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Abstract. In this work, we propose an efficient multi-mesh adaptive finite element
method for simulating the dendritic growth in two- and three-dimensions. The gov-
erning equations used are the phase field model, where the regularity behaviors of the
relevant dependent variables, namely the thermal field function and the phase field
function, can be very different. To enhance the computational efficiency, we approxi-
mate these variables on different h-adaptive meshes. The coupled terms in the system
are calculated based on the implementation of the multi-mesh h-adaptive algorithm
proposed by Li (J. Sci. Comput., pp. 321-341, 24 (2005)). It is illustrated numerically
that the multi-mesh technique is useful in solving phase field models and can save
storage and the CPU time significantly.
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1 Introduction

Dendritic growth is a main ingredient of the solidification microstructures, which has be-
come one of the most interesting research topics in recent years. Most of the theoretical
and experimental works have been devoted in understanding the mechanism of pat-
tern selection during solidification procedure, since the microscopic properties of such
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procedure are determined by the length scale of dendrites. With the development of
the theories for mathematical models of solidification, numerical simulations have be-
come a powerful tool in investigating dendritic growth. Most theories of solidification
are based on the time dependent Stefan model, which describes the evolution of ther-
mal field around the solidification interface by the well-known heat equation with two
boundary conditions: the Stefan condition [16] and the Gibbs-Thomson condition [9].
The solution of Stefan model can be approximated by that of the phase field model [4],
which avoids the task of tracking the interface. The phase field model uses a phase field
variable φ(r), which is 1 in solid phase and −1 in liquid phase. Meanwhile, the value of
φ decreases from 1 to −1 very rapidly within a small width W near the interface; thus the
level set φ(r)=0 represents the interface implicitly.

It was originally shown by Caginalp and Chen [3] if W is much smaller than the cap-
illary length d0 then the phase field model converges to the sharp interface limit. With
smaller value of W, more computational cost should be paid since the smallest element
parameter ∆x should be much smaller than W in order to fully resolve the interface. This
requirement prevents us from using very small W which is close to the physical reali-
ties. Another limitation which seriously restricts the use of the phase field simulation is
that the interface kinetics β should be big enough to ensure the convergence due to the
Gibbs-Thomson boundary condition. But physically, it is important to simulate solidi-
fication microstructures in the limit of zero interface kinetics because most experiments
performed at low undercooling are within this limit. In 1996, Wang and Sekerka [21]
showed that the phase field simulations of dendritic growth are independent of compu-
tational parameters, but the results are only feasible in a range of large undercooling.
Karma and Rappel [9,10] demonstrated that such limitations can be less harmful by pro-
viding the understanding in their new asymptotic analysis. It is revealed that the phase
field approach can be extended to the case of arbitrary small or even zero β, and the lim-
itation on W is not so stringent. These results made it possible to simulate more physical
cases in large interface width W and low undercooling. As an important advantage of
phase field model, it should be mentioned that its extension to three dimensional case is
straightforward.

For solving the phase field models for dendritic solidification, the finite difference
method on uniform mesh is utilized in [9, 10, 20] due to its simplicity. In the work of
Provatas et al. [15], the adaptive finite element method is applied to the phase field model
of dendritic growth in pure melt. The purpose of adaptive mesh refinement is to reduce
computational cost so that simulations of larger scale problems become possible with
currently available computational resources. In their simulations the smallest element
size δx is much smaller than W; and the ratio of the system size to the smallest element
size is even greater than 217. Most numerical methods will fail to work in such case,
while the adaptive mesh refinement scheme can make the computation possible. The
numerical results of [15] indicated the adaptive finite element method can produce quite
satisfactory phase field solutions at high undercooling.

The thermal field u is one of the variables in the phase field model. It is interesting
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that u and the phase function φ have different singularity behaviors. Since φ is to provide
the interface information, it only needs to be fully resolved near the transient layers. On
the other hand, the thermal field u is evolved based mainly on the thermal diffusive
coefficients of the material under consideration. It is possible that there are large solution
gradients for u, but they are often much milder than those of φ. Moreover, in general the
locations for the large gradients for u and φ are very different, especially when complex
dendritic structures are formatted. Solution-wise, the structure of φ is much simpler than
u: φ is constant in the interior parts of both solid bulk and liquid bulk with a small
distance from the interface, while u changes gradually in the whole solution domain
as pointed out in [15]. To fully resolve the phase field, most of the element should be
clustered in a small region around the interface with a small width W. If only a single
mesh where used, then the thermal field u would be seriously over-resolved near the
interface.

