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Abstract. Weighted essentially non-oscillatory (WENO) methods have been devel-
oped to simultaneously provide robust shock-capturing in compressible fluid flow and
avoid excessive damping of fine-scale flow features such as turbulence. Under cer-
tain conditions in compressible turbulence, however, numerical dissipation remains
unacceptably high even after optimization of the linear component that dominates
in smooth regions. Of the nonlinear error that remains, we demonstrate that a large
fraction is generated by a “synchronization deficiency” that interferes with the expres-
sion of theoretically predicted numerical performance characteristics when the WENO
adaptation mechanism is engaged. This deficiency is illustrated numerically in sim-
ulations of a linearly advected sinusoidal wave and the Shu-Osher problem [J. Com-
put. Phys., 83 (1989), pp. 32-78]. It is shown that attempting to correct this deficiency
through forcible synchronization results in violation of conservation. We conclude
that, for the given choice of candidate stencils, the synchronization deficiency cannot
be adequately resolved under the current WENO smoothness measurement technique.

AMS subject classifications: 76F65

Key words: Direct numerical simulation, large eddy simulation, compressible turbulence, shock
capturing.

1 Introduction

The detailed simulation of compressible turbulence requires numerical methods that si-
multaneously avoid excessive damping of spatial features over a large range of length
scales and prevent spurious oscillations near shocks and shocklets (small transient shocks)
through robust shock-capturing. Numerical schemes that were developed to satisfy these
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constraints include, among others, weighted essentially non-oscillatory (WENO) meth-
ods [2]. WENO schemes compute numerical fluxes using several different candidate
stencils and form a final flux approximation by summing weighted contributions from
each stencil. Thus they are nonlinear. Smoothness measurements cause stencils that span
large flow field gradients to be assigned small relative weights so that a nearly discontin-
uous shock would provide a weight of almost zero to any stencil containing it. In smooth
regions, the relative values of the weights are designed to be optimal by some gauge such
as maximum order of accuracy or maximum bandwidth-resolving efficiency.

Jiang and Shu [3] cast the WENO methodology into finite-difference form and provide
an efficient implementation of robust and high-order-accurate WENO schemes. Unfor-
tunately, these schemes often generate excessive numerical dissipation for detailed simu-
lations of turbulence, especially for large-eddy simulations (LES) [4]. WENO dissipation
arises from two distinct sources: (i) the optimal stencil, which by itself describes a linear
scheme, and (ii) the adaptation mechanism, which drives the final numerical stencil away
from the optimal one. Bandwidth optimization can reduce the dissipation of the optimal
stencil [5–7]; and Martı́n et al. [7] demonstrate that such a bandwidth-optimized symmet-
ric WENO method indeed reduces numerical dissipation and provides accurate results
for direct numerical simulations (DNS) of isotropic turbulence and turbulent boundary
layers.

Nonetheless, engaging the nonlinear WENO adaptation mechanism still causes sig-
nificant local dissipation that can negatively affect global flow properties. Though higher
resolution compensates for this, in some cases adequately increasing the number of grid
points is not feasible. There are two primary sources of nonlinear error: (i) the smooth-
ness measurement that governs the application of WENO stencil adaptation and (ii) the
numerical properties of individual candidate stencils that govern numerical accuracy
when adaptation engages. Wang and Chen [8] have examined both sources for upwind-
biased WENO methods in linearized problems; Ponziani et al. [9] have examined the sec-
ond source for symmetric WENO methods in linear and nonlinear problems, including
isotropic turbulence; and Henrick et al. [10] have examined the first source for upwind-
biased WENO methods in linear and nonlinear problems. Additionally, Taylor et al. [11]
have examined the first source for symmetric WENO methods in linear and nonlinear
problems, including isotropic turbulence, and have introduced a linearly and nonlin-
early optimized WENO method that allows accurate DNS of compressible turbulence
with significantly reduced grid sizes [11, 12].

