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Abstract. In [J. Comput. Phys. 192(1), pp.325-354 (2003)], we have developed a multi-
domain spectral method with stable and conservative penalty interface conditions for
the numerical simulation of supersonic reactive recessed cavity flows with homoge-
neous grid. In this work, the previously developed methodology is generalized to
inhomogeneous grid to simulate the two dimensional supersonic injector-cavity sys-
tem. Non-physical modes in the solution generated at the domain interfaces due to the
spatial grid inhomogeneity are minimized using the new weighted multi-domain spec-
tral penalty method. The proposed method yields accurate and stable solutions of the
injector-cavity system which agree well with experiments qualitatively. Through the
direct numerical simulation of the injector-cavity system using the weighted method,
the geometric effect of the cavity wall on pressure fluctuations is investigated. It is
shown that the recessed slanted cavity attenuates pressure fluctuations inside cavity
enabling the cavity to act potentially as a stable flameholder for scramjet engine.

AMS subject classifications: 65M12, 65M70, 76J20

Key words: Penalty interface conditions, weighted multi-domain spectral penalty methods, su-
personic recessed cavity flame-holder, compressible Navier-Stokes equations.

1 Introduction

Spectral methods have been actively used in the computational fluid dynamics commu-
nity in the last decades due to the merit of high order accuracy maintained for long time
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integration. Spectral methods have been also applied to highly complex fluid systems
and have been proven to yield accurate solutions even with the stiff or discontinuous
spatial gradients. These systems include the supersonic shock bubble interactions [12],
the supersonic cavity flows [11], the Ritchmyer-Meshkov instability [20, 21] and etc. The
difficulty of implementing the spectral method to these complex fluid systems is to deal
with the nonsmooth spatial gradients successfully. The discontinuous solution is com-
monly found in most high speed fluid mechanical systems. The spectral approximation
of such solution yields spurious oscillations near the discontinuity, known as the Gibbs
phenomenon. These Gibbs oscillations deteriorate both the accuracy and stability in gen-
eral. The essential methodology to deal with such oscillations in the spectral solution is
the spectral viscosity or filtering methods [5, 16, 22, 25]. The filtering which is mathemat-
ically equivalent to the spectral viscosity method but practically more efficient, is used
to stabilize the flow fields over the time integration. The filtering reduces the high order
oscillations by attenuating the high modes in the solution. The filtering method can be
applied either globally or locally. By applying the filtering locally one can obtain more
accurate solution in the smooth region. Thus it is desirable to separate the locally nons-
mooth regions from the global smooth region. A multi-domain spectral method has been
developed to address this problem [8, 11, 13, 14, 17–19], with which the physical domain
is split into multiple subdomains. For the multi-domain spectral method, the proper in-
terface conditions should be imposed at the domain interfaces. The simplest condition is
the averaging method. With the averaging method, the flow field at the domain interface
is obtained by averaging the two adjacent solutions across the interface. Thus the con-
tinuity of the solution is ensured with the averaging method. Although this method is
simple and efficient to be implemented, it may cause the generation of nonphysical solu-
tions at the interface if the two adjacent subdomains have different grid resolutions near
the interface, i.e. if the grid system is inhomogeneous. We define the grid inhomogeneity
as the grid configuration such that the grid resolutions between the adjacent subdomains
across the domain interface are different. Such difference can be obtained by having each
domain have either different order of polynomials or different domain length. If the grid
distribution is inhomogeneous, the stable interface conditions derived for the homoge-
neous grid system are not enough and one needs to find the conditions with which the
spatial inhomogeneity can be addressed properly.

At the domain interface of two adjacent subdomains which have the degree of poly-
nomials, N1 and N2, and the domain lengths ∆I and ∆I I in the x-direction, respectively,
the ratio of the grid spacing between ∆x1 and ∆x2 at the interface is approximately given
by

∆x2

∆x1
=

∆I I

∆I
·

N2
1

N2
2

. (1.1)

If the grid spacing ratio ∆x2/∆x1 is different and far from unity, we consider it as the
inhomogeneous grid system. If ∆x2/∆x1=1, the grid is homogeneous, and the averaging
method can play an efficient role as a stable interface condition. However, if the ratio
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is far from unity, the simple averaging interface condition can cause the growth of the
solution at the domain interface. In the real computation, the values of N1,N2 and ∆I ,∆I I

are chosen such that ∆x2/∆x1 becomes close to unity. The current work centers around
the development of the method dealing with the solution in inhomogeneous grid system,
i.e., when ∆x2/∆x1 6=1.

In [11], we performed a 2D direct numerical simulation (DNS) of the recessed cavity
flows with the multi-domain spectral penalty method under the condition that the grid
is homogeneous. In [11], the spacing and the number of collocation points in each subdo-
main are the same in each dimension. In this study, we extend the previous work to the
inhomogeneous grid system to consider the injector-cavity system with the local hydro-
gen fuel injector. The crucial part of the DNS of the injector-cavity system is to resolve the
hydrogen jet injector without causing any instability or nonphysical growing modes at
the domain interfaces. The ratio of the injector to the cavity length scale is about O(10−1).
We use a smaller subdomain with higher order polynomials to resolve the hydrogen jet.
In Fig. 1 the local domain configuration is shown for the cavity flameholder with (left fig-
ure) and without (right figure) the injector. The local domain configuration shown in the
right figure is the typical domain system used in [11] for which the homogeneous grid
system is used. The grid system in the left figure is inhomogeneous as the local injector
is placed in the narrow domain.
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Figure 1: Left: Local domain configuration of the normal injector-cavity flame-holder. Right: Local domain
configuration of the normal cavity without injector. The initial physical configuration of the injector-cavity
flame-holder is given in the legend box, where M denotes the Mach number, Re the normalized Reynolds
number, Pt the baseline total pressure, Tt the baseline total temperature, and L/D the length to depth ratio of
cavity.

In [11], the stability analysis has been done with the assumption that each subdomain
has the same length but can have different polynomial orders. With different polynomial
orders, the stability is still maintained. In this work, we further show that the stability
can be also maintained with the different domain length. That is, the stability can be
obtained for fully inhomogeneous grids.

The stability conditions obtained are only necessary conditions. There can be nonre-
flecting modes in the solution at the inhomogeneous domain interface that can yield a
growth in time. A weighted spectral penalty method is proposed in order to minimize
such nonphysical reflecting modes. We note that in [8] the multidomain spectral method
has been also used for the localized incompressible stratified turbulence flows in which
the strong adaptive averaging method has been used with the spectral filtering technique.
In our work, we observe that the averaging method with the filtering technique does not
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yield a smooth profile across the inhomogeneous grid interface for the compressible su-
personic flows. This is due to the fact that the averaging method does not guarantee
the stability for the inhomogeneous grid as shown in the following sections. The major
developments of the current work are as follows:

• A generalized conservative and stable penalty conditions are derived for the inho-
mogeneous grid system.