Motivated by the above observations, we will in this work explore the possibility
of approximating φ and u on two different adaptive meshes. The purpose of using the
multi-mesh strategy is to reduce the overall computational costs while still maintaining
high accuracy. Moreover, there is an additional advantage in using the multi-mesh ap-
proach: to approximate more than one variables on one adaptive mesh, the mesh adap-
tive indicator is often a linear combination of the contributions from all variables. The
strategy in choosing these coefficients is highly problem dependent. On the other hand,
it is relatively easier to approximate only one variable on the adaptive mesh. In this case,
it can be achieved by controlling the size of the minimal element. For the multi-mesh
approximation method, we can take this advantage to approximate each variable on its
own mesh.

In the implementation of the multi-mesh approximation, a key technical problem is
how to calculate the coupled terms in the governing equations, which involves the nu-
merical quadratures on two different meshes. This will be done by using the multi-mesh
h-adaptive algorithm proposed in [12] and the finite element package AFEPack [13].

The layout of this paper is as follows. In Section 2 we introduce the phase field model
and in Section 3 we give the finite element discretization for the governing equations
on static meshes and on multi-meshes. In Section 4, we demonstrate the performances of
our adaptive scheme in two- and three-dimensions, respectively. The concluding remarks
will be given in the final section.

2 The phase field model for dendritic growth

We consider the phase field model in two-dimensions as proposed by [15]

∂u

∂t
= D△u+

1

2

∂φ

∂t
, (2.1)
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τ(n)
∂φ

∂t
=∇·(W2(n)∇φ)+(φ−λu(1−φ2))(1−φ2)

+
∂

∂x

(
|∇φ|2W(n)

∂W(n)

∂φx

)
+

∂

∂y

(
|∇φ|2W(n)

∂W(n)

∂φy

)
, (2.2)

where u=cP(T−TM)/L is the rescaled thermal field, cP the specific heat at constant pres-
sure, L is the latent heat of fusion and TM is the melting temperature of the solid phase;
D is the diffusion parameter of the thermal field, supposing it take the same value both
in solid phase and liquid phase. In the case of different values for D in solid and liq-
uid phases, the corresponding convergence analysis can be found in Almgren [1]. The
interface width W(n) and τ(n) are defined as following

W(n)=W0 A(n), (2.3)

τ(n)=τ0 A(n)2, (2.4)

where W0 and τ0 are constants for the scale of spatial and the time respectively, and

A(n)=(1−3ǫ4)

(
1+

4ǫ4

1−3ǫ4

φ4
x+φ4

y

|∇φ|4

)

introduces the anisotropic factor. Here the parameter ǫ4 represents the measure of the
anisotropy which causes the deviation of W from W0. The unit vector

n=(φ2
x+φ2

y)
− 1

2
[
φx,φy

]T
(2.5)

is the normal direction to the contour of φ, implicitly defined in (2.3), where φx and φy

represent the partial derivatives of φ. There are several other ways to define anisotropy,
and here we adopt the way proposed in [10] as described above.

We focus on the simulation in the limit of zero kinetics, which can approximate the
Stefan problem more accurately. Due to the asymptotic analysis by Karma and Rappel
[9], it is reasonable to simulate phase field model for dendritic growth with zero kinetic
parameter β, which is defined by

β=
a1τ0

λW0

[
1−λa2

W2
0

Dτ0

]
, (2.6)

where a1 = 0.8839 is for the particular form of the free energy of surface tension and
a2 =0.6267 is for the choice of the free energy functional as proposed in [10]. Obviously,
β=0 means that

