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Abstract. Our aim in this article is to improve the understanding of the colocated finite
volume schemes for the incompressible Navier-Stokes equations. When all the vari-
ables are colocated, that means here when the velocities and the pressure are computed
at the same place (at the centers of the control volumes), these unknowns must be prop-
erly coupled. Consequently, the choice of the time discretization and the method used
to interpolate the fluxes at the edges of the control volumes are essentials. In the first
and second parts of this article, two different time discretization schemes are consid-
ered with a colocated space discretization and we explain how the unknowns can be
correctly coupled. Numerical simulations are presented in the last part of the article.
This paper is not a comparison between staggered grid schemes and colocated schemes
(for this, see, e.g., [15, 22]). We plan, in the future, to use a colocated space discretiza-
tion and the multilevel method of [4] initially applied to the two dimensional Burgers
problem, in order to solve the incompressible Navier-Stokes equations. One advantage
of colocated schemes is that all variables share the same location, hence, the possibil-
ity to use hierarchical space discretizations more easily when multilevel methods are
used. For this reason, we think that it is important to study this family of schemes.

AMS subject classifications: 76M12, 76D05, 68U120, 74S10, 74H15

Key words: Finite volumes, colocated scheme.

1 Introduction

We consider the Navier-Stokes equations in their velocity-pressure formulation and the
continuity equation written for an incompressible viscous fluid; Ω is an open bounded
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domain in R
2, for our simulations we use a rectangular domain Ω=(0,L1)×(0,L2).

For given volume forces f=( fu, fv), we look for the velocity vector u and the pressure p
such that:

∂u

∂t
−ν△u+(u·∇)u+∇p= f in Ω×[0,T], (1.1)

divu=0, (1.2)

where ν>0 is the kinematic viscosity and, in space dimension two, u=
(

u(x,y,t),v(x,y,t)
)

,
t≥0.

On the boundary ∂Ω of Ω, we impose a Dirichlet no-slip boundary condition:

u
∣

∣

∣

∂Ω

=g, (1.3)

where g=(gu,gv) is a given function defined on ∂Ω.
Traditionnally, the staggered variable arrangement was prefered to a colocated vari-

able arrangement. Indeed, the colocated arrangements have long been considered as im-
practicable since these colocated schemes were known to generate a decoupling between
the velocities and the pressure. This difficulty was subsequently resolved using appro-
priate interpolations of the fluxes (see below, e.g., (2.15)). Based on this idea, the first suc-
cessful colocated finite volume schemes were introduced in 1981 by Hsu [9], Prakash [16]
and Rhie [18]. A further advantage of colocated schemes is that they can be easily used
for complex geometries [25]. Moreover, multilevel techniques, which result in a signif-
icant reduction of computing time on fine grids, are also much easier to apply to the
colocated arrangement; this is an essential point regarding our objective to implement
multilevel methods for the Navier-Stokes equations [4]. See [15, 22] for a detailed com-
parison between staggered and colocated schemes. We intend in a subsequent work [5]
to combine the multilevel method presented in [4] with the colocated schemes described
here. For theoretical aspects of the finite volume methods, see [2].

The purpose of the present article is to describe two colocated schemes associated
with different time discretizations. For each scheme, we will study if there exists a de-
coupling between the velocities and the pressure. Then, we will comment on the numer-
ical results obtained in the case of a driven cavity. Note that the emphasis here is on the
development of the method only and therefore the driven cavity flow is not studied with
too challenging values of the Reynolds number.

In the following, the domain Ω is discretized by rectangular finite volumes of same
dimensions ∆x∆y with M∆x = L1 and N∆y = L2 (M, N are given integers). Hence, we
have MN volumes which are defined (see Fig. 1) by:

(

Kij =[xi− 1
2
,xi+ 1

2
]×[yj− 1

2
,yj+ 1

2
]
)

i=1,···,M, j=1,···,N
,

where

xi+ 1
2
= i∆x for i=0,··· ,M,

yj+ 1
2
= j∆y for j=0,··· ,N.
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Figure 1: Colocated mesh.

The edges of the control volumes are defined by:

Γi+ 1
2 j =

{

(x,y) ; x= xi+ 1
2
,y∈ [yj− 1

2
,yj+ 1

2
]
}

for i=0,··· ,M,

Γij+ 1
2
=

{

(x,y) ; x∈ [xi− 1
2
,xi+ 1

2
],y=yj+ 1

2
,
}

for j=0,··· ,N.

When a colocated method is used, all the unknowns, i.e. the velocities and the pressure,
are defined at the center of the cells. Hence, for i=1,··· ,M and j=1,··· ,N, the unknowns
are meant to be approximations of the cell averages:

uij(t)≃
1

∆x∆y

∫ x
i+ 1

2

x
i− 1

2

∫ y
j+ 1

2

y
j− 1

2

u(x,y,t)dxdy for the velocity, (1.4)

pij(t)≃
1

∆x∆y

∫ x
i+ 1

2

x
i− 1

2

∫ y
j+ 1

2

y
j− 1

2

p(x,y,t)dxdy for the pressure. (1.5)

Remark 1.1. Notice that, in order to simplify the notations for the boundary conditions,
we also introduce fictitious control volumes:

