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Abstract. The Chan-Vese method of active contours without edges [11] has been used
successfully for segmentation of images. As a variational formulation, it involves the
solution of a fully nonlinear partial differential equation which is usually solved by us-
ing time marching methods with semi-implicit schemes for a parabolic equation; the
recent method of additive operator splitting [19,36] provides an effective acceleration
of such schemes for images of moderate size. However to process images of large size,
urgent need exists in developing fast multilevel methods. Here we present a multi-
grid method to solve the Chan-Vese nonlinear elliptic partial differential equation, and
demonstrate the fast convergence. We also analyze the smoothing rates of the asso-
ciated smoothers. Based on our numerical tests, a surprising observation is that our
multigrid method is more likely to converge to the global minimizer of the particular
non-convex problem than previously unilevel methods which may get stuck at local
minimizers. Numerical examples are given to show the expected gain in CPU time
and the added advantage of global solutions.
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1 Introduction
Image segmentation is a central problem among image processing applications. The
aim is to distinguish objects from background and to systematically select specific fea-

tures out of an image that has many features [2, 10, 22]. For intensity-based images, the
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non-equation-based methods are the popular approaches: threshold techniques, edge-
based methods, region-based techniques, and connectivity-preserving relaxation method
among others. One may also view the task of distinguishing objects of interest from “the
rest” as one to identify the feature boundaries. In recent years, a class of variational for-
mulations offer us the ability to work out features with sharp boundaries — these are the
new nonlinear approaches which require more sophisticated solution techniques [10,22].

Let Q) be a bounded open subset of R? with dQ) its boundary and let z be the initially
given image, which may be a clean image or contain Gaussian noise. Our aim is to extract
a desirable image 1 which represents features within z — more specifically u is piecewise
smooth inside each extracted feature.

The purpose of this paper is to present a working multigrid algorithm for imple-
menting the Chan-Vese variational model [11] and to highlight the algorithm’s practical
advantages.

The rest of the paper is organized in the following way: Section 2 first reviews related
variational models and then describes the active contour without edges model by Chan
and Vese [11], including a discussion of unilevel solution methods of semi-implicit and
additive operator splitting. Section 3 first reviews the nonlinear multigrid framework
and then describes our choice of smoothers as well as the multigrid algorithm for solving
the underlying differential equation [11]. Section 4 gives some local Fourier analysis of
the smoothers used, which forms a basis for multigrid convergence. We end the paper in
Section 5 with some numerical results and in Section 6 conclusions.

2 The model of active contour without edges and solution
methods

Variational segmentation methods aim to find edges (denoted by the index set I' below)
of features in the image z by directly minimizing some objective functional in order to
find the piecewise smooth u function separated by I'. Different methods choose such
functionals differently [10,22]. Two early and related methods are the following.

Firstly, the Mumford and Shah segmentation model [23] finds the desired piecewise
smooth (so-called cartoon) image u and the edge set I' from

inF ,r:/ Vul2dxd /d / 2 dxdy, 2.1
minF; (,T) wQ\r! ulPdxdy+p | dotoy | (u—z)"dxdy (2.1)

where «, 8,7 are nonnegative constants, the set I' C () is also the set of discontinuities, and
[rdo is the length of T'. This minimization is clearly stated but is difficult to implement.
Various attempts of approximating this formulation exist.

Secondly, the Ambrosio and Tortorelli model [1] finds u and T (via a phase quantity
p) from

2
mlpan u,p)= /p ]Vu]zdxdy-l-ﬁ/ (e[Vp|2 %) dxdy-l—’y/a(u—z)zdxdy (2.2)
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based on the Modica and Mortola [20,21]’s I'-convergence theory of representing a two
dimensional curve I (that has 1 inside the curve and 0 outside it) by solving for the phase
field function p (0<p <1)

. . 2, (1-p)?
mmee(p)—/QeWp] e dxdy.

Here Lc(p) ~ [ do from (2.1) when € is small [10,29]. Clearly model (2.2) appears more
amenable than (2.1) to numerical implementation.

It is of interest to mention two other variational models. The snake model of [18] aims
to find the segmentation curve C (a parameterized version of ' with C(s):[0,1] —R?) by
solving the problem

1
mCian(C) :/ a|C'(s)|2+B|C" (s)| = A|Vz(C(s))|ds. (2.3)
0
The geodesic contour model of [6] proposes to find C by solving

minFy(C) = ['1C'(5) g(V2(C(5)) s, 2.4

where ¢ is an edge detection function e.g. for some p >1 and a Gaussian G, (x,y)

1
xy)*z(x )P

(V=)= oe

It should be noted that model (2.4) was solved in [6] by a level-set formulation [25] using
time-marching methods.