The purpose of this paper is to demonstrate that there exists a WENO “synchroniza-
tion deficiency” that interferes with the expression of theoretically predicted candidate
stencil properties and as a result generates excessive numerical dissipation through the
second nonlinear error pathway described above. We furthermore attempt to correct this
deficiency by exploring the possibility of forcible synchronization, and in the process we
enumerate the several serious theoretical and practical obstacles that currently prevent
an implementation of this approach that is both robust and broadly applicable. Section 2
briefly describes the WENO methodology. In Section 3, we introduce the mathematical
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and theoretical basis of the synchronization deficiency and present numerical evidence
of its consequences through simulations of a linearly advected sinusoidal wave and a
one-dimensional inviscid shock/entropy-wave interaction that we refer to as the Shu-
Osher problem. Section 3.3 then discusses the aforementioned obstacles to implementing
forcible synchronization as a corrective measure. Finally, conclusions are drawn in Sec-
tion 4.

2 WENO methodology

We describe the symmetric WENO methodology [5–7] in the context of the one-dimensional
advection equation,

∂u

∂t
+

∂

∂x
f (u)=0. (2.1)

This model equation represents the decoupled forms of equations belonging to any
system of hyperbolic conservation laws after a transformation from physical into charac-
teristic space. If the spatial domain is discretized such that xi = i∆, in which ∆ is the grid
spacing, and ui =u(xi), Eq. (2.1) may be cast into the semi-discretized form

dui

dt
=−

1

∆

(
f̂i+ 1

2
− f̂i− 1

2

)
(2.2)

in which f̂i+1/2 is a numerical approximation of f (u(xi+1/2)). Once the right-hand side of
this expression has been evaluated, numerical techniques for solving ordinary differential
equations, such as Runge-Kutta methods, may be employed to advance the solution in
time. In order to ensure stability, procedures that approximate f (u) split it into f +(u),
which has a strictly non-negative derivative, and f−(u), which has a strictly non-positive
one.

WENO schemes compute f̂ +
i+1/2 through reconstructed interpolating polynomials on

a number of candidate stencils each containing r grid points. In the symmetric WENO
method, there are (r+1) stencils in total. The one fully upwinded stencil ranges from
(i−r+1) to i, the one fully downwinded stencil ranges from (i+1) to (i+r), and the
other stencils fall in between these two extremes. Fig. 1 provides a schematic of this
arrangement for r=3. Throughout this paper, we will abbreviate any WENO implemen-
tation in which the candidate stencils contain r points as “WENO-r.”

If the flux approximation on stencil k, which contains r grid points, is designated as qr
k

and the weight assigned to that stencil is ωk, the final numerical approximation becomes

f̂ +
i+ 1

2

=
r

∑
k=0

ωkqr
k. (2.3)

Specifically, qr
k emerge from reconstructed polynomial interpolants of maximal order

r and are defined as

qr
k

∣∣∣i+ 1
2
=

r−1

∑
l=0

ar
kl f (ui−r+k+l+1) (2.4)
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Figure 1: Symmetric WENO candidate stencils for approximating the numerical flux f̂ +
i+1/2 when the number

of points per candidate stencil is r=3.

in which ar
kl are tabulated coefficients; and ωk are normalized forms of weights Ωk de-

fined as

Ωk =
Cr

k

(ε+ ISk)
p (2.5)

in which ε prevents division by zero, ISk is a smoothness measurement that becomes
large when discontinuities are present within stencil k, and p may be varied to increase
or decrease WENO adaptation sensitivity. p = 1 typically provides sufficient adaptation
with minimal dissipation. In completely smooth regions, each stencil is equally desirable,
and ωk revert to the optimal weights Ck.

The corresponding stencil diagram for f̂−i+1/2 is simply a mirror image of Fig. 1. Be-
cause the total number of data points available to the symmetric WENO algorithm is 2r,
its maximum order of accuracy is also 2r; however, the optimal stencils employed in the
current work are bandwidth-optimized [5–7] such that only rth-order accuracy can be
guaranteed. The bandwidth-optimization process also introduces a small amount of ar-
tificial dissipation to an otherwise neutrally stable optimal stencil to enhance its stability.
In practice, the weight of the fully downwinded stencil ωr is artificially constrained to be
no greater than the least of the others so that other adverse stability effects are avoided.