(

K0j =[x− 1
2
,x 1

2
]×[yj− 1

2
,yj+ 1

2
] and KM+1j =[xM+ 1

2
,xM+ 3

2
]×[yj− 1

2
,yj+ 1

2
]
)

j=1,···,N
(

Ki0 =[xi− 1
2
,xi+ 1

2
]×[y− 1

2
,y 1

2
] and KiN+1 =[xi− 1

2
,xi+ 1

2
]×[yN+ 1

2
,yN+ 3

2
]
)

i=1,···,M

where x− 1
2
=−∆x, xM+ 3

2
= L1+∆x, y− 1

2
=−∆y and yN+ 3

2
= L2+∆y. Consequently, for the

Dirichlet boundary condition on the velocity, we will write

u0j =2g 1
2 j−u1j

(see, e.g., (2.6)), and, for the Neumann boundary condition on the pressure, we will write
p0j = p1j (see, e.g.,(2.7)).
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Furthermore, we also define the velocity fluxes which occur in the schemes, in the
nonlinear terms for example:

Fu i+ 1
2 j(t)≃

1

∆y

∫ y
j+ 1

2

y
j− 1

2

u(xi+ 1
2
,y,t)dy for the horizontal fluxes, i=0,··· ,M, (1.6)

Fv ij+ 1
2
(t)≃

1

∆x

∫ x
i+ 1

2

x
i− 1

2

v(x,yj+ 1
2
,t)dx for the vertical fluxes, j=0,··· ,N. (1.7)

However, as we shall see, the velocity fluxes are not considered as independant un-
knowns: they will be computed either directly or by interpolation from the above cell
centered unknowns (1.4), (1.5).

Finally, concerning the time discretization of the problem (1.1)-(1.3), let T>0 be fixed,
and let the time step be ∆t=T/Nt where Nt is an integer. For k=0,··· ,Nt, we define uk as
the approximate value of u at the time tk = k∆t. In the following we will use a time finite
difference scheme to approximate the time derivative. Hence, we will not use a space-
time finite volume discretization but a space finite volume discretization with a time finite
difference scheme. An advantage of this choice is that time implicit discretizations for the
diffusive terms can be considered.

In the next section, we describe the colocated scheme associated with the projection
method of Van Kan [21]. In the third section, we present the scheme associated with the
new splitting method of Guermond and Shen [7]. Then, in the last section we present the
numerical results obtained with both schemes and give some comments.

2 A colocated finite volume scheme with a projection method

for the time discretization

2.1 Time discretization

The concept of projection methods was introduced by [1, 20] in the late 60s, extending
to the Navier-Stokes equations the concepts of fractional step methods [12, 23, 24]. Then,
several projection methods have been elaborated, see [8, 10, 13, 19] producing schemes of
order two in time in general. In this section, we consider for simplicity the projection
method of Van Kan [21]; we will study in a future work the improvements resulting from
more recent projection methods.

We start from a Crank-Nicholson scheme for the linear part and an Adams-Bashforth
scheme for the nonlinear part, that is:



























un+1−un

∆t
−ν△

(un+1+un

2

)

+B
(

un,un−1
)

+∇
( pn+1+pn

2

)

=
fn+1+fn

2
,

un+1
∣

∣

∣

∂Ω

=gn+1,

divun+1 =0,

(2.1)
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where B
(

un,un−1
)

=
3

2
(un.∇)un−

1

2
(un−1.∇)un−1.

Combining this with the projection scheme we obtain:















un+ 1
2 −un

∆t
−ν△

(un+ 1
2 +un

2

)

+B
(

un,un−1
)

+∇pn =
fn+1+fn

2
,

un+ 1
2

∣

∣

∣

∂Ω

=gn+1,

(2.2)



























un+1−un+ 1
2

∆t
=−

1

2
∇δpn+1 where δpn+1 = pn+1−pn,

divun+1 = 0,

un+1 ·n
∣

∣

∣

∂Ω

=gn+1 ·n
∣

∣

∣

∂Ω

;

(2.3)

un+ 1
2 is called the intermediate velocity.
Moreover, from (2.2) and (2.3), we deduce the following Neuman problem used to

compute the increment to the pressure:















△δpn+1 =
2

∆t
divun+ 1

2 ,

∂δpn+1

∂n
=0.

(2.4)

The proposed algorithm starts by computing the intermediate velocities using (2.2). Then,
in the second step, the projection step, we compute the pressure with (2.4). The new ve-
locities are finally derived from (2.3). Consequently, the computations of the velocity and
the pressure are decoupled. As the nonlinear terms are made explicit, at each time step,
we only have to solve a set of Helmholtz-type equations for the velocity and a scalar
Poisson equation with Neumann boundary condition for the pressure. Another advan-
tage of this method is that the incompressibility condition is satisfied with the computer
accuracy.

2.2 Finite volume discretization

Now, we describe the spatial discretization, that is the colocated finite volume imple-
mentation of the previous time discretization. As usual in a finite volume context, we
integrate the equations on each control volume Kij for i = 1,··· ,M, j = 1,··· ,N, and we
find:

• For the time derivative term in (2.2):

∫

Kij

un+ 1
2 −un

∆t
dxdy≃∆x∆y

u
n+ 1

2
ij −un

ij

∆t
.
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• For the Laplace operator used with the velocities in (2.2) and with the pressure
variation in (2.4):

∫

Kij

△u dxdy=
∫

∂Kij

∂u

∂n
dΓ

≃∆y
ui+1j−uij

∆x
+∆y

ui−1j−uij

∆x
+∆x

uij+1−uij

∆y
+∆x

uij−1−uij

∆y
,

∫

Kij

△δp dxdy≃∆y
δpi+1j−δpij

∆x
+∆y

δpi−1j−δpij

∆x
+∆x

δpij+1−δpij

∆y
+∆x

δpij−1−δpij

∆y
.