λ=
1

a2

Dτ0

W2
0

, (2.7)

which help us to simulate the limit cases of vanishing interface kinetics.
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In (2.2), the nonlinear term

f (φ,u;λ)=(φ−λu(1−φ2))(1−φ2)

is referred to as the derivative of double well potential with respect to φ. In this case, u
and φ are coupled via the constant λ of order O(1) and come from so called the Isother-
mal Variational Form (IVF) as described in [15]. Another simpler choice of f (φ,u;λ) is
called the Variational Form (VF), however, it is pointed out in [10] that the IVF model can
provide more rapid convergence rate while the VF can produce an unphysical spurious
branch of steady state growth solutions in high velocity. Therefore, we choose the IVF for
f in current research. Moreover, there is an important quantity named capillary length,
which can be approximated by

d0(n)=
a1

λ
W(n).

in the isotropic case. It reflects the interface width in some sense, and the minimum
element size for φ near the interface should not larger than this value. For further de-
scription on the model problem, we refer to [10, 15].

In three dimensional case, the system is only slightly different:

∂u

∂t
= D△u+

1

2

∂φ

∂t
, (2.8)

τ(n)
∂φ

∂t
=∇·(W2(n)∇φ)+(φ−λu(1−φ2))(1−φ2)

+
∂

∂x

(
|∇φ|2W(n)

∂W(n)

∂φx

)
+

∂

∂y

(
|∇φ|2W(n)

∂W(n)

∂φy

)

+
∂

∂z

(
|∇φ|2W(n)

∂W(n)

∂φz

)
, (2.9)

where the definition of anisotropic term is given by

W(n)=W0(1−3ǫ4)

(
1+

4ǫ4

1−3ǫ4

φ4
x+φ4

y+φ4
z

|∇φ|4

)
. (2.10)

The two- and three-dimensional models were solved in Wang et al. [19] using a r-adaptive
finite element method. The r-adaptive methods for phase-field problems have been stud-
ied recently, see, e.g., [2] for solving one- and two-dimensional phase-field problems.
In [19], the governing equations are solved in the physical domain and the meshes are re-
distributed in the physical domain using a strategy proposed in [5]. This approach makes
efficient simulations in three space dimensions possible. It will be demonstrated in this
work that the efficiency can be further enhanced by using multi-mesh adaptive methods.

3 The adaptive finite element solution on two meshes

For ease of demonstrations, we only describe the discretization for two dimensional case.
The three-dimensional implementation can be obtained similarly particularly with the
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use of AFEPack software. We first introduce the finite element discretization of the
phase field models (2.1)-(2.2) using multi-mesh strategy. The main difference between
our scheme and the composite field scheme [15] is that we discretize the two equations
on two different meshes by considering solution regularities of multi-variables.

3.1 The finite element discretization

The computational domain is as simple as a rectangle [−Lx,Lx]×[−Ly,Ly]. As has been
done in the references, it is sufficient to consider the problem on the positive quarter of
the domain: Ω = [0,Lx]×[0,Ly]. We can further choose the computational domain even
half of the quarter domain due to the symmetry to the line y= x. For the two variables φ
and u, we denote their own meshes by △φ and △u, respectively. It is pointed out that they
are both generated from the same background mesh on Ω. We also denote the piecewise
linear finite element spaces by Vh(△φ) and Vh(△u) corresponding to △φ and △u. Then
we consider the finite element approximations of unknown functions φ and u as

φh =
Nφ

∑
i=1

φiNi(△φ), uh =
Nu

∑
i=1

uiNi(△u),

where {φi}Nφ

i=1 and {ui}Nu

i=1 are the coefficients for phase field variable and thermal field
variable, with Nφ and Nu being the dimensions of Vh(△φ) and Vh(△u), respectively.

{Ni(△φ)}Nφ

i=1 and {Ni(△u)}Nu

i=1 are the finite element basis for Vh(△φ) and Vh(△u). For
convenience, we also denote their coefficients as Φ and u if there is no confusion would
arise. Then the standard Galerkin finite element method yields the semi-discretization
formulation for (2.1)-(2.2):

Mu
∂u

∂t
= DKuu+

1

2

∂Φ

∂t
, (3.1)

Mφ
∂Φ

∂t
=KφΦ+Fφ, (3.2)

where the Mu,Ku,Mφ,Kφ are matrix whose entries are

Mu(i, j)=
∫

Ω
Ni(△u)Nj(△u)dxdy,

Ku(i, j)=
∫

Ω
∇Ni(△u)·∇Nj(△u)dxdy,

Mφ(i, j)=
∫

Ω
τ(n)Ni(△φ)Nj(△φ)dxdy,

Kφ(i, j)=
∫

Ω
W(φh)