• The weighted spectral penalty method is developed to minimize the non-physical
growth modes at the inhomogeneous domain interfaces.

Here we note that the 2D extension of the weighted penalty method is mainly based
on the 1D method without a full consideration of corners in 2D geometry. As we will
mention in the paper, however, the numerical experiments indicate that the proposed
model based on the 1D method is stable and accurate.

Using the proposed weighted penalty method, we carry out the 2D DNS of the injector-
cavity system. Cavity is an efficient flame-holder of scramjet engine as it generates the
self-sustained recirculation region. The hot radicals from the chemical reactions residing
in the recirculation region reduce the induction time and consequently maintain the auto-
ignition. For the continuous auto-ignition and better fuel efficiency, such recirculation
region should be stable for long time. In addition to the recirculation, the self-sustained
acoustic oscillations bouncing back and forth inside cavity disturb the recirculation gen-
erating pressure fluctuations. The geometry of cavity is an important parameter for main-
taining a stable recirculation while reducing the pressure oscillations. It is shown in [11]
that the recessed cavity flameholder reduces the pressure fluctuations inside cavity more
considerably than the normal wall cavity. In this research we verify qualitatively that the
recessed cavity increases the stability of the recirculation and reduces the pressure fluctu-
ations inside the recessed cavity with the hydrogen injector. For the 2D DNS, we use the
grid inhomogeneity by having the different domain lengths while the same polynomial
order in each domain is used. The full grid inhomogeneity can be also used, that is, the
order and length of each domain can be all different. Our numerical experiments show
that the results are all similar for both cases. Without loss of generality, the numerical
simulation of the injector-cavity system is conducted with the domain lengths different
but the orders the same.

The paper is organized as follows. In Section 2, a Legendre multi-domain spectral
method with the inhomogeneous grid is explained. Stability and conservativity are de-
rived with the grid inhomogeneity. The generalized penalty interface conditions are
derived accordingly. The weighted penalty method is proposed and various examples
are illustrated. In Section 3, the governing equations and the injector-cavity system are
briefly described. The numerical results from the simulation of the supersonic cavity
flame-holder are provided. In this section, we verify that the proposed weighted spectral
penalty method successfully works with the inhomogeneous grid of the injector-cavity
system. The pressure fluctuations both in the normal and 30◦ wall cavities are presented.
Concluding remarks with a brief future work outline are given in Section 4.
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2 Multi-domain spectral method with inhomogeneous local

mesh refinement

2.1 Conservative spectral penalty methods for inhomogeneous grid

In this section, we will consider the spectral penalty method for the inhomogeneous grid.
We consider the following one-dimensional conservation laws:

∂q(x,t)

∂t
+

∂ f (q(x,t))

∂x
=0, q(x,t) :R×R→R

n, x∈R, t>0. (2.1)

Here q(x,t) and f (q(x,t)) are the state and flux vectors respectively with n components
each. In [6] the conservative multi-domain Legendre method was proposed to approxi-
mate (2.1) on the Legendre Gauss-Lobatto collocation points and such formulation was
successfully used in [11]. In [6], theorems for the multi-domain Legendre penalty method
have been derived under the assumption that each subdomain has the same domain
length but the polynomial orders of approximation can be different. The different poly-
nomial order in each domain makes the grid system inhomogeneous. Thus the same
polynomial order has been used for the numerical simulation in [11] to avoid any numer-
ical artifacts due to such grid inhomogeneity. In this paper, we will further generalize the
previous formulation for fully inhomogeneous grid system.

For simplicity, we consider two subdomains ΩI = [xL,0] and ΩI I = [0,xR], for which
the domain interface is at x = 0 and xL < 0 and xR > 0. In [11], xL =−xR =−2, but |xL|
and xR can be different in this paper. Furthermore the left domain uses the polynomial
order of N and the right domain of M. Note that N is not necessarily the same as M. The
Legendre multi-domain spectral penalty method is then given by

∂qI
N

∂t
+

∂I I
N f (qI

N)

∂x
=B(qI

N(xL,t))+SV(qI
N)+τ1QN(x)[ f +(qI

N(0,t))− f +(qI I
M(0,t))]

+τ2QN(x)[ f−(qI
N(0,t))− f−(qI I

M(0,t))], (2.2a)

∂qI I
M

∂t
+

∂I I I
M f (qI I

M)

∂x
=B(qI I

M(xR,t))+SV(qI I
M)+τ3QM(x)[ f +(qI I

M(0,t))− f +(qI
N(0,t))]

+τ4QM(x)[ f−(qI I
M(0,t))− f−(qI

N(0,t))]. (2.2b)

Here qI
N denotes the numerical approximation of q(x,t) in Legendre polynomial of order

N in ΩI and qI I
M of order M in ΩI I. B is the boundary operator at the end points, i.e.,

x = xL,xR and SV is the spectral vanishing-viscosity terms. I I
N and I I I

M are the Legendre
interpolation operators for the left and right subdomains respectively. QN and QM are the
polynomials of order N and M respectively defined to vanish at the collocation points
except at the boundary or interface points, that is, for example, for ΩI , QN(xi) = 0 for
i=1,··· ,N−1 and QN(xi)=1 for i=0,N. The positive and negative fluxes f + and f− are
defined by

f± =
∫

SΛ±S−1dq, (2.3)
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with

A≡
∂ f

∂q
=SΛS−1. (2.4)

The Jacobian matrix A∈R
n×n is assumed to be symmetric. Λ+ and Λ− are the diagonal

matrices composed of positive and negative eigenvalues of A respectively such as Λ =
Λ++Λ−, Λ∈R

n×n such that A± = SΛ±S−1. S and Λ are the variables related to the
characteristics and its direction and speed of propagation, the similarity and eigenvalue
matrices respectively. τ1,τ2,τ3 and τ4 are the penalty parameters and all are constants. As
in [11], we assume that the boundary terms and the spectral vanishing-viscosity terms
do not cause any instabilities and they do not appear in the following analysis. For the
following theorems we define the discrete Legendre norm

(p,q)N :=
N

∑
i=0

p(xi)q(xi)ωi,

where xi are the Legendre Gauss-Lobatto collocation points and

ωi =
2

N(N+1)[LN (ξ(xi))]2
.