Below we review the robust model of Chan-Vese [11] which provides a different ap-
proximation to the Mumford and Shah model using the idea of level set functions [25],
before we discuss its solution methods.

2.1 The Chan-Vese model

Chan and Vese [11] proposed the method of active contour without edges based on (2.1),
which differs from previous methods of active contours and snake models in not rely-
ing on directly detecting edges (gradients based). The basic idea of the new model is
as follows: assume that the given image z is formed by two regions of approximatively
piecewise constant intensities, of distinct values c; and ¢, and that the object to be de-
tected is represented by the region with the value c¢;. Let I' denote the boundary that
separates the two regions. Then the fitting energy is given by:

E1<r)+E2(r):/

_ |z—c1 \zdxdy—i—/ |z—ca|*dxdy, (2.5)
inside(r) o )

utside(r
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where I' denotes any curve, and the constants c1,c;, depending on I, are the average
values of z inside and outside I' respectively.
Adding a regularization term, Chan and Vese [11] proposed the minimization prob-
lem
inf F(T,cq,¢2) (2.6)

c1,02,T

for the segmentation of image z where

F(T,c1,¢2) =plength(T )—1—2\1/ \z—czizdxdy, (2.7)

inside( \z—cllzdxdy—i—/\z/

outside(r

where c; and c; are the average values of z inside and outside of the variable contour I'.
Here y, A1 and A; are non-negative but fixed parameters to be specified. Both the inte-
grand and the limits of integration in Eq. (2.7) are unknown. To overcome this problem,
the level set formulation is used.

The unknown curve I' can be represented by the zero level set of Lipschitz function
¢:Q— R such that

I={(xy)eQ:¢(x,y)=0}, Inside(T)={(x,y)€Q:¢(x,y)>0},
Outside(T) ={(x,y) e Q:¢(x,y) <0},

following [25]. Denoting the Heaviside and the Dirac delta functions (in the sense of
distributions) respectively by

(1, ifw>0 o
H(w)—{ 0 ifw<0 and d(w)=H"(w),

we use ¢ to express the terms in (2.7) in the following way [10]:
length{¢=0} = [ |VH(g)|= [ o(¢)|V¢|dxdy,
/ \z—clizdx:/ lz—c1[2H(¢)dxdy,
¢=0 Q
/ |z—cz|2dx:/ 12— 022 (1— H(@))duxdy.
$<0 0
Thus Eq. (2.7) becomes
F(p,c1,02) ;u/ \Vc])]dxdy—i—/\l/ 2(x,y) —c1[*H(¢p)dxdy
+A2/0|z x,y) —ca*(1—H(¢))dxdy. (2.8)

Keeping ¢ fixed and minimizing F(¢,c1,c2) with respect to ¢1 and ¢, we have

¢)dxdy _ Joz(xy)(1—H(¢))dxdy

C fQ C
19)= fQ dxdy =TT ) dady

(2.9)
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if [ H(¢)dxdy>0 (i.e., the curve has a nonempty interior in ), and [ (1—H(¢))dxdy>0
(i.e., the curve has a nonempty exterior in (2).

To compute the Euler-Lagrange equation for the unknown function ¢, consider slightly
regularized versions of H and J, denoted by H, and é¢, with . = H/, and in particular as
used in [11] (see also [13])

€

He(x)= w(e )

%(1+%aretan(g)>, Se(x)=H.(x)=

Denote the regularized functional of F(¢,c1,c2) by Fe(¢,c1,¢2), given by
Fe(p,c1,02) y/ Je( ]ch\—l—/\l/ |2(x,y) —c1|*He(¢)dxdy
+A2/Q]z x,y) —ca|*(1—He(¢))dxdy. (2.10)

Thus the minimization problem (2.6) becomes the following

min Fe(q) 1,€2).
¢,c1,C

After iterating for ¢ and ¢, from (2.9), minimizing F. with respect to ¢ yields the follow-
ing Euler-Lagrange equation for ¢:

5e(9) v (15 ) = (al) —er P Aa(alg) ~f] =0 iny
de(¢) o Vol 2.11)
’ch‘ ﬁzo on dQ),

where 7#i denotes the unit normal exterior to the boundary d(), and d¢ /07 is the normal
derivative of ¢ at boundary [11]. Whenever ¢ is updated from (2.11), the segmented
image is generated by

u(xy)=H(@(xy))er+(1-H(¢(x,y)))e2

The above reviewed model divides an image into two regions. It is equally feasible to
develop a model for multiple regions [10,32].