• For the pressure gradient used in (2.2) and (2.3):

∫

Kij

∇p dxdy=
∫

∂Kij

(

pnx

pny

)

dΓ

≃







∆y

2

(

pi+1j−pi−1j

)

∆x

2

(

pij+1−pij−1

)






,

using a linear interpolation for the pressure at the edges.

• For the nonlinear term in (2.2):

∫

Kij

(u·∇)u dxdy=
∫

Kij

(

∂x(u2)+∂y(vu)
∂x(uv)+∂y(v2)

)

dxdy

=
∫

∂Kij

(

(u2)nx+(vu)ny

(uv)nx +(v2)ny

)

dΓ

≃







∆yFu i+ 1
2 j

ui+1j+uij

2
−∆yFu i− 1

2 j

uij+ui−1j

2

∆yFu i+ 1
2 j

vi+1j+vij

2
−∆yFu i− 1

2 j

vij+vi−1j

2







+







∆xFv ij+ 1
2

uij+1+uij

2
−∆xFv ij− 1

2

uij+uij−1

2

∆xFv ij+ 1
2

vij+1+vij

2
−∆xFv ij− 1

2

vij +vij−1

2






,

using again a linear interpolation for the velocities at the edges.

• For the divergence term in (2.4):
∫

Kij

divu dxdy=
∫

∂Kij

u·n dΓ

≃

[

∆y
(

Fu i+ 1
2 j−Fu i− 1

2 j

)

+∆x
(

Fv ij+ 1
2
−Fv ij− 1

2

)

]

.
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Remark 2.1. In all the following of the paper when we will study two time discretiza-
tions, the nonlinear term will be written in an explicit form. However, it is also possible
to modify the above space discretization in order to then use a semi-implicit form.

In the above equations, the boundary conditions are not taken into account. The

Dirichlet boundary condition for the intermediate velocity un+ 1
2 in (2.2) means that for

i=1,··· ,M and j=1,··· ,N, we have:

u
n+ 1

2

M+ 1
2 j

= gn+1
M+ 1

2 j
, u

n+ 1
2

1
2 j

= gn+1
1
2 j

, u
n+ 1

2

i 1
2

= gn+1
i 1

2

, u
n+ 1

2

iN+ 1
2

= gn+1
iN+ 1

2

, (2.5)

which can be rewritten, due to the linear interpolation of the velocities at the edges, as
follows:

u
n+ 1

2
M+1j+u

n+ 1
2

Mj

2
=gn+1

M+ 1
2 j

,
u

n+ 1
2

0j +u
n+ 1

2
1j

2
=gn+1

1
2 j

,

u
n+ 1

2
i0 +u

n+ 1
2

i1

2
=gn+1

i 1
2

,
u

n+ 1
2

iN+1+u
n+ 1

2
iN

2
=gn+1

iN+ 1
2

, (2.6)

where gn+1
M+ 1

2 j
, gn+1

1
2 j

, gn+1
iN+ 1

2

and gn+1
i 1

2

are given by:

gn+1
M+ 1

2 j
=

1

∆y

∫ y
j+ 1

2

y
j− 1

2

g(L1,y,tn+1)dy, gn+1
1
2 j

=
1

∆y

∫ y
j+ 1

2

y
j− 1

2

g(0,y,tn+1)dy,

gn+1
iN+ 1

2

=
1

∆x

∫ x
i+ 1

2

x
i− 1

2

g(x,L2,tn+1)dx, gn+1
i 1

2

=
1

∆x

∫ x
i+ 1

2

x
i− 1

2

g(x,0,tn+1)dx.

It is well known that when we use finite volumes with Dirichlet boundary conditions, we
consider the edges which determine the frontier of the domain as control volumes.

Moreover, the Neumann boundary condition for the pressure variation δpn+1 in (2.4)
means that:

δpn+1
M+1j =δpn+1

Mj , δpn+1
0j =δpn+1

1j , δpn+1
i0 =δpn+1

i1 , δpn+1
iN+1 =δpn+1

iN . (2.7)

When Neumann boundary conditions are required in a finite volume context, we intro-
duce virtual control volumes outside the domain.

Finally, the three steps of the method are the following:
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Step 1. We compute the intermediate velocities un+ 1
2 =

(

un+ 1
2 ,vn+ 1

2

)

from:

∆x∆y
u

n+ 1
2

ij −un
ij

∆t
−

ν

2

[

∆y
u

n+ 1
2

i+1j −u
n+ 1

2

ij

∆x
+∆y

u
n+ 1

2

i−1j −u
n+ 1

2

ij

∆x
+∆x

u
n+ 1

2

ij+1 −u
n+ 1

2

ij

∆y

+∆x
u

n+ 1
2

ij−1 −u
n+ 1

2
ij

∆y
+∆y

un
i+1j−un

ij

∆x
+∆y

un
i−1j−un

ij

∆x
+∆x

un
ij+1−un

ij

∆y
+∆x

un
ij−1−un

ij

∆y

]

+
3

2

[

∆yFn
u i+ 1

2 j

un
i+1j+un

ij

2
−∆yFn

u i− 1
2 j

un
ij+un

i−1j

2
+∆xFn

v ij+ 1
2

un
ij+1+un

ij

2

−∆xFn
v ij− 1

2

un
ij+un

ij−1

2

]

−
1

2

[

∆yFn−1
u i+ 1

2 j

un−1
i+1j+un−1

ij

2
−∆yFn−1

u i− 1
2 j

un−1
ij +un−1

i−1j

2

+∆xFn−1
v ij+ 1

2

un−1
ij+1+un−1

ij

2
−∆xFn−1

v ij− 1
2

un−1
ij +un−1

ij−1

2

]

+









∆y

2

(

pn
i+1j−pn

i−1j

)

∆x

2

(

pn
ij+1−pn

ij−1

)









=∆x∆y
fn+1

ij +fn
ij

2
, (2.8)

using the boundary conditions (2.6) and (2.7).