Here ξ is the linear map from x to the Legendre Gauss-Lobatto points over [−1,1]. If
pq∈P2N−1, the discrete sum is exact, i.e.,

(p,q)N =
∫ 1

−1
p(ξ(x))q(ξ(x))dξ.

In the following analysis, we define the weight vector ~ω I
N as the weight vector in ΩI with

N+1 components such as ~ω I
N =(ω I

0,··· ,ω I
N)T, where ω I

i is ωi in ΩI and ω I I
i = ωi in ΩI I .

We note that ω I
0 and ω I

N without the vector symbol denote the first and last components
of ~ω I

N.

Theorem 2.1 (Conservation, [6]). The scheme given in (2.2) is conservative if xL =−xR =−2
and the penalty parameters satisfy the following conditions

τ1ω I
N−τ3ω I I

M =1, τ2ω I
N−τ4ω I I

M =1. (2.5)

Here we note that there is a typo in the first equation of Eq. (23) on page 332 in [11].
The second term in the equation should not be τ1ω I I

M but should be τ3ω I I
M as given in the

theorem above.

Theorem 2.2 (Stability, [6]). The scheme (2.2) is stable if xL = −xR = −2 and the penalty
parameters satisfy the followings

2τ1ω I
N ≤1, 2τ2ω I

N ≥1, 2τ3ω I I
M ≤−1, 2τ4ω I I

M ≥−1, (2.6)

τ1ω I
N−τ3ω I I

M =1, τ2ω I
N−τ4ω I I

M =1. (2.7)
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Here we note that the scheme is stable even though the grid system is inhomoge-
neous, i.e., N 6= M.

Theorem 2.3 ([11]). If each subdomain has the same domain interval ∆, then the stability condi-
tions are given by, defining ∆2 =2/∆,

2τ1ω I
N ≤∆2, 2τ2ω I

N ≥∆2, 2τ3ω I I
M ≤−∆2, 2τ4ω I I

M ≥−∆2,

τ1ω I
N−τ3ω I I

M =∆2, τ2ω I
N−τ4ω I I

M =∆2.

Proof. The proof is done easily using the fact that for ΩI ,

(~ω I ,
∂I I

N f (qI
N)

∂x
)N =

∫ 1

−1

∂I I
N f (qI

N)

∂x
dξ

=
2

∆

∫ 1

−1

∂I I
N f (qI

N)

∂ξ
dξ =

2

∆
( f (0)− f (xL)),

since I I
N f (qI

N)∈P2N−1; and the same way for ΩI I .

Theorem 2.4. If the interval of each subdomain is different, then the scheme (2.2) is conservative
if the following conditions are satisfied.

∆I

2
τ1ω I

N−
∆I I

2
τ3ω I I

M =1,
∆I

2
τ2ω I

N−
∆I I

2
τ4ω I I

M =1. (2.8)

Proof. Multiply the equations for qI
N and qI I

M in (2.2) by ~ω I
N and ~ω I I

M. Then using the Leg-
endre quadrature rule we have

∫ 0

xL

∂qI
N

∂t
dx+

∫ xR

0

∂qI I
M

∂t
dx

=−
∫ 0

xL

∂ f I
N

∂x
dx−

∫ xR

0

∂ f I I
M

∂x
dx+

∆I

2
τ1

[

f +(qI
N(0,t))ω I

N− f +(qI I
M(0,t))ω I

N

]

+
∆I

2
τ2

[

f−(qI
N(0,t))ω I

N− f−(qI I
M(0,t))ω I

N

]

+
∆I I

2
τ3

[

f +(qI I
M(0,t))ω I I

0 − f +(qI
N(0,t))ω I I

0

]

+
∆I I

2
τ4

[

f−(qI I
M(0,t))ω I I

0 − f−(qI
N(0,t))ω I I

0

]

.

Using the fact that
∫ ∂ fN

∂x dx= f ++ f− and ω I I
0 =ω I I

M, the RHS of the above equation without
the boundary terms become

RHS= f +(qI
N(0,t))

[

∆I

2
τ1ω I

N−
∆I I

2
τ3ω I I

M−1

]

+ f +(qI I
M(0,t))

[

∆I I

2
τ3ω I I

M−
∆I

2
τ1ω I

N +1

]

+ f−(qI
N(0,t))

[

∆I

2
τ2ω I

N−
∆I I

2
τ4ω I I

M−1

]

+ f−(qI I
M(0,t))

[

∆I I

2
τ4ω I I

M−
∆I

2
τ2ω I

N +1

]

.

For any f±(0,t) (note that f±(qI
N(0,t)) 6= f±(qI I

M(0,t)) in general), the RHS vanishes if the
conditions in Eq. (2.8) are satisfied.
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Theorem 2.5. The scheme (2.2) is stable if

2τ1ω I
N ≤

2

∆I
, 2τ2ω I

N ≥
2

∆I
, 2τ3ω I I

M ≤−
2

∆I I
, 2τ4ω I I

M≥−
2

∆I I
, (2.9)

(

τ1ω I
N−τ3ω I I

M

)2
−2

(

τ1ω I
N

2

∆I I
−τ3ω I I

M

2

∆I

)

+
2

∆I

2

∆I I
≤0,

(

τ2ω I
N−τ4ω I I

M

)2
−2

(

τ2ω I
N

2

∆I I
−τ4ω I I

M

2

∆I

)

+
2

∆I

2

∆I I
≤0, (2.10)

Proof. Multiplying Eq. (2.2a) by ~qI
N = (qI

N(xL),··· ,qI
N(0))T and Eq. (2.2b) by ~qI I

M =
(qI I

M(0),··· ,qI I
M(xR))T, then the energy

E(t)=
2

∆I

∫ 0

xL

q2(x,t)dx+
2

∆I I

∫ xR

0
q2(x,t)dx

satisfies

1

2

dE(t)

dt
=

(

τ1ω I
N−

2

∆I

1

2

)

α+
0 −(τ1ω I

N +τ3ω I I
M)γ+

0 +

(

τ3ω I I
M+

2

∆I I

1

2

)

β+
0

+

(

τ2ω I
N−

2

∆I

1

2

)

α−
0 −(τ2ω I

N +τ4ω I I
M)γ−

0 +

(

τ4ω I I
M+

2

∆I I

1

2

)

β−
0 ,

where

α±
0 =((qI

N(0,t))T A±qI
N(0,t), β±

0 =(qI I
M(0,t))T A±qI I

M(0,t), γ±
0 =(qI

N(0,t))T A±qI I
M(0,t).