2.2 Semi-Implicit and additive operator splitting methods

Explicitly time-marching schemes have been in wide use for solving variational image
models, due to their simplicity. In this subsection we discuss the Semi-Implicit method
(SI) and Additive Operator Splitting (AOS) method (which are more stable than the ex-
plicit schemes) to solve (2.11) with an artificial time step At i.e. the following problem:

2 —a() - <y§Z|

$(0,x,y) =¢o(x,y) for (x,y) €Y and

> A](Z—Cl)z-l-)\z(Z—Cz)z], in Q),

5:(9) 3| _
V| onlan

(2.12)
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where cy,c; are as in (2.9) with H replaced by H.. Refer to [11,36]. The AOS method
was used in [36] to solve an equation arising from image processing and in [19] to solve
a fluid dynamics equation.

Assume () is a rectangular domain say [a,b] x [¢,d]. For discretization, we use the cell
centered finite difference method. Let z be of size m; x m,. Dividing () into m; x m; cells
of size hy x hy, and place the grid point at the center of each cell (pixel) with /1 = (b—a)/my
and hy = (d—c)/m;. The grid point (i,j) is located at

(xi,yj) = <a—|—(21— )h1/2,c—|—(2j—1)h2/2), 1<i<my, 1<j<my.
Denote by z; j =z(x;,y;).

221 Semi-implicit scheme

At time t, =nAt, denote by cij = cp(tn,xi,yj) an approximation of ¢(t,x,y) and similarly
TOL=2(dl— ), ALoli=%(df 1 — 1)
Thus we obtain the following linearized equation (through semi-implicitness) [11,26]
A.icp’ﬂﬁ»l
( \/(A’i i)+ (9 —9l1) / 2h2)? )
na ],[ Ay ( A]_/‘rcp’ﬂﬁ»l >
n Y on 2
h2 \/((4’1‘“,]'_471;1,]‘)/2]71) + (A+‘P1‘j/h2)
—M(zij—ar (¢n))2+7\2(2ij—62(4’”))2} :

Denoting the coefficients of 4);-?11]-, ?fllj, ¢! ]'4;11’

the following system of linear equations

¢n+1_ n
] 2

qb:”l by A1, Az, Az, Ay respectively, we get

[1"‘(5 (¢1])(A1+A2+A3+A4)}¢n+1

= g+ DO(P) [(Arglif + AL+ Asgllf ] + Asglit)

—Al(zi]-—c1(qb”))z-i-)&z(zij—cZ((p”))z}, (213)

which may be solved by an iterative method [11,13], as a direct solution can be expensive
for images of large size.

2.2.2 Additive operator splitting scheme

The AOS scheme provides an equally accurate (in At) and yet more efficient semi-implicit
scheme than (2.13) by splitting the 2-dimensional spatial operator into two separate one-
dimensional space discretizations [17, 19, 36] and then applying one-dimensional semi-
implicit scheme in turns. In linear algebra terms, two tridiagonal systems are solved per
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iteration rather than a band-5 (non-diagonal) system. This is in the same spirit of the
classical alternating directions implicit (ADI) methods.

3 A nonlinear multi-grid method

The aim of this paper is to present a multigrid algorithm for solving the nonlinear equa-
tion (2.11) rather than (2.12). We are not aware of similar work done for segmentation
models in the level set formulation. For image restoration, there exist multigrid algo-
rithms [5,9,15,24,28,31].

Without ¢, we shall denote the approximation at (i,j) by ¢;;=¢(x;,y;) instead of ¢7’.
Using finite difference scheme to discretize the Euler-Lagrange equation for ¢, the equa-
tion at a grid point (i,f) is given by

AY A i/
Oc(Pif) | Wy —— —
] [ {hl (\/(A’ifl’i,j/hl)“r(A14>i,j/h2)2+/3)
A_y_( A i/ hy
2 \/(A’ifl’i,j/hl)“r(A14>i,j/h2)2+/3

+

} —M (Zi,]' —cl)z—l-)\z(zi,]- —Cz)z} =0,

or

ala ( ; 219 )22 M0y

(839372 + (AAL )+ V(B35 +(AAL )2+
=M (zij—c1)* = Aa2(zij—2)?, (3.1)

where i=u/hy, = h% B and A =hy /hy, with Neumann’s boundary conditions

Gio=Pi1, Pimpr1=Pimy P =P1js Pmi+1j=Pmj (3.2)

implying that the finite difference terms involving indexes outside the range i =
1,---,mq; j=1,---,my are zero.