The continuity of the WENO weighting process allows the performance characteris-
tics of the final numerical stencil to theoretically fall anywhere between those of the least
favorable candidate stencil and those of the optimal stencil. In order to gauge this varia-
tion quantitatively but efficiently in a flow field, Weirs [6] proposed a combination of the
adaptive stencil weights called the nonlinearity index (NI). It is essentially a measure of
the degree of departure from the optimal stencil and is defined as

NI =

(
r

∑
k=0

[
1−

(r+1)(Ωk/Ck)

∑
r
l=0(Ωl/Cl)

]2
) 1

2

. (2.6)

This definition forces NI to always be non-negative, and only the optimal stencil can
provide a value of zero. It reaches its theoretical maximum, which is

√
r(r+1), when

any one candidate stencil is chosen exclusively. We will often report NI in terms of NI ′,
its value normalized by this maximum.
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3 Synchronization deficiency

3.1 Theory

In theory, the numerical performance characteristics (e.g. bandwidth-resolving capabili-
ties) of the least favorable WENO candidate stencil dictate definitive lower bounds on the
performance characteristics of any possible final weighted numerical stencil. If the flux
approximation f̂i+1/2, calculated according to the previous section, were to encompass
the entirety of the flux information required to approximate a spatial derivative, then
this would be true in practice as well. Of course, in addition to f̂i+1/2, Eq. (2.2) demands
f̂i−1/2, which is rarely explicitly acknowledged because its calculation consists merely of
shifting an index. Its presence, however, significantly complicates the question of per-
formance characteristics, as has been briefly mentioned, but not further investigated, by
Henrick et al. [10].

Let us fully expand Eq. (2.2), the left-hand side of which depends on a fixed combi-
nation of f̂i+1/2 and f̂i−1/2. According to Eqs. (2.3) and (2.4),

f̂i+ 1
2
=

r

∑
k=0

ωk

r−1

∑
l=0

ar
kl fi−r+k+l+1 (3.1a)

f̂i− 1
2
=

r

∑
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ωk
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∑
l=0

ar
kl fi−r+k+l (3.1b)

and so
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r
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(
ar

k,l−1−ar
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)
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]

= −
1

∆

r

∑
k=0

ωk

r

∑
l=0

br
kl fi−r+k+l (3.2)

in which coefficients can be equated to yield

br
kl =





−ar
k,0, l =0,

ar
k,l−1−ar

kl , 0< l < r,

ar
k,r−1, l = r.

(3.3)

The coefficients br
kl, rather than ar

kl , are the relevant parameters for determining and
optimizing the properties of the kth candidate stencil. Since br

kl are independent of the
adaptive stencil weights ωk, the performance characteristics of individual candidates ap-
pear to be guaranteed regardless of local WENO adaptation behavior. Unfortunately, this
appealing argument is contingent upon the implicit assumption in Eq. (3.1) that ωk are
equal for f̂i+1/2 and f̂i−1/2.
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The smoothness measurement ISk depends entirely on the flux information available
within the kth candidate stencil, which spans different points for f̂i+1/2 and f̂i−1/2. Be-
cause the collections of data values on the two versions of the stencil will in general be
unequal, the associated stencil weights ωk must be assumed to vary. If we define ω±

k to

mean the ωk that belong to f̂i±1/2, Eq. (3.1) becomes

f̂i+ 1
2
=

r

∑
k=0

ω+
k

r−1

∑
l=0

ar
kl fi−r+k+l+1 (3.4a)

f̂i− 1
2
=

r

∑
k=0
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k

r−1
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ar
kl fi−r+k+l (3.4b)

and in turn Eq. (3.2) becomes
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in which coefficients can be equated to yield

b̃r
kl =





−
ω−

k

ω+
k

ar
k,0, l =0,

ar
k,l−1−

ω−
k

ω+
k

ar
kl , 0< l < r,

ar
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(3.6)

The relevant parameters for determining and optimizing the properties of the kth

candidate stencil are now the new coefficients b̃r
kl . These, unlike the old br

kl , do depend

on the adaptive quantities ω±
k ; and, since ar

kl are fixed, b̃r
kl = br

kl if and only if ω−
k = ω+

k .