2∇Ni(△φ)·∇Nj(△φ)dxdy,
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and Fφ is a vector whose i-th entry is:

(Fφ)i =
∫

Ω

[
f (φh,uh;λ)Ni(△φ)−|∇φh|2W(φh)

×
(∂W(φh)

∂φx

∂Ni(△φ)

∂x
+

∂W(φh)

∂φy

∂Ni(△φ)

∂y

)]
dxdy,

for 1≤ i≤Nφ. The system (3.1)-(3.2) turns out to be a nonlinear ODE system since Mφ,Kφ

and Fφ all depend on φh. Following [18], we adopt the alternating Crank-Nicholson
scheme for the time discretization, which is actually composed of two steps of implicit
Euler scheme. Denote the time step length to be δt. Then the scheme can be formulated
by

(Mφ(φ
(i)
h )+δtKφ(φ

(i)
h ))Φ

(i+1) = Mφ(φ
(i)
h )Φ

(i)+δtFφ(φ
(i)
h ), (3.3)

(Mu+δtDKu)u(i+1) = Mu

(
u(i)+

1

2

(
Φ

(i+1)+Φ
(i)
))

, (3.4)

In [15], Eq. (3.2) is solved by the forward-difference (explicit) scheme and Eq. (3.1) is dis-
cretized by the Crank-Nicholson scheme. It is known that the explicit scheme is more
efficient than the implicit one but the former is stable only with sufficiently small time
steps. In our implementation, the implicit method is used for both (3.3) and (3.4), since
the multigrid solver for the resulting linear system is used which can speed up the solu-
tion procedure. Furthermore, it is observed that the implicit scheme used here for time
stepping is equivalent to second-order Crank-Nicolson scheme in terms of accuracy, but
its cost is similar to that of the implicit Euler scheme, see also [6, 18]. To have a better
understanding of our scheme, below we list the flow-chart of the algorithm.

Algorithm 1: Multi-mesh adaptive FEM for the phase field model.

Prepare the background mesh △0 for Ω;
Set the initial value for φ and u and obtain the initial mesh for △φ and △u;
while t<T do

Solve (3.3) and (3.4);
t= t+δt;
if the meshes are not updated after m (fixed constant) steps then

Update mesh △φ and φh;
Update mesh △u and uh;

end

end

The right hand-sides of (3.3) and (3.4) are the coupled terms of the two variables
defined on different meshes, so the calculation of those terms is a key point in solving
(3.3)-(3.4). We use the same algorithm proposed in [12], which takes the full advantages
of hierarchical mesh refinement algorithm and the tree type data structure for adaptive
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meshes, see also [11]. The main idea there is to use the fact that any intersection of two
elements from such two meshes is either empty or a simplex. Under such observation, the
interpolation for φ and u between the two meshes costs almost nothing. For more details
about the implementation, we refer to [12]. The resulting linear systems are solved by the
algebraic multigrid method [7, 8], which is implemented in [13]. In our simulations, 3 or
4 multigrid iterations are always enough for solving each linear system.

3.2 The mesh adaptation

A reasonable error indicator is important for the mesh adaptation. There are several
choices to construct error indicators and many works have been devoted to this subject,
among which [17] is a useful reference. It is known that the patch recovery technique [22]
is one of the most commonly adopted techniques in practice, see also [15], while the
residual type error estimator is simple and convenient to use. The latter one is based
on the gradient jump of finite element solutions on the interface of adjacent elements.
In [16], an explicit L2 error estimate for the associated elliptic problem of the thermal field
equation is utilized. In our work, the jumps of finite element solution on the interfaces
are used for both φ and u. For example, if uh is the finite element solution for the thermal
field equation then its heuristic error indicator can be chosen as

ηT(uh)=

(

∑
e∈∂T

∫

e
h3 |[[∇uh ·ne]]|2 dΓ

)1/2

,

where [[·]] denotes the jump on the interface and h is the length of edge e. Actually, the
above formulation is a residual-based explicit L2 error estimator for the Laplacian opera-
tor as given in [17], and the inner residual is vanished since we use linear finite element
spaces here. It is pointed out that the error estimators are generally not accurate enough
although it can indicate the error magnitudes. In our simulations, the simple error esti-
mator mentioned above is found effective for both φ and u.