Here the first term in Eq. (3.1) resembles the denoising model by [26] using the total
variation (TV) regularization. The parameter B should be a small quantity to avoid the
gradient becoming 0 as in [26,33,34].

3.1 The full approximation scheme

We first give a brief discussion of the 3 main ingredients of a nonlinear multigrid method
(MG) called the full approximation scheme (FAS) [9, 13, 16, 30] due to Brandt [3], and
then concentrate on our choice of smoothers. Denote the system of non-linear equations
described by Egs. (3.1) and (3.2) by

Nl =", (3.3)
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where ¢ and f" are grid functions on a my x m; cell centered rectangular grid Q" with
spacing (hy,hy). Let 0% denote the my /2 xmy/2 cell centered grid which results from
standard coarsening of Q.

Let ! = ¢ — ®" be the algebraic error and 1" = " — N"®" be the residual, where ®"
is a good approximation to solution of (3.3) in the sense that ¢" is smooth. Such smooth-
ness can only be archived by a careful choice of suitable smoothers — a major task in
developing a working multigrid method. Then the non-linear residual equation will be:

N (@' +e) — Nt =" (3.4)

If ¢ is smooth, it can be well approximated on Q?. Therefore any iterative method which
smooths the error on the fine grid can be improved by the use of the coarse grid correc-
tion, in which a coarse grid analogue of the residual equation is solved (solution on a
coarse grid is less expensive than on a fine grid) to obtain a coarse grid approximation of
the error, which is then transferred back to the fine grid to correct the approximation ®".
This is known as a two-grid cycle, and with recursive application it can be extended to a
multigrid method. Let us define the restriction and interpolation operators for transfer-
ring grid functions between O and Q%" for cell-centered discretization:

Restriction

o=, (3.5)
where for 1<i<m; /2, 1<j<my/2:
1
4
is a full weighting operator [13,30].

on_Loen h h h
D = 2 (D127 1T Poi_12j T Paipj—1+P2ip))

Interpolation
I, o =", (3.6)

where for 1 <i<my/2, 1§j§m2/2:

Daipj = 16 <9q>2h —|-3CI>1+1 Jj +3q>z 41 +q>z+1 ]+1)
1

q>2i—1/2j - _6 (9@2}1 —|-3CI>1 1]+3q>1]+1 —|-CI>1 1]+1)
1

Paigj-1=1¢ (9214307} 43071+ D7, 1),

1
cI>2i—1,2j—1IE(9q>2h‘i‘3q>z 1]‘1‘3@% o 1j-1)

is known as a bilinear interpolation operator [13,30].

It remains to discuss the most important ingredient of a MG: smoothing. We will first
present a local nonlinear smoother and then review the smoother introduced by [28] (for
a TV denoising model [26]) with a view to comparison. Other smoothers are mentioned
next.
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3.2 Smootherl

In this method the system of nonlinear equations is linearized locally, by using an idea
related to fixed-point iterations (see [33]) or computing D(¢) on each grid (i,j) locally.
However this method is different from that of fixed-point iterations [33] which is a global
linearization method (refer to Smoother II below). Then we solve a linear equation to
update the local quantity ¢;; and this is repeated for a small number of smoothing steps.
Overall we use the Gauss-Seidel idea to smooth the error over all pixels. In detail, Eq. (3.1)
can be written as

7 { { AL i B ALdia, }
\/(A’i4’i,j)2+ (AN ¢i)2+B \/(A’ifl’i—l,j)“r (AAY i1)2+P
A2 [ A% ¢ A ij ]

\/(Aﬁ4’i,j)2+ (A ;)2 +P \/<A14’i,j—1)2+ (AN ¢ij1)2+P
= Al (Z,‘,]' —01)2 —/\2(2,‘,]' —02)2.

Let the coefficients (intended below to be frozen in local linearization) be denoted by

D(¢)ij= ! 5 =,
V (BL1)2+ (AN g)2+ B
1
D(¢)i-1j= - =,
V(AL 12+ (MM i 1))2+P
1
D(¢)ij-1= - =
\/(Ai¢i,j71)2+(AA+¢1’,;‘71)2+[3
So we have
ﬁ{ [D(<P)z',j(4>z'+1,j —¢ij) —D(¢)i—1,j(Pi —471'71,]')} +A? [D<‘P)i,j(47i,j+l — i)
_D(Qb)i,jfl(q)i,j_@,jfl)] } =M (zij—c1)* —Aa(zij—c2)%. (3.7)

