours of |ω| and |j| at z = 0 and t = 0.598
sec are presented in Fig. 5e-5f. The patterns of the current sheet and the corresponding
vorticity resemble Figs. 3 and 4 closely because initially current density and vorticity in
x− and y−directions are relatively smaller in values than those in the z−direction.

3.3 Magnetic reconnection driven by doubly periodic coalescence instability

Magnetic reconnection is the process where magnetic field lines from different magnetic
domains merge into one another, changing the overall topology of the magnetic field.
Meanwhile, the stored magnetic energy is released in heat and kinetic energy forms.
The magnetic reconnection can be driven by different forms of coalescence instability,
for example, by the merging of a chain of magnetic islands [17] or by doubly periodic
coalescence instability [18]. In this study, a magnetic reconnection problem driven by the
doubly periodic coalescence instability is simulated using the present model. As the ini-
tial distribution of magnetic flux, a checkerboard pattern [19] represented by Eq. (3.9) is
employed.

ψ0(x,y)= B0sin(π(x+y))sin(π(x−y)). (3.9)
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Figure 7: Maximum value of current density vs. magnetic diffusivity.

The symmetric initial perturbation of the kinetic stream function is:

ϕ0(x,y)=u0exp(−10(x2+y2)), (3.10)

where B0 = 0.5/π, u0 = 0.05 and the initial magnetic and velocity fields are obtained as
follows:

B0 = êz×∇ψ0 =(−∂ψ0

∂y
,
∂ψ0

∂x
),

u0 = êz×∇ϕ0 =(−∂ϕ0

∂y
,
∂ϕ0

∂x
).

(3.11)

The simulation is conducted on a square domain of −1 ≤ x, y ≤ 1 and a 256×256 grid
is used. Periodic boundary conditions are used on all boundaries. A fixed viscosity of
v=4×10−3 is used; five values of magnetic diffusivity (η=0.5×10−3, 0.8×10−3, 1×10−3,
2×10−3 and 4×10−3) are considered. Fig. 6 presents the evolution of magnetic flux at
different times with the magnetic diffusivity of 1×10−3. Note that the position of the
magnetic current sheets does not change with time because the initial perturbation of the
kinetic stream function has a mirror symmetry with respect to x and y directions. It can
be seen from Fig. 6 that the magnetic islands with currents of the same sign move towards
each other. The two corners coalesce into one and the original two square cells become
two adjacent pentagons. A current sheet forms between the two cells and the intensity
of the current sheet increases. Eventually, the neighboring square cells merge together,
simplifying the topology structure of the magnetic field to four square-like islands. Fig. 7,



348 H. Li and H. Ki / Commun. Comput. Phys., 4 (2008), pp. 337-349

presenting the dependence of maximum current density on magnetic diffusivity, is a
quantitative evidence of the present model. As seen from the plot, the temporal maxi-
mum of current density can be approximated as jmax ∝ η−1/2 as illustrated by the dashed
line in Fig. 7, which can be compared with Fig. 3 in [19].

4 Conclusion

In this article, a lattice Boltzmann method for incompressible, resistive MHD flows is
presented. The hydrodynamic part was calculated by LBM and the magnetic induction
equation was solved by the finite difference method. Its implementation is relatively
simple compared to other LBMs and Navier-Stokes equation based methods. In addition,
the extension to 3-D is straightforward. The authors believe that this approach is a good
alternative to other MHD-LBMs that are fully based on the lattice kinetic algorithms.
Three classic problems in MHD flows were solved in this study and the obtained results
agreed well with the data available in the literature.
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