The strategy for mesh refinement and coarsening is another important aspect in the
adaptive mesh algorithms. For single variable problems, there are some effective strat-
egy such as the fixed threshold rule and the equi-distribution principle [17]. The fixed
threshold rule is easy and stable in many cases, which is to equi-distribute the errors on
each element by ensuring the element error indicators ηT satisfying

θ ·tol≤ηT ≤ θ̄ ·tol,

where tol is the prescribed tolerance and 0< θ̄, θ < 1 are two constants. As a result, it is
sufficient to refine the elements where ηT > θ̄ and to coarse the elements where ηT < θ. In
practice, the tolerance is often chosen as

tol =
η√
N

=

(

∑
t∈△

η2
T/N

)1/2

.
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In fact, we observe that the choice of tolerance is not so sensitive to the convergence of the
adaptive algorithms. However, it can affect the density of elements at the interface. Thus
one can control the minimal element size near the interface by adjusting the tolerance to a
certain value. The numerical tests show that a tolerance between 0.001∼0.05 is reasonable
for φ and u.

The problems involving two or more dependent variables are more complex when the
variables are of different regularity behaviors. One feasible way is to define an composite
field as proposed in [15]:

ψ=φ+γu,

where γ>0 is a constant representing the weight of the contribution from u on the mesh
adaptation. The strategy to find the parameter γ is highly artificial. In [15], γ=0 to γ=4
are tested; but both variables can be over-refined or over-coarsened in certain parts of the
solution domain due to the different regularity behaviors in the solutions. The adaptive
mesh will generate additional transient region from the interface of φ to outside when
γ>0. As pointed out in [15], this is due to the fact that the main physics of solidification
only occurs around the interface whose area is much smaller than the whole domain.
Near the interface, φ varies significantly but becomes constant away from it; while the
thermal field u extends well beyond the interface varying much more gradually, which
permits a much coarser mesh to resolve it.

With the use of our multi-mesh algorithm, it is found that the number of elements for
△u is much less than that for △φ. In particular, when the topology of the interfaces is
more complicated, the ratio of number of elements for △u to that of △φ is even smaller.
As for △φ, the number of elements can also be reduced slightly due to the lack of influ-
ence from u.

4 Numerical simulations

In this section, we present the numerical results for both two- and three-dimensional
simulations. All computations are carried out on a Dell Precision 490 with core speed
3.0G. The initial uniform meshes in 2D are generated by software Easymesh [14]. We will
make full use of the symmetries of the problems in our implementation.

4.1 Two-dimensional validations: simple structure

Several two-dimensional benchmark results for dendritic growth are available in [10,15].
We take the same parameters as theirs for comparison. The following two cases are used
to validate our multi-mesh algorithm by verifying relevant known properties such as the
velocity of the steady state tips under different undercoolings. For high undercooling
cases, the triangle domain Ωc with vertices (0,0), (400,0) and (200,200) is employed for
computation instead of using the whole domain with Lx =Ly =800 (due to the symmetry
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of the solution). The initial mesh for both φ and u is a uniform mesh obtained by globally
refining Ωc five times. The initial phase field function is given by

φ0(x)=−tanh

( |x|−R0√
2

)
,

where R0 is set as a small number (relative to the domain size 800), say R0 =3, to approx-
imate a very small core of the initial solidification seed. The initial temperature decays
exponentially from u = 0 at interface to −∆ as x→∞. Fig. 1 presents some typical den-
dritic tip shapes and corresponding meshes for φ under different high undercoolings.
The shapes of the dendritic tips in these figures agree well with those given by [10]. It is
also observed that the adapted meshes for φ can capture the interface accurately.

Figure 1: Typical shapes of the dendritic tips with the domain size [−800,800]×[−800,800] and with ∆=0.45,
0.55 and 0.65 (from left to right). The contours of φ=0 are shown on the top and the corresponding meshes
for φ lie in the bottom. In all cases, ǫ=0.05.