Step 2. We compute the pressure variation δpn+1 from:

∆y
δpn+1

i+1j−δpn+1
ij

∆x
+∆y

δpn+1
i−1j−δpn+1

ij

∆x
+∆x

δpn+1
ij+1−δpn+1

ij

∆y
+∆x

δpn+1
ij−1−δpn+1

ij

∆y

=
2

∆t

[

∆y
(

F
n+ 1

2

u i+ 1
2 j
−F

n+ 1
2

u i− 1
2 j

)

+∆x
(

F
n+ 1

2

v ij+ 1
2

−F
n+ 1

2

v ij− 1
2

)

]

, (2.9)

using the boundary conditions (2.7).

Step 3. We compute the new velocities un+1 and the new fluxes Fn+1
u and Fn+1

v from:

∆x∆y
un+1

ij −u
n+ 1

2
ij

∆t
=−

1

2







∆y

2

(

δpn+1
i+1j−δpn+1

i−1j

)

∆x

2

(

δpn+1
ij+1−δpn+1

ij−1

)






, (2.10)

Fn+1
u i+ 1

2 j
−F

n+ 1
2

u i+ 1
2 j

∆t
=−

1

2

δpn+1
i+1j−δpn+1

ij

∆x
, (2.11)

Fn+1
v ij+ 1

2

−F
n+ 1

2

v ij+ 1
2

∆t
=−

1

2

δpn+1
ij+1−δpn+1

ij

∆y
, (2.12)
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using the boundary conditions (2.7).

In the above algorithm, at the first step we determine the intermediate velocities un+ 1
2

at the center of the cells. However, for the second and third steps, we need to know the

intermediate velocity fluxes F
n+ 1

2
u and F

n+ 1
2

v , hence, these fluxes must be interpolated from
the values of the intermediate velocities at the center of the cells. As this interpolation is
crucial, we devote the next subsection to explain how we compute the fluxes.

2.3 Computation of the intermediate fluxes

The method of interpolation used to compute the intermediate fluxes is essential because
it determines the coupling between the velocities and the pressure. The simplest method
to compute the intermediate fluxes is the linear interpolation:

F
n+ 1

2

u i+ 1
2 j

=
u

n+ 1
2

i+1j +u
n+ 1

2
ij

2
, F

n+ 1
2

v ij+ 1
2

=
v

n+ 1
2

ij+1 +v
n+ 1

2
ij

2
. (2.13)

Unfortunately, this simple interpolation does not work when we reduce the viscosity ν
because the pressure and the velocities are not sufficiently coupled. Let us emphasize this

technical difficulty. First, if we consider that un+ 1
2 is known, then, from (2.8), we obtain:

u
n+ 1

2
ij =

1

a

[

∆x∆y

∆t
un

ij+
ν

2

[

∆y

∆x
u

n+ 1
2

i+1j +
∆y

∆x
u

n+ 1
2

i−1j +
∆x

∆y
u

n+ 1
2

ij+1 +
∆x

∆y
u

n+ 1
2

ij−1

+∆y
un

i+1j−un
ij

∆x
+∆y

un
i−1j−un

ij

∆x
+∆x

un
ij+1−un

ij

∆y
+∆x

un
ij−1−un

ij

∆y

]

−
3

2

[

∆yFn
u i+ 1

2 j

un
i+1j+un

ij

2
−∆yFn

u i− 1
2 j

un
ij+un

i−1j

2
+∆xFn

v ij+ 1
2

un
ij+1+un

ij

2

−∆xFn
v ij− 1

2

un
ij+un

ij−1

2

]

+
1

2

[

∆yFn−1
u i+ 1

2 j

un−1
i+1j+un−1

ij

2
−∆yFn−1

u i− 1
2 j

un−1
ij +un−1

i−1j

2

+∆xFn−1
v ij+ 1

2

un−1
ij+1+un−1

ij

2
−∆xFn−1

v ij− 1
2

un−1
ij +un−1

ij−1

2

]

+∆x∆y
f n+1
u ij + f n

u ij

2

]

−
1

a

∆y

2

(

pn
i+1j−pn

i−1j

)

, (2.14)

where

a=
(

∆x∆y

∆t
+ν

∆y

∆x
+ν

∆x

∆y

)

.

Now, considering only the last term in the right hand side of the above equation, the
contribution of the pressure in the horizontal fluxes computed with the linear interpola-
tion (2.13) is:

−
1

a

∆y

4

(

pn
i+2j+pn

i+1j−pn
ij−pn

i−1j

)

.
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This implies that in the right hand side of (2.9), the pressure contribution to
(

F
n+ 1

2

u i+ 1
2 j
−

F
n+ 1

2

u i− 1
2 j

)

is pn
i+2j−2pn

ij +pn
i−2j. This contribution shows that the pressure terms pn

i+1j and

pn
i−1j do not play any role in the divergence of the intermediate velocity i.e. the velocity

and the pressure are decoupled. Such an interpolation leads to incorrect numerical results
when we increase the Reynolds number.