To make the RHS less than or equal to zero, first, the coefficients of the 2nd-order terms
corresponding to the positive flux (negative flux) should be non-positive (non-negative)
which provides the conditions of Eq. (2.9). Also, the determinant for each of the quadratic
equations should be non-positive. This provides the conditions of Eq. (2.10).

Fig. 2 shows the stability regions for τ1ω I
N and τ2ω I I

M with various ∆I I for which ∆I =2
is used. When ∆I I = 2, the stability region is simply a linear line shown as the blue
straight line in the figure. As the domain size ratio between ΩI and ΩI I increases the
stability region becomes broader. The green and red dotted lines in the figure represent
the boundaries of the stability region for ∆I I =4 and ∆I I =10, respectively. The black solid
line represents the limit of the stability region, i.e., for ∆I I →∞. The limit line is given by
(τ1ω I

N−τ3ω I I
M)2+2τ3ω I I

M≤0 and is independent of the value of ∆I I .

Remark 2.1. If τ1 =τ4 =0, then the penalty interface conditions are basically the same as
the upwind methods. If τ1 = τ2 and τ3 = τ4, then the scheme does not split the flux into
the positive and negative ones but uses the flux itself in the penalty terms.

It is important to consider the averaging method with the inhomogeneous grid sys-
tem since it is the popular and simplest interface conditions. For the averaging method,
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Figure 2: Stability regions for τ1ω I
N and τ2ω I I

M with various ∆I I and ∆I =2.

the continuity of q at the interface is ensured. The averaging method is a special case
of the penalty method. The averaging method has been effectively used in the previous
work [11] for the homogeneous grid system. Since we assume that the boundary op-
erators B and the spectral vanishing-viscosity SV ensure the stability at the boundaries
x= xL, and xR, we consider only the contributions from the interface at x=0.

Now we consider the following penalty scheme for the averaging method

∂qI
N

∂t
+

∂I I
N f (qI

N)

∂x
=τ1QN(x)[ f +

x (qI
N(0,t))− f +

x (qI I
M(0,t))]

+τ2QN(x)[ f−x (qI
N(0,t))− f−x (qI I

M(0,t))],

∂qI I
M

∂t
+

∂I I I
M f (qI I

M)

∂x
=τ3QM(x)[ f +

x (qI I
M(0,t))− f +

x (qI
N(0,t))]

+τ4QM(x)[ f−x (qI I
M(0,t))− f−x (qI

N(0,t))], (2.11)

where f±x denotes the derivative f± with respective to x. The averaging method consid-
ered here is for the case that each subdomain can have different polynomial orders such
as N and M for ΩI and ΩI I , respectively. In [11], N = M has been used for the averaging.

Theorem 2.6 (Averaging, [11]). The scheme (2.11) is the averaging method if

τ1 =τ2 =τ3 =τ4 =
1

2
. (2.12)

Proof. If (2.12) is satisfied, then (2.11) becomes, at x=0,

∂qI
N

∂t
=

∂qI I
M

∂t
=−

∂

∂x

(

1

2

(

I I
N f (qI

N)+ I I I
M f (qI I

M)
)

)

. (2.13)

This completes the proof of the theorem.
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Theorem 2.7. If (2.12) is satisfied, then the scheme (2.11) is conservative for any N and M, and
∆I and ∆I I .

Proof. By multiplying (2.11) by the weight vectors ~ω I
N and ~ω I I

M and using the conditions
(2.12) we have

∫ 0

xL

∂qI
N

∂t
dx+

∫ xR

0

∂qI I
M

∂t
dx=−

∫ 0

xL

∂ f I
N

∂x
dx−

∫ xR

0

∂ f I I
M

∂x
dx

+
1

2

[

fx(qI
N(0,t))

∆I

2
ω I

N− fx(qI I
M(0,t))

∆I I

2
ω I I

0

]

+
1

2

[

fx(qI I
M(0,t))

∆I I

2
ω I I

0 −
∆I

2
fx(qI

N(0,t))ω I
N

]

.

Thus ignoring the boundary contributions at x = xL and x = xR, the RHS of the above
equation becomes

RHS=− f I
N(qI

N(0,t))+ f I I
N (qI I

M(0,t))=0. (2.14)

Here we have used the fact that qI
N(0,t)=qI I

M(0,t) and f I
N(qI

N(0,t))= f I I
N (qI I

M(0,t)) from The-
orem 2.6.

Remark 2.2. The conditions of the penalty parameters obtained above are independent
of the orders of each subdomain. Moreover, they are independent of the domain size as
well.

Theorem 2.8. With (2.12) the scheme (2.11) is not necessarily stable in general.

Proof. By taking the discrete norms, the energy of (2.11), i.e.,

E(t)=
2

∆I

∫ 0

xL

q2(x,t)dx+
2

∆I I

∫ xR

0
q2(x,t)dx

becomes, without the boundary terms,

1

2

dE(t)

dt
=−

2

∆I
(qI

N(0,t))T AqI
N(0,t)+

2

∆I I
(qI I

M(0,t))T AqI I
M(0,t)

+(qI
N(0,t)−qI I

M(0,t))
[

AqI
x−AqI I

x

]

=

[

2(∆I−∆I I)

∆I ∆I I

]

(qI
N(0,t))T AqI

N(0,t),

where we have used that qI
N(0,t)= qI I

M(0,t) and τ1 = τ2 = τ3 = τ4 = 1
2 . Thus if ∆I 6= ∆I I , the

RHS does not necessarily non-positive. The RHS, however, vanishes if ∆I = ∆I I so that
E(t)=E(0).

The continuity of q at the interface is ensured by using the averaging method (2.11).
This, however, does not necessarily imply that the first derivative is also continuous at
the interface. In general the first derivative is discontinuous, and the scheme is not stable.
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2.2 Weighted spectral penalty method

In the previous section, it has been shown that the conservative and stable penalty method
can be constructed for fully inhomogeneous grids, i.e., for N 6= M and ∆I 6=∆I I except the
averaging method. The conditions obtained in the previous section are only necessary
conditions. For example, the stability conditions, (2.6) and (2.7), suggest that the scheme
(2.2) is stable if

τ1 =τ2 =
1

2ω I
N

, τ3 =τ4 =−
1

2ω I I
M

.

These conditions, albeit stable, can yield the nonphysical reflecting solutions at the in-
homogeneous domain interfaces because the positive and negative fluxes are equally
penalized as we will show in this section. In this section, the weighted spectral penalty
method for the inhomogeneous grid is introduced to reduce such nonphysical modes at
the domain interfaces.