Note that equality necessarily holds when f̂i±1/2 both employ the optimal stencil weights
Cr

k. However, in regions in which WENO adaptation has engaged, either necessarily or
unnecessarily, inequality can force the actual individual stencil characteristics to diverge
from the expected theoretical properties described by br

kl.
The theoretical error characteristics of a finite-difference scheme are often quantita-

tively presented in the form of a modified wavenumber plot, which illustrates theoretical
bandwidth properties. Consider a linearly advected pure harmonic function of the form

f (x)= eikx = eiκx/∆ (3.7)

in which x is position, ∆ is grid spacing, and k and κ are dimensional and nondimensional
wavenumbers, respectively. The finite-difference approximation to its spatial derivative
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is equivalent to the analytic derivative of a similarly defined function with the modified
wavenumber

κ′(κ)=−i∑
n

cn einκ (3.8)

in which cn are constant nondimensional coefficients unique to a particular scheme. The
real and imaginary parts of κ′ describe phase and amplitude charactersitics, respectively,
and a numerical method that fully resolved all wavenumbers would produce κ′ = κ for
0≤κ≤π. In the present case of symmetric WENO methods,

cn =




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∑
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ω+
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m,r−m−1−
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∑
m=1

ω−
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m,r−m, n=0,

r

∑
m=n

ω+
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m,r+n−m−1−
r

∑
m=n+1

ω−
m ar

m,r+n−m, 0<n< r,

ω+
r ar

r,r−1, n= r.

(3.9)

In Fig. 2, we plot the modified wavenumber of the linearly optimized WENO-3 scheme
for an illustrative possible scenario in which the stencil weights are such that, for the cal-
culation f̂i−1/2 (“left-hand” calculation), the first three stencils are equally utilized and
the last one discarded, and for the calculation of f̂i+1/2 (“right-hand” calculation), the
first two stencils are equally utilized and the last two discarded. Fig. 1 provides a useful
graphical reference for visualizing this scenario. Since the left-hand arrangement incor-
porates more grid points and is more centrally situated relative to the point of interest
xi, we would expect its numerical characteristics to be more favorable than those of the
right-hand arrangement. Indeed, Fig. 2(a) confirms that if both calculations were forced
to use the left-hand arrangement (“synchronized left”) rather than the right-hand one
(“synchronized right”), κ′ would more closely approximate κ. Though at first glance the
unsynchronized arrangement might seem as if it should lead to bandwidth properties
that split the difference, the modified wavenumber plot reveals that its amplitude char-
acteristics are only slightly better than those of the worst component and that its phase
characteristics are actually significantly poorer. Deviations of phase characteristics from
the exact relationship κ′(κ)=κ can be seen more clearly in Fig. 2(b), which plots the phase
error ε=κ′/κ−1.

3.2 Numerical evidence

Though the WENO synchronization deficiency is certainly valid from a mathematical
standpoint, and even though it can under certain circumstances significantly degrade
theoretical bandwidth properties, its cumulative effects on actual numerical simulations
may still turn out to be relatively small. We investigate this possibility by implementing
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Figure 2: Bandwidth properties of the WENO-3 scheme when the “left-hand” calculation utilizes only the
first three candidate stencils equally and the “right-hand” calculation utilizes only the first two equally. Open
and filled symbols indicate phase and amplitude characteristics, respectively. (a) Modified wavenumber. (b)
Modified wavenumber error.

a naive forcibly synchronized WENO (SWENO) method for the one-dimensional advec-
tion equation of Eq. (2.1). After obtaining the normalized stencil weights ωk according to
Section 2, we set

〈Ωk〉=
1

2

(
ω+

k +ω−
k

)
(3.10)

and then normalize 〈Ωk〉 to form the synchronized stencil weights 〈ωk〉 that apply to
calculations of both f̂i+1/2 and f̂i−1/2.

The effects of synchronizing the linearly optimized WENO-4 scheme in this man-
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Figure 3: Linearly advected sinusoidal wave with seven points per wavelength as computed by the WENO-4
scheme, with and without adaptation, and the forcibly synchronized WENO-4 (SWENO-4) scheme after twenty
wavelength-times. (a) Numerical and analytic solutions. (b) Nonlinearity index.

ner are presented in Fig. 3, which depicts a linearly advected sinusoidal wave with
seven points per wavelength after time integration via a third-order-accurate Runge-
Kutta scheme for twenty wavelength-times. For reference we include results from the
baseline (unsynchronized) WENO-4 scheme both with and without stencil adaptation
permitted. The solution profiles of Fig. 3(a) show that, while the fully adapting WENO-
4 scheme causes notable dissipation, the SWENO-4 scheme maintains the proper wave
shape nearly as faithfully as when adaptation is completely prohibited and the optimal
stencil uniformly employed. In Fig. 3(b), we plot the nonlinearity index NI ′ for each of
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these schemes to demonstrate that the improvement offered by the SWENO method is
not due simply to closer conformance to the optimal stencil. The decrease in overall NI ′

from the adaptation-permitted WENO-4 scheme to the adaptation-prohibited scheme far
exceeds the decrease from the former to the SWENO-4 scheme, yet the SWENO-4 flow
solution is almost equivalent to the adaptation-prohibited solution.