We have bypassed this difficulty using an approach proposed in [14, 15, 17]. We have
modified the interpolation method for the intermediate fluxes. Let us now describe how
we compute the horizontal fluxes (and the same method is used for the vertical fluxes):

F
n+ 1

2

u i+ 1
2 j

=
u

n+ 1
2

i+1j +u
n+ 1

2
ij

2
+

∆y

4a

(

pn
i+2j−2pn

i+1j+pn
ij

)

−
∆y

4a

(

pn
i+1j−2pn

ij +pn
i−1j

)

,

F
n+ 1

2

v ij+ 1
2

=
v

n+ 1
2

ij+1 +v
n+ 1

2
ij

2
+

∆x

4a

(

pn
ij+2−2pn

ij+1+pn
ij

)

−
∆x

4a

(

pn
ij+1−2pn

ij +pn
ij−1

)

. (2.15)

If we study the pressure contribution in the horizontal fluxes computed with this new
interpolation (2.15) as for the linear interpolation (2.13), then we find:

−
2∆y

a

(

pn
i+1j−pn

ij

)

.

This implies that in the right hand side of (2.9), the pressure contribution in
(

F
n+ 1

2

u i+ 1
2 j
−

F
n+ 1

2

u i− 1
2 j

)

is pn
i+1j−2pn

ij +pn
i−1j, i.e., the pressure and the velocity are well-coupled.

Remark 2.2. It is important to note that the above interpolation does not increase the cost
of the simulation as we do not have to solve a new linear system in order to obtain the
intermediate fluxes.

Remark 2.3. When we compare the linear interpolation (2.13) with the modified linear
interpolation (2.15), we note that the added term corresponds to a third derivative of the
pressure multiplied by ∆x:

∆y

4a

(

pn
i+2j−2pn

i+1j+pn
ij

)

−
∆y

4a

(

pn
i+1j−2pn

ij +pn
i−1j

)

≃

(

1

∆t
+

ν

∆x2
+

ν

∆y2

)−1(

∆x

4

(

∂3
x p

)n

i+ 1
2 j

+O(∆x3)

)

.

Consequently, and following the same arguments for the vertical fluxes, we have added
in the right-hand side of the pressure equation (2.9) the following small regularizing term:

(

1

∆t
+

ν

∆x2
+

ν

∆y2

)−1(

∆x2

4

(

∂4
x p

)n

ij
+

∆y2

4

(

∂4
y p

)n

ij
+O(∆x4)+O(∆y4)

)

.
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So, the idea is to prevent checkerboard oscillations by perturbing the continuity equation
with the pressure terms, the basic mathematical principle being that an added small reg-
ularizing term annihilates the spurious modes. This term does not cancel the consistency
of our scheme but it increases its diffusivity.

Remark 2.4. From the point of view of the stability analysis of this colocated space dis-
cretization using a projection method as time discretization, see, e.g., [3] for a stability
proof with a linear interpolation for the fluxes. We intend, in a future work, to study
the stability of this scheme when the intermediate fluxes are computed with the modi-
fied interpolation (2.15). Such a modified interpolation introduces new difficulties which
deserve to be studied separately.

3 A colocated finite volume scheme with a splitting method for

the time discretization

In their article [7], Guermond and Shen introduced a new class of splitting schemes
for incompressible flows, called consistent splitting schemes. Like for the projection
scheme described in the previous section, these new schemes only require to solve a
set of Helmholtz-type equations for the velocity and a Poisson equation for the pressure.
Moreover, the preliminary analysis and the numerical experiments conducted by the au-
thors have shown that the consistent splitting schemes are unconditionally stable and
yield full second order accuracy for the velocity and the pressure in both the L2- and
H1-norms (see [7]). For all these reasons, it seems interesting to study if it is possible to
combine their scheme with a colocated space discretization.

The scheme used here is the second-order consistent splitting scheme tested in [7].

3.1 Time discretization

First, let us quickly recall how this second-order consistent splitting scheme is built.

We start by choosing a time discretization for (1.1):

3un+1−4un+un−1

2∆t
−ν△un+1+B̂

(

un,un−1
)

+2∇pn−∇pn−1 = fn+1, (3.1)

where

B̂
(

un,un−1
)

=2
(

un ·∇un
)

−
(

un−1 ·∇un−1
)

.

From this scheme, we are able to compute the new velocity un+1.

Then, to obtain the pressure, we take the divergence of (1.1) and use the incompress-
ibility condition to find:

△p=div(f+ν△u−(u·∇)u). (3.2)
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The time discretization for the above equation is:

△pn+1 =div
(

fn+1+ν△un+1−B̂
(

un,un−1
)

)

. (3.3)

Following [7], we replace in (3.3) △ by −∇×∇×. In this way, the accuracy of the splitting
scheme will be improved [7], and we obtain:

△pn+1 =div
(

fn+1−ν∇×∇×un+1−B̂
(

un,un−1
)

)

. (3.4)

Using the well-known relation:

△un+1 =∇divun+1−∇×∇×un+1, (3.5)

(3.1) becomes:

fn+1−ν∇×∇×un+1−B̂
(

un,un−1
)

=
3un+1−4un+un−1

2∆t
−ν∇divun+1+2∇pn−∇pn−1. (3.6)

Inserting the previous equation in (3.4), we obtain:

△pn+1 =div

(

3un+1−4un+un−1

2∆t
−ν∇divun+1+2∇pn−∇pn−1

)

. (3.7)

Hence:

△
(

pn+1−2pn +pn−1+νdivun+1
)

=div

(

3un+1−4un+un−1

2∆t

)

. (3.8)

In summary, the time discretization obtained by following the method of [7], consists in
computing the velocity un+1 with the equation (3.1) according to the Dirichlet boundary
conditions:































3un+1−4un+un−1

2∆t
−ν△un+1+B̂

(

un,un−1
)

+2∇pn−∇pn−1 = f n+1,

where B̂
(

un,un−1
)

= 2
(

un ·∇un)−
(

un−1 ·∇un−1),

un+1
∣

∣

∣

∂Ω

=g.