With the weighted spectral penalty method, the incoming or outgoing characteris-
tics are penalized with different weights if the inhomogeneous domain system is con-
sidered. That is, the incoming fluxes are penalized with the larger values of the penalty
parameters than the outgoing fluxes. In the Legendre spectral penalty equation (2.2), the
weighted spectral penalty method for ΩI exploits

|τ2|≫|τ1|, (2.15)

and for ΩI I

|τ3|≫|τ4|. (2.16)

The numerical simulation results of the supersonic reactive cavity flow presented in this
paper show that the upwind characteristic interface conditions are not enough to ensure
the smooth solutions across the interfaces. We will show in the following sections that
by weighting the incoming fluxes against the outgoing fluxes, the nonphysical modes in
the solution at the domain interfaces can be reduced. The weight, however, can not be
arbitrarily large due to the CFL restriction. In practice, we use the fixed weight for each
penalty parameter. Since the problem considered in this paper is highly nonlinear, the
fixed weight for any t>0 may not be enough to prevent the growth at the interfaces. We
use the local spectral vanishing viscosity method with the weighted penalty method to
prevent any growth at the interfaces.

2.2.1 Reflection coefficients of the weighted penalty interface conditions

In order to explain how the weighted spectral penalty method can reduce the non-physical
reflection modes, the reflection coefficients analysis is used. Consider the following sim-
ple linear hyperbolic equation

qt+(Fq)x =0, q :R×R→R
2, x∈R, t>0, (2.17)
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where

q=

(

u
v

)

, F=

(

0 1
1 0

)

. (2.18)

The same equation has been considered to show the reflecting modes at the domain in-
terfaces with the spectral Galerkin method in [15]. We seek a wave solution such that

q(x,t)=exp(iωt)q̂(x), x∈ [−2,2], t≥0. (2.19)

Plugging the wave solution into (2.18) yields

q̂(x)= Aq1exp(−iωx)+Bq2exp(iωx), (2.20)

where q1 =(1,1)T and q2 =(1,−1)T .
Suppose that we have two subdomains ΩI =[xL,0], and ΩI I =[0,xR], with xL <0 and

xR > 0. Let B± be the boundary operators at the end points, i.e., x = xL and x = xR.
Moreover, f + and f− are f± = F±q=SΛ±S−1q ;

f + =
1

2

(

u+v
u+v

)

, f−=
1

2

(

−u+v
u−v

)

. (2.21)

Here we assume that the boundary operator B is taken properly such that this treatment
does not destroy the global stability and there is no reflection from the boundaries. In
other words, we assume that we have the perfect and stable absorbing boundary operator
at x = xL,xR. Plugging the wave solutions into the Legendre spectral method (2.2), we
have the following linear system at the interface, i.e., at x=0,

τ1(AI−AI I)−τ2(BI−BI I)=0, τ3(AI I−AI)−τ4(BI I−BI)=0,

τ1(AI−AI I)+τ2(BI−BI I)=0, τ3(AI I−AI)+τ4(BI I−BI)=0.

The above linear systems can be rewritten in the matrix form WX=ZX with

X=









AI

BI

AI I

BI I









, W=









−τ1 τ1 0 0
−τ2 τ2 0 0

0 0 −τ3 τ3

0 0 −τ4 τ4









, Z=









0 0 −τ1 τ1

0 0 −τ2 τ2

−τ3 τ3 0 0
−τ4 τ4 0 0









.

The system is not well-posed as det(W−Z)= 0. In fact this linear system can be solved
by taking into account that AI I and BI I are considered as the given interface values for the
solution of ΩI and AI and BI of ΩI I in the real computation:

τ1AI−τ2BI =0, τ1 AI +τ2BI =0.

Since A is corresponding to the outgoing flux and B to the incoming flux at x = 0,
respectively, define the reflection coefficients R0 at x=0 for ΩI

R0 =

∣

∣

∣

∣

BI

AI

∣

∣

∣

∣

=

∣

∣

∣

∣

τ1

τ2

∣

∣

∣

∣

. (2.22)
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We shall consider four different cases as given in Table 1, cases T-1 through T-4. By
definition, there is no reflection at the interface for the case T-1, the upwind method. For
the case T-2, we do not split the flux

τ1 f ++τ2 f− =τ( f ++ f−)=τ f . (2.23)

Consequently, the reflection is obvious although the method is simple. The case T-3 is the
weighted penalty method. The case T-4 weights the outgoing flux against the incoming
flux.

Table 1: Interface conditions and reflection coefficients.

Case Interface conditions Reflection coefficients

T-1 τ1 =0 R0 =0
T-2 τ1 =τ2 =τ R0 =1
T-3 τ1≪τ2 R0≪1
T-4 τ1≫τ2 R0≫1

For illustration, consider a step function, i.e.,

u=v=

{

1 x∈ΩI ,
0 x∈ΩI I.

Fig. 3 shows the solutions after one time integration at t = ∆t = 0.0001 for each case in
Table 1. τ1 = τ2 = 1

2ωN
are used for the case T-2, τ2 ∼O(N3) and τ1 ∼O(N2) are used for

the case T-3 and τ1∼O(N3) and τ2∼O(N2) are used for the case T-4. Note the different
behaviors between the case T-3 and the case T-4. For the case T-3 the penalty parameters
associated with the incoming flux are weighted while the outgoing flux are weighted for
the case T-4. The solution for the case T-3 does not show the overshoot at the interface
for ΩI . For the case T-4, the solution of ΩI at the interface shows the overshoot. The
behaviors of the interface solution of ΩI I for each case can be explained by taking into
account that the scheme is in fact conservative.

2.2.2 Reflection and instability

We consider more numerical examples to confirm the performance of the weighted spec-
tral penalty method.

Homogeneous grid. First consider the same wave equation with the following bound-
ary conditions

Bq :=

{

u(x,t)−v(x,t)=0, x=4,
u(x,t)+v(x,t)=0, x=0.

(2.24)

Here we consider two subdomains ΩI = [0,2] and ΩI I = [2,4] with the same polynomial
order N. For the boundary conditions at x=0 and x=4, we use the non-reflecting bound-
ary conditions. The spectral penalty method (2.2) described in the above section is used
with the Legendre polynomials.



W.-S. Don, D. Gottlieb and J.-H. Jung / Commun. Comput. Phys., 5 (2009), pp. 986-1011 999

(a) T-1: τ1 =0 (b) T-2: τ1 =τ2 = 1
2ωN
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(c) T-3: τ2∼O(N3) (d) T-4: τ1∼O(N3)
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Figure 3: Shock calculation at the first time step.

We denote M-A, M-UW, M-NFS and M-WP by the averaging, upwind, no-flux split-
ting and the weighted penalty methods, respectively. They are listed in the following
table.