Let f; ; denote the right hand side of (3.7) and ¢ be the approximation to ¢ at a previous
iteration. Then Eq. (3.7), now having only one local unknown ¢; ; (shown below in bold
face for clarity), becomes the following linear equation:

[D@)z‘,j@iﬂ,j ~ ;) —D(§)i1j(¢;;— fﬁ'*l,j)]
+A? [D(a)i,j(ési,j+l_‘pi,j)_D(ég)i,jfl(‘l’i,j_a)i,j*l)] = fij/i = fij.  (3.8)

Our proposed algorithm solves this equation for ¢, ; to update 951-,]- which leads to up-
dating the coefficients and further iterations (before moving to the next pixel in a Gauss-
Seidel fashion):
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Algorithm 3.1: Algorithm for Smoother I. CDh<—Smootherl(@h,fh,maxit,tol)

fori=1:m;
for j=1:my
fgr iter=1:maxit
O o Dl
DY . .Hh Hh Hh 2 Y. .Hh 2 Bl Bl r
& - D@3 @l D@ @+ D)y @l + D@y 1Pl |- Fif
v D(®"); j4+D(P");_1,j+A2(D(P"); j+D(P"); ;1)
if \Cbi/j—cf?j\ <tol Stop for (i,j)
end
end
end

3.3 Smoother II

As our main equation has a TV operator, it is natural to consider the fixed-point method
[33,34]. We use the smoother proposed in [28] for the image TV denoising model, where
the resulting system of linear equations is solved by the Gauss-Seidel relaxation method
for a fixed (small) number of smoothing steps (instead of exact solve). Here the system
of non-linear equations is linearized globally at each step by computing D(¢) at all points
(i,), which differs from Smoother I. The algorithm proceeds as follows:

Algorithm 3.2: Algorithm for Smoother II. d>h<—SmootherZ(CI)h,fh,maxit,tol)

fori=1:my
for j=1:my
1
D(®");;=[(AY @)+ (AL @; )2+ ] 2
end
end
(ph:CDh
for iter =1:maxit
fori=1:my
for j=1:mp

ah‘*(l’h

[{D(®@")j 1+ D(@)i 1@y +22D(@); @l +A2D(@) 16} =]
D(®"); 4+ D(P");_1,j+A2(D(P"); i+D(P"); ;1)

Pij=

end
end
end
i L Q@
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Here the coefficients are updated at the start of each smoothing step globally and are
stored for relaxation use.

Remark 3.1. The above two smoothers are both fixed-point based. Then one may con-
sider two related ideas: (i) Newton methods — which are found not to perform satis-
factorily for this problem and also previously for the TV denoising problem [28]. (ii)
line relaxation methods — which are found to work well but the improvements over
Smoothers I and II are marginal (of course line relaxations are slightly more expensive to
implement).

Yet there exist other smoothing ideas in the literature, e.g., the energy-minimizing
smoothers of [35], the primal-dual smoother [8] and algebraic multigrid ideas [12,14,27]
which remain to be tested for segmentation problems.

3.4 The multi-grid algorithm

To solve Eq. (3.3), our FAS multilevel algorithm may be summarized as follows, see,
e.g., [13,28,30] and [9]:

Algorithm 3.3: Multigrid Algorithm

We use these multigrid parameters:

21 pre-smoothing steps on each level

Uy post-smoothing steps on each level

l the number of multigrid cycles on each level (¢=1 for V-cycling and =2 for W-cycling). Here
we take the V-cycle with /=1.

FAS Multigrid Cycle
" — FASCYC(®", " iter,v1,17,0)

1. If O" is the coarsest grid, then solve Eq. (3.3) using time marching technique of [36] and then
stop.
Else implement a smoother, i.e.,

" — Smoother' (", f,v1). (Pre—Smoothing)

2. Restriction:
2h __ 12h g h 20 __ 520
P =["P", PV =0,
@2 FASCYCH (@, 721 iter,v1,vy,0).

3. Interpolation
O — @ 1 (@)

" — Smoother'2 (®", f,v,). (Post—Smoothing)
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4 Local Fourier analysis of smoothers

The standard FAS multilevel algorithm (such as Algorithm 3.3) does not automatically
converge for many problems, if simple smoothers are used (i.e. Gauss-Seidel for linear
problems and Gauss-Seidel-Newton for nonlinear problems). The key for convergence
lies in effective smoothers or reduction of residuals to a smoothed form (where high
frequency components are small regardless of the overall error [13,30]). Here we show
some local Fourier analysis (LFA) results to suggest that our smoothers are effective.