(3.9)

Then we compute the pressure pn+1 from:


















△ψn+1 =div

(

3un+1−4un+un−1

2∆t

)

,

∂ψn+1

∂n
=0,

(3.10)

pn+1 =ψn+1+2pn−pn−1−νdivun+1. (3.11)

The main advantage of this splitting scheme is that it is no longer plagued by the
artificial Neumann boundary condition of pn+1 (see (2.4)).
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3.2 Finite volume discretization

To derive the colocated finite volume discretization associated with this time discretiza-
tion, we integrate the equations (3.9)-(3.11) on each control volume Kij. In doing so, we
keep the notations used in the previous section and also the method used to integrate
each term. Concerning the boundary conditions, we have a Dirichlet boundary condi-
tion for un+1:

un+1
M+1j+un+1

Mj

2
=gn+1

M+ 1
2 j

,
un+1

0j +un+1
1j

2
=gn+1

1
2 j

,

un+1
i0 +un+1

i1

2
=gn+1

i 1
2

,
un+1

iN+1+un+1
iN

2
=gn+1

iN+ 1
2

, (3.12)

and a Neumann boundary condition for ψn+1:

ψn+1
M+1j =ψn+1

Mj , ψn+1
0j =ψn+1

1j , ψn+1
iN+1 =ψn+1

iN , ψn+1
i0 =ψn+1

i1 . (3.13)

Remark 3.1. In (3.9), the terms p0j, pM+1j, pi0 and piN+1 occur in the gradient of the
pressure, but they are not given by the boundary conditions. Consequently, we use a
second order compact scheme [11] to compute them:

p0j =
5

2
p1j−2p2j +

1

2
p3j, pM+1j =

5

2
pMj−2pM−1j+

1

2
pM−2j,

pi0 =
5

2
pi1−2pi2+

1

2
pi3, piN+1 =

5

2
piN−2piN−1+

1

2
piN−2. (3.14)

Finally, the two steps of the algorithm are the following ones:

1. We compute the new velocities un+1 =
(

un+1,vn+1
)

from:

∆x∆y
3un+1

ij −4un
ij+un−1

ij

2∆t
−ν

[

∆y
un+1

i+1j−un+1
ij

∆x
+∆y

un+1
i−1j−un+1

ij

∆x

+∆x
un+1

ij+1−un+1
ij

∆y
+∆x

un+1
ij−1−un+1

ij

∆y

]

+2







∆y

2

(

pn
i+1j−pn

i−1j

)

∆x

2

(

pn
ij+1−pn

ij−1

)







−







∆y

2

(

pn−1
i+1j−pn−1

i−1j

)

∆x

2

(

pn−1
ij+1−pn−1

ij−1

)






+B̂

(

un,un−1
)

ij
=∆x∆yfn+1

ij , (3.15)
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where:

B̂
(

un,un−1
)

ij
=∆y

[

2Fn
u i+ 1

2 j
−Fn−1

u i+ 1
2 j

]

[

2
un

i+1j+un
ij

2
−

un−1
i+1j+un−1

ij

2

]

−∆y
[

2Fn
u i− 1

2 j
−Fn−1

u i− 1
2 j

]

[

2
un

i−1j+un
ij

2
−

un−1
i−1j+un−1

ij

2

]

+∆x
[

2Fn
v ij+ 1

2
−Fn−1

v ij+ 1
2

]

[

2
un

ij+1+un
ij

2
−

un−1
ij+1+un−1

ij

2

]

−∆x
[

2Fn
v ij− 1

2
−Fn−1

v ij− 1
2

]

[

2
un

ij−1+un
ij

2
−

un−1
ij−1+un−1

ij

2

]

.

Near the boundary, we use (3.12) and Remark 3.1.

2. To compute the pressure pn+1, we first compute ψn+1 from:

∆y
ψn+1

i+1j−ψn+1
ij

∆x
+∆y

ψn+1
i−1j−ψn+1

ij

∆x
+∆x

ψn+1
ij+1−ψn+1

ij

∆y
+∆x

ψn+1
ij−1−ψn+1

ij

∆y

=
1

2∆t

[

∆y
[

(

3Fn+1
u i+ 1

2 j
−4Fn

u i+ 1
2 j

+Fn−1
u i+ 1

2 j

)

−
(

3Fn+1
u i− 1

2 j
−4Fn

u i− 1
2 j

+Fn−1
u i− 1

2 j

)

]

+∆x
[

(

3Fn+1
v ij+ 1

2

−4Fn
v ij+ 1

2
+Fn−1

v ij+ 1
2

)

−
(

3Fn+1
v ij− 1

2

−4Fn
v ij− 1

2
+Fn−1

v ij− 1
2

)

]

]

, (3.16)

using the boundary conditions (3.13).

Then, we easily obtain the pressure:

pn+1
ij =ψn+1

ij +2pn
ij−pn−1

ij −
ν

∆x∆y

[

∆y
(

Fn+1
u i+ 1

2 j
−Fn+1

u i− 1
2 j

)

+∆x
(

Fn+1
v ij+ 1

2

−Fn+1
v ij− 1

2

)

]

. (3.17)

3.3 Computation of the fluxes

As in Section 2, the way used to interpolate the fluxes is essential because it determines
the coupling between the velocities and the pressure. The simplest method, a linear inter-
polation, is also not sufficient to exclude the spurious modes in the case of this splitting
method.