Method Interface Conditions Remark

M-A τ1 =τ2 =τ3 =τ4 = 1
2 Averaging Method

M-UW τ1 =τ4 =0,τ2 =−τ3 = 1
ωN

Upwind Method

M-NFS τ1 =τ2 =−τ3 =−τ4 = 1
2ωN

No-flux-Splitting Method

M-WP O(τ2)=O(τ3)∼N3,τ1 6=0 6=τ4 Weighted Penalty Method

Remark 2.3. Note that all four methods satisfy the stability conditions as each subdomain
has the same polynomial order N and domain length ∆=2.

The CFL condition is given by

min
i

∆t

∆xi
≤CFL, (2.25)

where CFL is a positive constant and taken to make ∆t be small enough for every case.
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Table 2: The maximum error (L∞) for M-A, M-UW, M-NFS and M-WP at time t=1.5.

N\Method M-A M-UW M-NFS M-WP

4 0.67 0.82 0.13E+01 0.74
8 0.65E-02 0.28E-02 0.82E-02 0.57E-02
16 0.34E-09 0.38E-09 0.65E-09 0.29E-09
32 0.52E-11 0.52E-11 0.52E-11 0.52E-11
64 0.54E-11 0.51E-11 0.54E-11 0.50E-11

Table 2 shows the L∞ error for each method. The overall performance is almost the
same for each method while the M-WP performs slightly better than the other methods.

Inhomogeneous grid. Now we consider the same problem with 3 subdomains, each
of them having the same domain intervals, i.e., Ω1 = [0,2],Ω2 = [2,4] and Ω3 = [4,6]. For
these three subdomains, consider the following two different cases:

Case Grid resolution

C-1 (homogeneous) N1 = N2 = N3 =8
C-2 (inhomogeneous) N1 =8,N2 =32,N3 =8

Remark 2.4. Note that every method satisfies the stability condition for the case C-1. For
the case C-2, only the M-A, which is the averaging method, does not satisfy the stability
condition as explained in Section 2.1, but the M-NFS still satisfies the stability condition.

Table 3 shows the global L∞ error for each case. As shown in the table, the M-A and
the M-NFS show the instability at the interfaces for the case C-2. Table 4 shows the L∞

error for Ω2 for each case. The L∞ error for Ω2 is less than that of global L∞ error for the
M-UW and the M-WP of the case C-2 because the higher polynomial order of N is used.

Table 3: The maximum error (L∞) for the case C-1 and the case C-2 at time t=1.5.

Case\Method M-A M-UW M-NFS M-WP

C-1 0.83E-02 0.29E-02 0.11E-01 0.52E-02
C-2 unstable 0.25E-02 unstable 0.65E-02

Table 4: The maximum error (L∞) of Ω2 for C-1 and C-2 at time t=1.5.

Case\Method M-A M-UW M-NFS M-WP

C-1 0.83E-02 0.29E-02 0.10E-01 0.51E-02
C-2 unstable 0.13E-02 unstable 0.51E-02

The instabilities of the M-A and the M-NFS are illustrated in Fig. 4. In the figure, the
top figures represent the solution with M-A at t=0.4 and the bottom figures the solution
with M-NFS at t = 1.5. The left figures show u+v and the right u−v. As shown in the
figures, the locations of the instability are different for the M-A and the M-NFS. Since
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N2 > N1 = N3, there exist higher modes in Ω2 which do not appear in the approximations
for both Ω1 and Ω3. For the M-A, i.e., the averaging method, the figure indicates that
the instability occurs at the interface of Ω1 and Ω2 for u+v, and the instability at the
interface of Ω2 and Ω3 for u−v. This implies that the growth at the interface occurs
when the characteristic of the lower modes enters the subdomain where the higher modes
appear in the approximation. For the M-NFS, the growth occurs at different locations. If
the outgoing characteristic is approximated with the higher modes, such modes in the
approximation are reflected as if the adjacent subdomain plays a role as a wall boundary.
The subdomain Ω2 yields a free boundary condition for the lower mode wave solutions
entering Ω2. No significant growth at the interface is observed for the weighted penalty
method.

(a) M-A, (u+v) (b) M-A, (u-v)
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Figure 4: Solutions for the M-A at time t=0.4 and the M-NFS at time t=1.5. The u+v and u−v characteristic
waves are shown in the left and right columns, respectively.

2.2.3 Adaptive super-viscosity method

As mentioned above, we use the fixed weight for each penalty parameter for the real
computation. This is not enough for preventing the growth at the interface if the grid
system is highly inhomogeneous. The super-viscosity method is used at the interface
when the weighted penalty method fails to reduce the nonphysical growing modes.
The super-viscosity method is only applied when and where it is necessary. Since the
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nonphysical reflecting or growing modes are mainly contained in the higher modes, the
super-viscosity can be used to remove such higher modes locally at the interface. This
technique is critical for the stabilization of the multi-domain spectral penalty method for
nonlinear problems.

For the numerical experiment, we revisit the simple wave problem used in [5],







∂u
∂t + ∂u

∂x =0 x∈Ω=(a,b), t>0,
u(a,t)=uL(t) t>0,
u(x,0)=cos(πx) x∈Ω.

(2.26)

We seek an approximation of u with two subdomains, Ω1 = [0,2] and Ω2 = [2,4] with
N1 6= N2.

Two different cases are examined for the M-A and the M-NFS:

Case Grid resolution

C-3 N1 =32,N2 =8
C-4 N1 =8,N2 =32

Table 5 shows the L∞ errors of the case C-3 and the C-4. The table shows that these
methods are stable in either case except the M-A and the M-NFS. Both of them are unsta-
ble if N1 < N2 and N2 < N1, respectively.

Table 5: The maximum error (L∞) for C-3 and C-4 at time t=1.5.

Case/Method M-A M-UW M-NFS M-WP

C-3 0.13E-01 0.46E-02 4.89 (Unstable) 0.49E-02
C-4 0.54E+17 (Unstable) 0.46E-02 0.461E-02 0.46E-02

To avoid the growth in time, one can either use the explicit filtering method or add
the super-vanishing viscosity (SV) term to the equation, namely,

∂uN

∂t
+

∂uN

∂x
=

1

N2s−1

[

∂

∂x
(1−x2)

∂

∂x

]s

uN +PT x∈∂Ω, (2.27)

where N is the order of approximation, s is a positive integer growing with N [16,22] and
PT denotes the penalty term. This SV method is equivalent to the filtering method [16,22]
and we use the filtering method in this work instead of the SV. The exponential filter
method with the filtering order γ is used for the numerical experiment. The exponential
filter function σ(k) and the filtering order γ are defined as σ(k)=exp(−ǫM(k/N)γ) where
k is the mode number k = 0,··· ,N and N is the polynomial order. The positive constant
ǫM is chosen such that σ(N) becomes machine zero. Typically ǫM ∼32.