Attempting to extend the forcible synchronization technique of Eq. (3.10) to non-
smooth data exposes several serious problems concerning its application to immediate
neighborhoods of strong discontinuities, but we will defer the full discussion of these
until the following section. For now, we present additional numerical evidence with
the understanding that synchronization is selectively suspended near discontinuities in
a somewhat ad-hoc and overly conservative manner not intended for general use.

x / L

ρ
/ρ

R

0.0 0.2 0.4 0.6 0.8 1.0

1.0

2.0

3.0

4.0

Initial
Developed

Figure 4: Initial and developed density profiles of the Shu-Osher problem as computed on 2048 grid points by
the WENO-4 scheme.

The Shu-Osher problem [1] places smooth density fluctuations upstream of a moving
shock front to probe the ability of a shock-capturing method to resolve discontinuities
embedded within pseudoturbulence without damaging fine structures. In our simula-
tions, the conditions at the right boundary are atmospheric with zero velocity, and the
conditions at the left boundary are such that the shock between the two states has a
relative incoming Mach number of three. Sinusoidal density fluctuations are imposed
upstream of this shock (in a frame of reference moving with the shock wave) with wave-
length λ = 1

8 L and excursions of ±0.2ρR, in which the subscript R indicates the right
boundary. Initially, the shock is positioned at x/L=λ, and we evolve simulations in time
via a third-order-accurate Runge-Kutta scheme until t = 0.21L/aR . For reference, Fig. 4
displays converged density profiles for the initial and developed states as computed by
the WENO-4 scheme on an excessively fine grid of 2048 points. Upon termination, an
undisturbed portion of the original fluctuation field lies upstream of the main shock, im-
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Figure 5: Flow profiles of the Shu-Osher problem as computed on 192 grid points by WENO-3 and forcibly
synchronized WENO-3 (SWENO-3) schemes. (a) Density. (b) Nonlinearity index.

mediately downstream is a region of physically correct high-frequency fluctuations, and
further downstream is a region of low-frequency fluctuations with interspersed shock-
lets.

In Fig. 5, we examine the effects of selectively suspended forcible synchronization
on solutions to the Shu-Osher problem as computed by the linearly optimized WENO-3
scheme on 192 grid points. Fig. 5(a) shows that, at this resolution, the density profile of
the baseline unsynchronized WENO scheme is sufficiently accurate everywhere except
within the high-frequency region, where excessive numerical dissipation severely dam-
ages its accuracy. The SWENO scheme, on the other hand, captures these fluctuations
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significantly more faithfully, indicating that in this case the synchronization deficiency
accounts for a large fraction of the excessive dissipation. Corresponding profiles of non-
linearity index NI ′ are presented in Fig. 5(b), and their approximate equivalence between
the WENO and SWENO schemes, especially near the edges of the high-frequency region,
indicates that, as we observed in the previous case of the linearly advected sinusoidal
wave, the benefits of forcible synchronization cannot be attributed simply to serendip-
itously closer conformance to the optimal stencil. A similar analysis of synchronized
versus unsynchronized WENO-4 schemes yields results that are materially identical to
these that were just presented for the WENO-3 schemes.

These exercises prove that the synchronization deficiency is not merely a mathemati-
cal curiosity; its consequences unquestionably contaminate the results of numerical sim-
ulations.

3.3 Obstacles to correction

As we noted previously, attempting to extend the forcible synchronization technique of
Eq. (3.10) to non-smooth data exposes several serious problems concerning its application
to immediate neighborhoods of strong discontinuities.

First, consider a linearly advected perfect shock located somewhere between points
xi−1 and xi as sketched for r = 3 in Fig. 6. Without explicitly calculating the smoothness
measurements ISk and resulting weights ωk, we can still qualitatively determine that a
candidate stencil receives small weight if it crosses the discontinuity and large weight
otherwise. Also, recall that the fully downwinded stencil is never allowed to hold more
weight than the least-weighted of the others. According to these principles, the bold
stencils in the lower portion of Fig. 6 are those independently favored for calculating
f̂i±1/2, and the two resulting stencil arrangements are clearly mutually exclusive. If ω±

k
are to be forcibly synchronized, some form of compromise is necessary; and any form
of compromise under these circumstances will undermine the WENO shock-capturing
mechanism.