To prevent here the checkerboard oscillations we have used a pressure-weighted in-
terpolation [17] as for the projection method. However, a relaxation coefficient θ≤1 must
be added in front of the small regularizing term in the continuity equation (3.16). This
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means that the fluxes are computed by:

Fn+1
u i+ 1

2 j
=

un+1
i+1j+un+1

ij

2
+θ

∆y

4a

(

pn
i+2j−2pn

i+1j +pn
ij

)

−θ
∆y

4a

(

pn
i+1j−2pn

ij +pn
i−1j

)

,

Fn+1
v ij+ 1

2

=
vn+1

ij+1+vn+1
ij

2
+θ

∆x

4a

(

pn
ij+2−2pn

ij+1+pn
ij

)

−θ
∆x

4a

(

pn
ij+1−2pn

ij +pn
ij−1

)

. (3.18)

Remarks 2.2 and 2.3 are still valid (modulo the coefficient θ), and thus justify the fact
that the spurious modes are annihilated. In Remark 3.2 we explain why a relaxation θ
has to be added in front of the small regularizing term.

Remark 3.2. To explain the influence of θ, we study the order of the left hand side of the
continuity equation. In the case of the projection method, we have:

∆y
δpn+1

i+1j−δpn+1
ij

∆x
+∆y

δpn+1
i−1j−δpn+1

ij

∆x
+∆x

δpn+1
ij+1−δpn+1

ij

∆y
+∆x

δpn+1
ij−1−δpn+1

ij

∆y

≃∆x∆y[△(∆tpt)]
n+1
ij ,

and for the splitting method we find:

∆y
ψn+1

i+1j−ψn+1
ij

∆x
+∆y

ψn+1
i−1j−ψn+1

ij

∆x
+∆x

ψn+1
ij+1−ψn+1

ij

∆y
+∆x

ψn+1
ij−1−ψn+1

ij

∆y

≃∆x∆y
[

△
(

∆t2 ptt+ν divu
)]n+1

ij
.

We note that the left-hand side of the continuity equation of the splitting method is
smaller than that of the projection method but in both cases the regularizing term has
the same order. Moreover, we have also noticed that the splitting method does not work
when the regularizing term is too large. So, to control the influence of this added term,
we use the relaxation coefficient θ. For θ = 1/4, we have obtained for several analytic
benchmarks the expected accuracy for the pressure (order 2) without spurious modes.
Consequently, we have used this value for all the numerical results presented in the next
section. However, for other simulations, it is possible to have to change this value.

4 Numerical results

This section presents the numerical results of the two previously considered time dis-
cretizations with the same colocated space discretizations. In the following, we call
“PMFV” the scheme using the projection method and we call “GSFV” the scheme us-
ing the splitting method of [7].

First, to obtain the space and time accuracies of the schemes, we choose the source
term corresponding to an exact solution given as an analytical function. Then, we solve
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the model problem of the driven cavity flow, in which the fluid is enclosed in a unit
square box, with an imposed constant velocity in the horizontal direction on the top
(driven) boundary, and a no-slip condition on the remaining walls. At the end of the
section, we give some concluding remarks.

4.1 Tests of the spatial and time accuracies

4.1.1 Spatial accuracy

Here, to be able to compute the approximation error, the source term f is such that the
solution of the problem (1.1)-(1.2) is:

p(x,y,t)=cos(πx)sin(πy)sin(t),

u(x,y,t)=
(

πsin(2πy)sin2(πx)sin(t),−πsin(2πx)sin2(πy)sin(t)
)

. (4.1)

To obtain the spatial accuracy of the schemes, we fix the time-step ∆t = 10−3 and solve
the Navier-Stokes equations using the two methods presented in Sections 2 (“PMFV”
method) and 3 (“GSFV” method) with different space steps ∆x=∆y=1/10,1/20,··· ,1/60.
Moreover, the final time is T =1 and the Reynolds number is Re=100.

We show in Fig. 2 the error on the velocity measured in the kinetic energy (L2-) norm
and in the enstrophy (H1

0-) norm for both methods “PMFV” and “GSFV”. In Fig. 3, we
present the error on the pressure measured in the L2-norm.

The results show that, as expected, the velocity and the pressure approximations are
second-order accurate for all the norms considered and for both time discretizations.

4.1.2 Time accuracy

Now, we study the time accuracy of the schemes using the same analytical solution (4.1).
Here, the expected time order accuracy for the velocity and the pressure is ∆t2, so we
must choose a very small space-step ∆x≪∆t such that the approximation error in space
does not become more important than the approximation error in time. In fact, for both
methods “PMFV” and “GSFV” when they are used to solve the Navier-Stokes equations,
we can not take a small space-step ∆x without taking also a very small time-step ∆t due
to the usual stability condition deriving from the explicit time discretization of the non-
linear term of (1.1)-(1.2). However, to still obtain an idea of the time order accuracy of
the schemes, we can circumvent this difficulty by solving the Stokes equations. Conse-
quently, we have removed the nonlinear term in the schemes and we solved the Stokes
equations with a fixed space-step ∆x=∆y=1/200 and different values for the time step
10−2≤∆t≤5.10−1. The final time is T =18 and the Reynolds number is Re=100.