Table 6 shows the results for the M-A and the M-NFS with the different orders of
filtering γ. As the table indicates, no significant growth has been observed. Comparing
with the results in Table 2, however, we notice that the filtering method permits a loss
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Table 6: The maximum error (L∞) for the reconstruction method.

(M-A/C-4) (Ω1) (M-NFS/C-3) (Ω2)

γ=2 1.13 0.18
γ=4 0.66 0.11E-01
γ=8 0.21 0.11E-01
γ=16 0.76E-01 0.11E-01
γ=163 0.15E-01 0.11E-01

Table 7: The maximum error (L∞) for the reconstruction method ; γ=16.

(M-A/C-4) (Ω1) (M-NFS/C-3) (Ω1)

N =4 1.24 1.00
N =8 0.76E-01 0.11E-01
N =16 0.47E-06 0.12E-08
N =32 0.74E-11 0.52E-11

of accuracy. For example, the L∞ error of M-NFS/C-3(N =(32,8)) is 0.11×10−1 and M-
NFS/C-4 (N = (8,32)) is 0.46×10−2. Table 6 also indicates that the methods are stable
even though γ → ∞, which implies that stability can be achieved even with the small
viscosity added.

Fixing the filtering order γ =16, Table 7 shows the full recovery of the accuracy as N
increases, as the grid system becomes homogeneous.

We note that for the 2D problem, one needs to find the proper conditions for the
corner of each subdomain. Such conditions will be investigated in our future work. The
2D numerical experiments based on the 1D method indicate, however, that the proposed
method with the SV method applied at the interfaces and corners yields a stable and
accurate result as shown in the next sections.

3 Injector-cavity scramjet system

In this section, the proposed weighted spectral penalty method is applied for the ap-
proximation of the supersonic flow interactions in the cavity-injector system with the
inhomogeneous grid system. To refine the localized injector field, we use the narrow
subdomain for the injector. The polynomial order of each domain is the same for both
x- and y-directions. Thus the grid inhomogeneity in this case comes from the different
domain length.

3.1 The cavity system and the governing equations

Cavities have been actively used as flame-holders in scramjet engines (see the review
by Ben-Yakar and Hanson [4]). The injector-cavity system is illustrated in Fig. 1 (left
figure). The cavity system is categorized into 4 different types such as open, closed,
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transitional-closed and transitional-open depending on the length scale of cavity [4]. The
cavity system with the length-to-depth ratio L/D < 7 ∼ 10 is called an open cavity as
the upper shear layer reattaches itself at the back face. Under the shear layer formed
over cavity, the flows with the hydrogen fuel are possibly captured inside cavity and
generate the recirculation zone. The generated recirculation interacts with the shear layer
and the acoustic waves inside cavity. The radicals from the chemical reaction between
the hydrogen and oxygen gases reside inside cavity and trigger the auto-ignition of the
supersonic engine. In principle, the more stable and longer recirculation is maintained,
the more efficient fuel performance can be achieved.

The major question of the cavity flame-holder system that needs to be investigated
is: How does the fuel injection interact with cavity flows? There have been many numerical
studies on the recirculation and stabilizations of the flow inside cavity but rarely on how
the continuous supply of the fuel can affect the flow dynamics inside cavity [2,3,7,23,24,
27, 28]. Since the injection of the fuel in the combustor is necessary, the injection emerges
as another important key parameter for the optimal configuration of the cavity flame-
holder. Both comprehensive laboratory and numerical experiments have to be carried out
to answer the question. In this work, we use the length-to-depth ratio L/D=4cm/1cm=
4, that is, we use the open cavity.

The governing equations are the compressible 2D reactive Navier-Stokes equations
with the chemical source terms given by

∂q

∂t
+

∂F

∂x
+

∂G

∂y
=

∂Fν

∂x
+

∂Gν

∂y
+C, (3.1)

where q=(ρ,ρu,ρv,E,ρf)T is the state vector, F =(ρu,ρu2+P,ρuv,(E+P)u,ρfu)T and G =
(ρv,ρuv,ρv2 +P,(E+P)v,ρfv)T the inviscid fluxes, Fν and Gν the viscous fluxes and C the
chemical source term, respectively. Here ρ,u,v,E,P, and f denote the density, the velocity
in x-direction and the velocity in y-direction, the total energy, the pressure and the mass
fraction vector, respectively. The chemical model uses four chemical species, H2,O2,H2O
and N2 with the reversible chemical reaction between hydrogen and oxygen gases given
by

2H2+O2 ⇋2H2O. (3.2)

A modified Arrhenius law gives the equilibrium reaction rate ke, the forward reaction
rate k f and the backward reaction rate kb as

ke = AeTexp(4.60517(Ee/T−2.915)),

k f = A f exp(−E f /(RT)),

kb = k f /ke,

where Ee =12925, and E f =7200 are the activation energy and Ae =83.006156, and A f =

5.541×1014 are the frequency factors. R is the universal gas constant. Each chemical
species has different dynamical viscosity µi based on the Sutherland’s law. The mixture
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viscosity µ is obtained according to the Wilke’s law [26]. The Prandtl number Pr and
the Schmidt number Sc are taken to be 0.72 and 0.22 respectively for the normal air. The
equation of state is given by the assumption of the perfect gas law. Detailed formulation
of the equations can be found in [9, 11].

With L fixed we consider two different angles of the aft wall, i.e., 90◦ and 30◦. For the
fluid conditions, the free stream Mach number M=1.91, total pressure P=2.82atm, total
temperature T = 830.6K and normalized Reynolds number Re = 3.9×107m−1 are used.
Note that the Reynolds number is normalized and has the unit of 1/[length], and that
the Reynolds number based on the cavity dimensions is about O(105). The boundary
layer thickness scale is δ = 5×10−4m, and the wall temperature is Tw = 460.7835K. For
more detailed physical configuration and its explanation, we refer [11]. The hydrogen
fuel is injected 1.5cm ahead of the cavity with the injection Mach number M=1 (see Fig-
ure 1). The numerical experiments are conducted with two different sizes of the injector
diameter, d = 2mm and d = 2cm to investigate the effect of the injector-channel flow in-
teractions on the development of the shear layer over cavity. The fuel is injected into the
channel flow with the direction normal to the base wall. The total pressure and the total
temperature of the hydrogen jet are 2.828522atm and 830.6K respectively.