It should be remarked that LFA is in general not applicable to nonlinear smoothers.
Here for our linearized smoothers, the analysis can only be done for each individual
smoothing iteration and the obtained smoothing rates change from iteration to iteration.
However we look for general trends e.g. if the three consecutive smoothing rates are
0.59,0.61,0.44 (instead of a constant rate say 0.5), we say the underlying smoother is ef-
fective. Likewise consecutive rates such as 1.2,0.89,0.99 may indicate a poor smoother.

For simplicity, we consider the case of a square image m =m; =mj so A>=1. Denote
h=hy =h,. Following (3.8), a typical grid equation on Q" after linearization is

—(81+282+83) i j+81Pi—1,j+ 831 j—1+82(Pi j1+ i j+1) = fij, (4.1)

where g1,92,93 are based a previous iteration and to be considered as local constants.
Although both smoothers I and II may be written as

— (1428085090 V19l ) gl (gl ol ) =Fiy  @2)

7,

the choices of g1,$2,43 are quite different. For Smoother I, we take

1=D()i_1,;=D(¢p™);_1;, g2=D(¢);;=D(¢");;, g3=D(¢);;~1=D(@");;_1,

where ¢%) is the previous iterate at step k (local fixed-point). For Smoother II, we take

§1=D(®)i1j, $=D(®)ij, g3=D(P);j_1,

where @ is the iterate at the previous sweep (global fixed-point).
Recall that the local Fourier analysis (LFA) measures the largest amplification factor
in a relaxation scheme [3,13,30]. Let the general Fourier component be

X, i 2i0 it 2i07w
Bgllgz(xi,y]-):exp(1041#-%-10&2%) :exp< ;1 + n21] >

and define the local error functions by

k+1 k+1)

k k
el(',j ):471‘,]'_4’1'(,]' ’ ez(,j):(l)ifj_(l)l(,j)'
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Here ay =261 71/m,0 =26,7t/m € [—m,7t|. Then LFA involves expanding

m/2

(k+1)
ekl = Z ll)el zz By, 6, (x,,y]) el = Z 1/)9] 92391 6, <x11]/]) (4.3)
01,60——m /2 01,00——m /2

in Fourier components. We shall estimate the maximum ratio

(k+1)

~ k
H :IGTJ%;(#(QIIQZ) = ’11061,62 /lpé];)92|

in the high frequency range (a1,a;) € [—7t, 7]\ [—71/2,71/2] which defines the smoothing
rate [30].

Smoothers I and II. From (4.1) and (4.2), we obtain

1) (k+1) (k+1) (k)

—(1+2g+g3)els  +giel T +gseli T +an(ef el ) =0,

which defines the ratio (note a; =26,7t/m)

g2 (el +e12))|
|81 +282+g3 —g1e 1 —gze~ia2|’

;4(91,92) (44)

To proceed with an analysis, we have to compute g1,¢> and g3 or function

D)=/ (AL 9)2+(AY9)+p

numerically and work out the smoothing factor ji for each set of coefficients g1,4> and g3
within a smoother. In our earlier work, we select a special set of such coefficients. Below
we display the maximum of such factors

7= max fi= max maxu(0y,6, 45
glfgz,g3‘u 81,82,83 61,02 y( ! ) ( )

As such a linear analysis is based on freezing the nonlinear coefficients, our results
should be viewed only as a guide to smoothers’ effectiveness and a way to distinguish
smoothers.

Taking the test example of Problem 1 from Fig. 1 with m =32, we can display # in
the first 4 cycles of our MG algorithm as in Table 1 where Pre-1 refers to the case of “pre-
smoothing” and Post-1 to “post-smoothing” etc. If we instead consider the average rate
from all pixels, the averages are respectively 0.49 and 0.71 for Smoothers I and II. Clearly
in this example Smoother I appears to be more effective than Smoother II in terms of
rates. Such a claim will be tested in the next section.
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Table 1: i in the first 4 cycles of our MG algorithm.