The tip velocity is an important quantity which can be used to validate the numerical
results, where the value of tip velocity is rescaled by

Ṽtip =
Vtipd0

D
.

As in [10, 15], we plot in Fig. 2 the numerical and theoretical tip velocities under high
undercoolings, where the theoretical solvability constants are given in [10]. It is observed
that there is a good agreement between our numerical solutions and those predicated by
the solvability theory for high undercooling cases. For low undercoolings, it is observed
in [15] that the domain size can affect the dendritic growth significantly. In our computa-
tions, a quite large domain of size 6400×400 is used for cases of ∆=0.25 and ∆=0.3. It
is noted that the size in the y-direction is much smaller than that in the x-direction. As in
low undercooling cases, the size of domain can affect the crystal shape significantly, and
the use of a domain with small y-x ratio can avoid considering the influence between the
two directions. In other words, the small ratio simplifies the study of the 2D dendritic
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Figure 2: The time evolution of the tip-velocity for high undercoolings ∆=0.45,0.55,0.65. The data for ∆=0.55
and 0.65 have been shifted up by 0.025 for clarity. ǫ=0.05 in all cases.
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Figure 3: The time evolution of the tip-velocity for low undercoolings ∆ = 0.25 and 0.3. The data are shifted
up by 0.01 for case ∆=0.25 and 0.025 for case ∆=0.3. ǫ=0.05 in both cases.

shape to some variations in one direction. The value of λ in (2.7) is suitably chosen to
correspond the cases of β=0 and D=13. A proper tolerance for mesh adaptation is used
to ensure that the minimal grid size is about 0.8, by which we can resolve the interface
as demonstrated in [10]. Smaller minimal grid sizes are also tested, and the resulting in-
terfaces are graphically indistinguishable with those obtained by using the minimal grid
size 0.8. In Fig. 3, we show the time evolution of the tip-velocity for the low undercooling
cases. It is observed that initially the tip velocity is larger than that predicated by the
solvability theory but approaches to the theoretical predications with the time evolution.
This phenomena is also reported in [15].
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Figure 4: The simulation result with ∆ =0.70, D =2, ∆t=0.1 and ǫ =0.05. Left: clock-wisely from upper-left
is the contour of u, contour of φ= 0, △φ and △u at T = 1000. Right: zoomed part inside the marked box in
the left figure.

Figure 5: Left: the adapted meshes (bottom) and the solution profiles (top) for the dendritic structures with
∆=0.65, D=3 and ǫ=0.05 at T =1000. Right: zoomed part at the bottom of the left figure.

4.2 Two-dimensional validations: complex structures

Now we present two more examples to demonstrate the advantages of the multi-mesh
approach. In the first example, the parameters used are ∆=0.70, D =2, ∆t=0.1, ǫ=0.05
and λ is still chosen to make β = 0. The tolerance for mesh adaptation is also chosen
to ensure that the smallest element size for △φ is approximately 0.8. Fig. 4 shows the
solution contours and the corresponding meshes for both φ and u at 104 time steps (i.e.,
T = 1000). It is obvious that △φ is much dense than △u, which is easily seen from the
right figure of Fig. 4. In fact, the ratio of the numbers of element △φ to that of △u is about
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Figure 6: Meshes for u (left) and φ (right) which are given in the center boxing area in Fig. 5.

10 : 1. Since a great deal of elements are saved, the present simulation costs only about 3
hours on the Desktop computer.

The final 2D example is to consider a more complex dendritic structure, with ∆=0.65
and D =3. In Fig. 5, we plot the adapted meshes for φ and u together with their solution
profiles; while in Fig. 6, a zoomed part in Fig. 5 is plotted. It is observed from both
figures that the structure of the dendritic growth becomes very complex. As a result, the
configurations of △φ and △u are very different. It is obvious that with a single mesh
much more elements are needed to resolve such configurations. In this case, to reach the
same accuracy the multi-mesh approach requires at most half of the CPU times needed
for a single mesh.