Secondly, the form of the spatial derivative in Eq. (2.2) is not simply a matter of no-
tational convenience. Across a shock located somewhere between points xj and xj+1,

the flux leaving cell i = j to the right ( f̂i+1/2= f̂ j+1/2) must precisely equal the flux enter-

ing cell i = j+1 from the left ( f̂i−1/2= f̂ j+1/2); otherwise, propagation of the shock front
proceeds incorrectly. For the traditional WENO methodology, this proper flux behavior
is guaranteed by the form of Eq. (2.2), coupled with the understanding that only f̂i+1/2

is explicitly computed at each grid point. Forcible synchronization, however, demands
full and separate calculations of both f̂i±1/2 in a manner that relies on local violation of
the flux-conservation principle to effect any enhancement in bandwidth-resolving effi-
ciency. That said, synchronization is not automatically a moribund concept because as
the point of interest xi moves away from the shock, the strictly conservative structure
may be greatly relaxed, permitting finite-difference constructions that violate it, such as
central Padé schemes [13], to be employed without consequence in smooth flow regions.
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Figure 6: Symmetric WENO candidate stencils for approximating the dual numerical fluxes f̂ +
i±1/2 when the

number of points per candidate stencil is r =3 and a perfect shock is located somewhere between points xi−1
and xi. Bold stencils are strongly weighted.

Thus, in order to preserve the robust shock-capturing capability of unsynchronized
WENO methods, we are required by two distinct theoretical considerations to selectively
suspend synchronization in the immediate vicinity (i.e. within approximately one grid
spacing) of strong discontinuities. Though in theory significant improvement of WENO
dissipation performance is still possible under this constraint alone, as demonstrated by
the Shu-Osher problem exercise in the previous section, there remains an additional con-
sideration that is practical in nature.

The final and most intractable obstacle to forcible synchronization, or more precisely
the suspension of synchronization, is that the WENO smoothness measurement tech-
nique, as currently formulated, cannot be trusted to distinguish with sufficient fidelity
the non-smooth regions in which precise flux conservation is necessary versus those in
which it is not. As an illustration, in Fig. 7 we plot the profiles of WENO-3 and WENO-4
nonlinearity index NI ′ that arise from a linearly advected shock wave with a numerical
width between three and four grid spacings, which is typical of a well-captured shock.
Immediately downstream and upstream of the shock front, high NI ′ indicates a suffi-
cient impediment to inappropriate synchronization, but within the shock front, where
strict flux conservation is paramount, NI ′ drops by almost half due to the illusion of
smoothness imparted by numerical smearing. For the purpose of maintaining stability,
such adaptation behavior is perfectly acceptable; it is disastrous, however, for the pur-
pose of identifying contiguous shock regions in need of a conservative flux-differencing
structure.
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Figure 7: Profiles of WENO-3 and WENO-4 nonlinearity index NI ′ across a linearly advected shock wave with
a numerical width between three and four grid spacings.

4 Conclusions

When adaptation draws the final numerical stencil away from the optimal stencil, WENO
methods exhibit a synchronization deficiency between left- and right-hand flux calcula-
tions that interferes with the expression of theoretically predicted numerical performance
characteristics. For an illustrative hypothetical stencil arrangement scenario, the modi-
fied wavenumber curve of the unsynchronized combination reveals substantially poorer
theoretical bandwidth-resolving efficiency than even the least favorable synchronized
combination. Furthermore, in linear advection simulations of smooth oscillations and
also Euler simulations of the Shu-Osher problem, forcible synchronization, of an admit-
tedly makeshift nature, significantly enhances numerical accuracy in practice as well.
Based on these findings, we expect the synchronization deficiency to account for a large
fraction of excessive dissipation in general compressible turbulent flows.