MG cycle | Smoothing Steps | Rate I: # | Rate II: z!!
1 Pre-1 0.4942 0.6776
Pre-2 0.4941 0.9317
Post-1 0.4942 0.9135
Post-2 0.4942 0.9427
2 Pre-1 0.6003 0.9561
Pre-2 0.6003 0.9174
Post-1 0.6003 0.9581
Post-2 0.6003 0.9577
3 Pre-1 0.7760 0.9533
Pre-2 0.7760 0.9193
Post-1 0.7757 0.9092
Post-2 0.7749 0.9040
4 Pre-1 0.6025 0.959%4
Pre-2 0.6026 0.9456
Post-1 0.6026 0.9286
Post-2 0.6026 0.9678

5 Numerical results

In this section, we shall discuss several aspects of our MG (Algorithm 3.3). Firstly, we
hope to demonstrate that our MG (with smoother I) can scale well with increasing sizes
of an image and also that our MG is not sensitive to the choice of the initial guess for
¢. The latter claim is further supported by incorporating the full multigrid idea (FMG)
[30] and then our MG with FMG does not need an initial guess for ¢. Secondly, we
compare the performance of Algorithm 3.3 with smoother I and II as well as alternative
smoothers. Thirdly, we demonstrate that an improved solution of global minimizer can
be obtained using the multigrid method over previous methods. This by-product of MG
is slightly surprising as it is not expected. Finally we will compare our MG with AOS
and SI methods to illustrate the expected CPU saving.

We shall test on 4 images (mainly with m =256 unless stated otherwise) as shown in
Fig. 1 with Problem 3 used in [4] for discussing the global minimization issue. We shall
take the following parameters

1=0.01x(256)?, A=MA=1, B=10"° e=10"1

and the initial guess is

9=/ (x—150)2+ (y—140)2+100 ~for m=256.



308 N. Badshah and K. Chen / Commun. Comput. Phys., 4 (2008), pp. 294-316

Problem 1 Problem 2

Problem 3 Problem 4

Figure 1: Segmentation Test Images.

5.1 Convergence tests and full multigrid grid

Our preliminary results suggest that our MG (with Smoother I) can converge for varying
choices of the initial ¢ e.g. specifying ¢ having a small circle at a fixed position. Fig. 2
(for Problem 4) shows how the segmented image is obtained from the initial guess for ¢
(first plot) and then the results from cycles 1,2,3 (second to the last plot). Here only 3 MG
cycles are required to drive the relative residual (in vector 2-norm) to below 10~°.

However to eliminate the need of an initial guess, we consider the use of a full multi-
grid idea [30] which starts the solution of (3.1) on the coarsest grid. Then each solution is
interpolated onto the next fine grid to give an initial guess until we reach the finest grid
where we start the MG algorithm. This is shown in Fig. 3, where the first plot shown
the position of the starting ¢ on the coarsest 4 x4 level, the second plot shows the initial
guess derived by FMG on the finest level and only 2 full MG cycles are needed to reach
the segmented result in the bottom plot.

To test on the scalability of MG, we display in Table 2 the number of steps needed
to reach a desirable accuracy for Problems 2—3 (with yu fixed as before). The CPU times
are obtained from running Matlab 7 on a Pentium PC for illustration purpose. Here
FMG means that the initial guess of ¢ is obtained from a FMG method following by the
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Figure 2: Solution of Problem 4 by MG. Left: z with ¢ =0, Middle: ¢ <0 and Right: Contour plot of ¢ =0.
The top to bottom plots are from MG cycles 0,1,2,3.

normal MG cycles. Clearly MG (with smoother I) is efficient. Our MG works the best
with 11 =1, =2, but it will not work well if much less smoothing steps are used e.g.
r1=1,1n=0.
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Figure 3: Solution of Problem 4 by FMG and MG. Left: z with ¢ =0, Middle: ¢ <0 and Right: Contour plot
of ¢=0. The top to bottom plots are from the FMG initial guess on the coarsest 4 x4 level(top left: ¢ <0 and
top right: contour plot of ¢ =0), the FMG result and MG cycles 1,2.

5.2 Algorithm 3.3 with different smoothers

We have conducted several tests of our MG with different smoothers:

(i) smoother I (our preferred choice);
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Table 2: Test of scalability of MG and FMG.

Problem | Method | Image Sizem MG CPU
(formxm)  cycles

2 MG 128 4 9
256 5 15

512 5 27

1024 5 90

FMG 128 3 15

256 3 17

512 3 27

1024 3 83

3 MG 128 2 5
256 2 6

512 2 12

1024 2 50

FMG 128 2 11

256 2 13

512 2 21

1024 2 61

(if) smoother II (previously found suitable for a different problem);
(iii) line relaxation smoothers [30];
(iv) a Gauss-Seidel-Newton smoother.
Omitting the computational results, we remark that these observations can be made:

a) Our preferred smoother I is (as predicted by the analysis in the previous section) is
up to twice as fast as Smoother II as I requires less MG cycles and less CPU time.

b) Line smoothers lead to less MG cycles but more CPU time than L.

¢) The Gauss-Seidel-Newton smoother does not lead to convergence of the MG (as
also known for a different problem [28]).