4.3 Three-dimensional simulations

The three-dimensional simulations are more challenging, partly due to the need of a large
storage. Thus there have been very few three-dimensional results available in the liter-
ature. Our simulations are performed on a tetrahedron domain with vertices (0,0,0),
(300,0,0), (150,150,0) and (100,100,100), which utilizes the solution symmetry. The ini-
tial meshes are obtained by using 5 uniform refinements from the background mesh with
only one element. Since the anisotropic cases are of the major interests in the present
work, the parameter ǫ in (2.10) is always chosen as 0.05. We perform the simulations
with several groups of other physical parameters.

The first case corresponds to ∆ = 0.55, D = 1, and the resulting dendritic shapes at
three different time steps are presented in Fig. 7. In this case, the shape of the crystal
is relatively simple, so that the degree of freedoms (DOFs) used for u becomes almost a
constant after t≈200, see Fig. 10(a). When D becomes larger, more complex structure are
presented, so that D=1.4 is used the next two simulations. The results for three different
time levels are shown in Fig. 8 for ∆=0.45 and in Fig. 9 for ∆=0.55. In both simulations,
the side-branchings are observed which agrees well with the observation in [15]. It is also
noted that the shapes are also very similar in both cases, but the case ∆=0.55 yields much
faster growing rate. It seems that D dominates the complexity of the shapes and ∆ affects
the tip shape and velocity significantly.
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Figure 7: The patterns with ∆=0.55,D=1,∆=0.1 and ǫ=0.05 at T=50 (top left), 130 (bottom left) and 200
(right). The coordinate box is sized 100×100×100.

Figure 8: The dentritic patterns for ∆ =0.45, D =1.4 and ǫ =0.05 at T =50 (top left), 110 (bottom left) and
160 (right). The time-step is ∆=0.1 and the coordinate box is sized 100×100×100.

Figure 9: The dentritic patterns for ∆=0.55, D=1.4 and ǫ=0.05 at T =26 (top left), 52 (bottom left) and 78
(right). The time-step is ∆=0.1 and the coordinate box is sized 100×100×100.
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All the above simulations cost less than 5 hours each using our desktop computers.
To show the desired features of the multi-mesh algorithm, we further compare the DOFs
needed for φ and u in Fig. 10. As expected, initially both φ and u use similar number of
DOFs since they start from the same initial mesh. This is necessary since the resolution
of u should be high enough to catch the temperature distribution around the tiny initial
core. As the dendrites grow, the costs for φ increases almost exponentially, while the
cost for u keeps almost a constant after some integration time. This is due to the mild
regularity of u. On the other hand, the number of unknowns for φ becomes large due
to the fast development of the phase interfaces. In fact, when the dentritic structures
become more complicated, our multi-mesh algorithm is more useful due to the storage
and CPU savings in computing u.
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Figure 10: Degree of freedoms for φ and u with (a): ∆=0.55, D=1, and (b): ∆=0.45, D=1.4.

It is observed from Fig. 10 that the DOF of temperature becomes almost a constant
after some time. The dendrite is still growing, so the interface becomes larger and larger.
It may be of concern that the smaller portion of DOF for the temperature may cause
the lose of accuracy. This turns out not be a problem since the temperature changes
much more slowly than the phase variable. As the variation for the temperature field is
slow, the small number of DOFs used for u is found sufficient in obtaining reasonable
resolution even after a long integration time.

Several other types of dendritic pattern can be obtained by using different parameters.
As an example, Fig. 11 presents a typical complex pattern obtained with ∆ = 0.45 and
D=3.5. It is also observed that the ratio of the DOFs used for φ and u is even beyond 30:1
for this test case.
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Figure 11: A complex 3D pattern with ∆=0.45, D=3.5 and ǫ=0.05, which is compared to the coordinate box
sized 100×100×100.

5 Concluding remarks

In this work, we have developed a multi-mesh adaptive finite element method to sim-
ulate the crystallization of a pure melt governed by the anisotropic phase field model.
The thermal field variable and the phase field variable are approximated on different
meshes. As a result, the computational cost can be saved significantly as different solu-
tion behaviors of the dependent variables are utilized. The numerical results of the tip
velocity in two space dimensions are in good agreement with the predictions of the solv-
ability theory, both for the high and low undercooling cases. It is demonstrated that our
algorithm can be used to simulate very complex dendritic structures in both two- and
three-dimensions. Our next step is to simulate multi-component alloy crystallization and
large steel ingot solidification by using the method proposed in this work.
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