Forcible synchronization cannot be applied in the immediate vicinity (i.e. within ap-
proximately one grid spacing) of a discontinuity because to do so would undermine the
robust shock-capturing capability of the WENO methodology. This constraint is dic-
tated by theoretical considerations and is inviolable, but a discontinuity located toward
the edges of the optimal stencil, triggering necessary but overly dissipative adaptation,
can be deemed outside the immediate vicinity and would therefore theoretically permit
the numerical performance benefits of synchronization to be realized locally. Unfortu-
nately, the existing WENO smoothness measurement technique poorly distinguishes be-
tween non-smooth regions that require a strictly conservative flux-differencing structure,
which is broken by synchronization, and those that do not. Thus, in order to guarantee
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proper shock propagation, implementations of forcible synchronization must either be
exquisitely tailored for specific flow configurations and conditions or excessively conser-
vative such that synchronization benefits become unacceptably diluted.

Because the demonstrated degradation in bandwidth properties imparted by the
WENO synchronization deficiency will almost certainly overwhelm any opposing en-
hancement offered by small changes to the individual candidate stencil coefficients, we
recommend against attempting to improve WENO performance through bandwidth-
optimization of these coefficients, as was conducted by Wang and Chen [8] and Ponziani
et al. [9]. Any gains produced by this approach should be miniscule and effected primar-
ily through the increased bandwidth-resolving efficiency this may allow to the linear op-
timal stencil. The WENO smoothness measurement technique, on the other hand, has be-
come an even more attractive investigative target than before. If the smoothness measure-
ment could be made to more faithfully identify contiguous shock-spanning regions, then
in addition to any direct advantages conferred upon unsynchronized WENO schemes,
the opportunities for robust forcible synchronization could perhaps be expanded to the
point of true usefulness.

Acknowledgments

This work was sponsored by the National Science Foundation under Grant CTS-0238390.
Computational resources were provided by the CRoCCo Laboratory at Princeton Uni-
versity.

References

[1] C. W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-
capturing schemes, II, J. Comput. Phys., 83(1) (1989), 32-78.

[2] X. D. Liu, S. Osher and T. Chan, Weighted essentially non-oscillatory schemes, J. Comput.
Phys., 115(1) (1994), 200-212.

[3] G. S. Jiang and C. W. Shu, Efficient implementation of weighted ENO schemes, J. Comput.
Phys., 126(1) (1996), 202-228.

[4] E. Garnier, M. Mossi, P. Sagaut, P. Comte and M. Deville, On the use of shock-capturing
schemes for large-eddy simulations, J. Comput. Phys., 153(1) (1999), 273-311.

[5] V. G. Weirs and G. V. Candler, Optimization of weighted ENO schemes for DNS of com-
pressible turbulence, Paper 1997-1940, American Institute of Aeronautics and Astronautics,
1997.

[6] V. G. Weirs, A numerical method for the direct simulation of compressible turbulence, PhD
thesis, University of Minnesota, December 1998.

[7] M. P. Martı́n, E. M. Taylor, M. Wu and V. G. Weirs, A bandwidth-optimized WENO scheme
for the effective direct numerical simulation of compressible turbulence, J. Comput. Phys.,
220(1) (2006), 270-289.

[8] Z. J. Wang and R. F. Chen, Optimized weighted essentially nonoscillatory schemes for linear
waves with discontinuity, J. Comput. Phys., 174(1) (2001), 381-404.



E. M. Taylor and M. P. Martin / Commun. Comput. Phys., 4 (2008), pp. 56-71 71

[9] D. Ponziani, S. Pirozzoli and F. Grasso, Development of optimized weighted-ENO schemes
for multiscale compressible flows, Int. J. Numer. Meth. Fluids, 42(9) (2003), 953-977.

[10] A. K. Henrick, T. D. Aslam and J. M. Powers, Mapped weighted essentially non-oscillatory
schemes: Achieving optimal order near critical points, J. Comput. Phys., 207(2) (2005), 542-
567.

[11] E. M. Taylor, M. Wu and M. P. Martı́n, Optimization of nonlinear error for weighted essen-
tially non-oscillatory methods in direct numerical simulations of compressible turbulence,
J. Comput. Phys., 223(1) (2007), 384-397.

[12] M. Wu and M. P. Martı́n, Direct numerical simulation of supersonic turbulent boundary
layer over a compression ramp, AIAA J., 45(4) (2007), 879-889.

[13] S. K. Lele, Compact finite-difference schemes with spectral-like resolution, J. Comput. Phys.,
103(1) (1992), 16-42.