As mentioned in Remark 3.1, there are other potentially useful smoothers that might
be considered for the segmentation model which can be pursued in the near future.

5.3 Improved solution of global minimizers

Here we will give some evidence of obtaining improved solution of global minimizer.
X. Bresson et al. [4] discussed the drawback of variational segmentation model, the main
one being the existence of local minima in the energy. In non-convex optimization, the
local minima often lead to unsatisfactory results. The solution of Problem 3 (see Fig.1
as in [4]) is displayed in Fig. 4, where both the SI and the AOS method get stuck in a
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L

Figure 4: The incorrect solution of Problem 3 by AOS (or SI) method. Left: z with ¢ =0, Middle: ¢ <0 and
Right: Contour plot of ¢ =0.

Figure 5: The correct solution of Problem 3 by our MG method. Left: z with ¢ =0, Middle: ¢ <0 and Right:
Contour plot of ¢=0.

local minimum with F(¢,c1,c) =1.44 x 10%. We then use our multigrid method and the
image has been segmented correctly as shown in Fig. 5. Clearly our multigrid method
manages to get closer to the global minimizer with F(¢,c1,c2) = 3.94 x 10*. The same
comparison is made on Problem 2, where the result from the SI and the AOS method is
shown in Fig. 6 with F ((p,cl,cz) =4.65x 107 and the result from our MG shown in Fig. 7
with a smaller F(¢,cq,c2)=4.05x% 107. This is not coincidental as we have also tested many
other examples and observed the same results. We have not yet found a reason for the
unexpected success regarding global minimizer but we believe that this must be due to
our use of coarse levels on which fine level local minimizers are not represented.

5.4 Comparison of complexity and CPU

Finally we compare the speed of MG (with smoother I) with SI and AOS methods.
Before numerical results, it is of interest to estimate the computational complexity of
the algorithms involved. To be concrete, we assume that the inner solver of a SI method is
by a conjugate gradient method for 25 steps, and in the MG method v; =2 and 1,=1. Then
consider segmenting some image of size m x m. The setup cost for the 4 main coefficients
is about 4 x 8m? = 32m? operations for all methods per step. The cost of each step of
SI method is thus Wj = 25 x 5m?+32m? = 157m?. For the AOS, each trisolve costs 4m?
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Figure 6: Solution of Problem 2 by AOS (or SI) method. Left: z with ¢=0, Middle: ¢ <0 and Right: Contour
plot of ¢=0.

Figure 7: Solution of Problem 2 by our MG method. Left: z with ¢=0, Middle: ¢ <0 and Right: Contour plot

LUk
oL Lok

Figure 8: Solution of Problem 1 by our MG method. Left: z with ¢ =0, Middle: ¢ <0 and Right: Contour plot
of ¢=0. Top: MG cycle 1 and bottom: MG cycle 3.
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Table 3: Comparison of MG with SI and AOS methods.
Image SI method | AOS Method MG

size Itr | CPU | Itr CPU Itr | CPU
128 x128 | 30 29 35 14 2 9
256 x256 | 85 | 511 80 138 3 20
512 x 512 - - 5000 | 3.6x10* | 3 41
1024 %1024 | — - - - 3 | 165

operations so the cost of each step is W, =2 x 4m? +32m? = 40m?. Finally the finest level
smoothing cost for MG is 11m? x (1 +1,) =33m? so the finest level cost is 33m?*+32m? =
65m2. The cost per MG step over all levels is W3 = 4/3 x 65m? ~ 87m?. Therefore the
practical efficiency of these methods, although all of O(N) =O(m?) complexity per step,
will depend on the number of actual iteration steps used for achieving the same accuracy:.

We take Problem 1 as an example to illustrate the results, where the segmented results
for m =256 from MG cycles 1,3 are shown in Fig. 8. In Table 3 we compare the number
of iteration (Itr) and the CPU time for various m. From Table 3 we see that the SI method
and the AOS method are adequate for images of moderate size, but our MG method is
much more efficient for large images, where SI and AQOS are either too slow or fail to
deliver a result within 24 hours (marked as entry ‘~).

6 Conclusions

We have proposed an effective smoother for a nonlinear multigrid method to solve the
Chan-Vese active contour without edges model. A linear Fourier analysis shows that our
local smoother I is better than the global smoother II. For large images, as expected, our
MG leads to much faster solutions than unilevel methods of SI and AOS. A somewhat
surprising observation is that our MG can reach closer to the global minimizer than SI
and AOS methods in all of our test cases. Future work will address multigrid methods
for other variational formulations [10] and alternative multilevel methods [7].
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