We show in Fig. 4 that the velocity of the “PMFV” and “GSFV” methods are both
second-order time accurate in the L2-norm and in the H1

0-norm. Moreover, in Fig. 5,
the results clearly show that the time order of the pressure approximation of “PMFV” is
only equal to 1.6, whereas the pressure approximation of “GSFV” is truly second-order.
This difference can be attributed to the presence in the “PMFV” method of numerical
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Figure 2: Space discretization error on the velocity at the final time (Navier-Stokes problem, ∆t=10−3, Re=100).
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Figure 3: Space discretization error on the pressure
at the final time (Navier-Stokes problem, ∆t=10−3,
Re=100).

boundary layers which are induced by the fact that the boundary condition enforced by
the approximate pressure, namely ∂(pn+1−pn)/∂n|∂Ω, is not consistent.

4.2 The driven cavity problem

In a second time, we show the numerical results obtained when we solve the Navier-
Stokes problem in the model problem of the driven cavity. The driven boundary condi-
tions are given by:

giN+ 1
2
=(1,0) for i=1,··· ,M, gi 1

2
=(0,0) for i=1,··· ,M,

gM+ 1
2 j =(0,0) for j=1,··· ,N, g 1

2 j =(0,0) for j=1,··· ,N.
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Figure 4: Time discretization error on the velocity at the final time (Stokes problem, ∆x=∆y=1/200, Re=100).
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Figure 5: Time discretization error on the pressure
at the final time (Stokes problem, ∆x=∆y=1/200,
Re =100). The error is of order 2 for GSFV and of
order 1.6 only for PMFV.

First, in order to validate the schemes, we compare the velocity profiles of “PMFV”
and “GSFV” with the velocity profiles of Ghia [6]. Figs. 6 to 9 show the u-velocity along
the vertical line passing through the center and the v-velocity along the horizontal line
passing through the center. The computations have been done for several Reynolds num-
bers, Re=100, 1000, 3200 and 5000, with 128×128 control volumes. The velocity profiles
of the schemes “PMFV” and “GSFV” are similar to the results of [6] expect for higher
Reynolds numbers, Re=3200 and Re=5000, due to the fact that in [6] a very small space-
step is used.

Then, on the next figures, we have drawn the contours of the vorticity, streamfunction
and pressure for each scheme for two values of the Reynolds number: Re =1000, Fig. 10
and Re = 5000, Fig. 11. Until Re = 1000, we do not see any differences on the vorticity,
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Figure 6: Comparison between “PMFV” and Ghia [6]: the horizontal velocity profiles (Navier-Stokes problem).
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Figure 7: Comparison between “GSFV” and Ghia [6]: the horizontal velocity profiles (Navier-Stokes problem).
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Figure 8: Comparison between “PMFV” and Ghia [6]: the vertical velocity profiles (Navier-Stokes problem).
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Figure 10: Vorticity, streamfunction and pressure contours for Re=1000 (Navier-Stokes problem).
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Figure 11: Vorticity, streamfunction and pressure contours for Re=5000 (Navier-Stokes problem).
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Figure 12: Incompressibilty for Re=1000 (Navier-Stokes problem).

streamfunction and pressure contours but when the Reynolds number is higher, some
little differences appear on the pressure contours. Moreover, we have also compared the
vorticity and streamfunction contours with those of [6] and we have seen that they are
similar. Furthermore, note also that we do not have any oscillations on the pressure due
to the specific flux interpolations, see Remark 2.3.

Finally, Fig. 12 shows the divergence of the velocities i.e. how the incompressibility
condition is satisfied. The divergence is of the order of 10−18 for the scheme “PMFV” and
of order 10−11 for the scheme “GSFV”. We are not surprised by this result as it is well-
known that for a projection method, the divergence is equal to the computer accuracy,
but this is not the case for a splitting method†.

Though the divergence of the velocities is not of the order of the computer accuracy
for the scheme “GSFV”, since it is smaller than the scheme error (i.e. O(∆x2+∆y2) and
O(∆t2)), it is therefore acceptable.

4.2.1 Concluding remarks

In this paper, we have presented two different time discretizations combined with a fi-
nite volume colocated space discretization. We have shown that the colocated space dis-
cretization, usually used with a projection method, can also be extended to other time
discretizations over previous projection method, like the splitting methods of [7]. The
main advantage of this splitting method is that the pressure approximation is truly of
second-order.

†In the terminology of [7], the projection methods are those introducing an intermediate velocity with an
equation like (2.3); the splitting methods do not.
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[15] M. Perić, R. Kessler and G. Sheuerer, Comparison of finite-volume numerical methods with

staggered and colocated grids, Comput. Fluids, 16(4) (1988), 389-403.
[16] C. Prakash, A finite element method for predicting flow through ducts with arbitrary cross

sections, PhD Thesis, University of Minnesota, 1981.
[17] C. M. Rhie and W. L. Chow, Numerical study of the turbulent flow past an airfoil with

trailing edge separation, AIAA J., 21(11) 1983, 1525-1532.
[18] C. M. Rhie, A numerical study of the flow past an isolated airfoil with separation, PhD

Thesis, University of Illinois, Urbana-Champaign, 1981.
[19] J. Shen, On error estimates of projection methods for Navier-Stokes equations: Second-order

schemes, Mathematica (Cluj), 65(215) (1996), 1039-1065.



S. Faure, J. Laminie and R. Temam / Commun. Comput. Phys., 4 (2008), pp. 1-25 25

[20] R. Temam, Sur l’approximation de la solution des equations de Navier-Stokes par la méth-
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