3.2 Grid inhomogeneity and the weighted penalty method

To deal with the grid inhomogeneity we use the weighted penalty method described in
Section 3. The weighted penalty method is based on the characteristic decomposition
and it does not modify the stability conditions associated with Aν ·q and Aν ·∂q for the
Navier-Stokes equations in [11].

Fig. 5 shows the effect of the grid inhomogeneity on the solution. The subdomain
containing the injector has a smaller domain length than other subdomains. The left
figure shows the solution based on the averaging method (M-A) and the right shows
the solution based on the weighted penalty method (M-WP). The figures clearly show
that the averaging interface condition (M-A) yields a nonphysical concentration near the
domain interface while the weighted penalty interface condition (M-WP) yields smooth
solutions across the interfaces. We note that if the penalty parameters corresponding
to the incoming and outgoing fluxes are of the same order satisfying the stability and
conservativity conditions, the similar results are obtained as those with the averaging
method. Thus the weighted penalty method is necessary.

Fig. 6 shows the flow fields near the injector subdomain with the weighted penalty
method. The figure shows the flow streamline near the injector. The figure shows that
there is no significant reflection at the injector subdomain interfaces. It is also shown that
the flow fields are well resolved with the weighted penalty method. The small recircula-
tion formed in front of the injector is clearly seen. Such recirculation is physically formed
due to the interaction between the incoming channel flow and the hydrogen jet with the
no-slip boundary condition at the wall [3, 4].
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Figure 5: Density contour of injector-cavity-channel flow by reactive Navier-Stokes equations for the normal
cavity flame-holder. Each subdomain has the same polynomial order for the approximation, that is, each
subdomain has N grid points both in x- and y-directions but the different subdomain length. The left figure
shows the solution using the averaging interface conditions (M-A) and the right figure shows the solution
using the weighted penalty interface conditions (M-WP). The weighted penalty interface condition method
considerably reduces the nonphysical density concentration near the interfaces seen in the left figure.

Injector

Figure 6: The recirculation zones formed in front of the hydrogen jet: the flow streamlines are given with the
hydrogen jet contour for the narrow injector-cavity system at t=0.225ms.

3.3 Shear layer interactions

One of the major effects on the stability of the recirculation zone is by the shear layer over
cavity. In [4] (also see references therein), several effects on the shear layer formation and
its interaction with the cavity have been discussed including the location, size and the
total number of injectors. Fig. 7 shows the water contours for both narrow and broad
injectors. By placing the injector in front of the cavity front wall, the pressure fluctuations
are reduced and the sharp gradients found near the corner of the aft wall are also weak-
ened as the shear layer is being developed. The figures show that the broader injector
has more enhanced shear layer growth over the cavity than the narrow jet. However,
the pressure profiles in Fig. 9 indicate that the pressure oscillations are attenuated with
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Injector Injector

Injector Injector

Figure 7: Water production and transport for 90◦ and 30◦ cavity walls: the upper figures shows the broad
injector-cavity system and the bottom figures the water contours of the narrow injector-cavity system at t =
0.225ms, respectively. There are 50 contour levels ranged from −0.001 to 0.23.

Figure 8: Water and hydrogen density profiles at t=3.48ms for the narrow injector-cavity system with 30◦ and
90◦ aft walls. The top figures show the water density contours and the bottom figures the hydrogen density
contours.

the narrow injector more than the broad injector. This implies that there exists an opti-
mal size of the injector with the fixed location of the injector from the front cavity wall
that minimizes the pressure fluctuations and maximizes the stability of the recirculation
zones inside cavity. Both the broad and narrow injector systems also show that they have
weaker flow gradients near the aft wall than the flow gradients obtained in our previous
work without the injector. The injection angle is normal to the wall but different injection
angles can be used. In [3, 4], it has been discussed that the angled injector such as 30◦ or
60◦ can further weaken the possible bow shock found at the aft wall. Fig. 8 shows some
detailed differences of the water and hydrogen profiles between the normal and recessed
cavities at t=3.48ms for the narrow injector system.
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Figure 9: Pressure history for broad (left) and narrow (right) injector-cavity flows at the center of cavity. For
the broad jet, the diameter is d=2cm and d=2mm for the narrow jet. Each panel shows the case of 90◦ and
30◦ cavity walls from top to bottom.

3.4 Pressure fluctuations

In [11], we considered the cold and reactive flows without the hydrogen injector and
showed that the pressure fluctuations inside cavity can be considerably reduced if the aft
wall is slanted. Consequently this helps more stable recirculation inside cavity to be de-
veloped. The generated acoustic waves disturbing the recirculation are reflected back to
the shear layer due to the slantness of the rear wall. Similar results are found in the cavity
system with the injection fields. Fig. 9 shows the pressure fluctuation history profiles for
the normal (90◦, top figures) and slanted wall (30◦, bottom figures) cases for the broad
(left) and narrow (right) injectors. In the figures, the pressure fluctuations are measured
up to tUo/D∼150 but plotted in the same scale used in Fig. 6 of [11] for the comparison.
The pressures are measured at the center of cavity. For the broad injector-cavity system, it
is clearly shown that the pressure fluctuations are much attenuated for the lower aft wall
case and these features are similar to those for the non-reactive cold flow cases. For the
narrow injector-cavity system, the pressure fluctuations for both 90◦ and 30◦ wall cavities
are highly attenuated compared to those for the broad injector-cavity system. The differ-
ences of the pressure fluctuations between 30◦ and 90◦ are not significant, but one can
observe that the lower angled wall cavity has less pressure fluctuations than the normal
wall cavity. These results are similar to those for the reactive flow cases without the in-
jection field. Note that the pressure fluctuations of the normal wall cavity system are also
much attenuated compared to the pressure fluctuation of the normal wall cavity system
without the injection field. This result shows that the injection field in front of the cavity
increases the stability of the recirculation inside cavity.

4 Summary

In this research, the direct numerical simulation of the supersonic injector-cavity scram-
jet system has been carried out with the multi-domain spectral penalty method with the
inhomogeneous grid system. In order to minimize the development of the nonphysical
modes in the solution generated at the domain interfaces due to the grid inhomogene-
ity, we first derived the stable and conservative interface conditions of the multi-domain
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spectral penalty method. For general inhomogeneous grid system, it is shown that it is
possible to construct a stable and conservative spectral penalty method. It is also shown
that the conservativity can be preserved but the stability is not maintained for the av-
eraging method in general. The weighted penalty interface conditions is then proposed
to minimize the non-physical effect at the inhomogeneous grid interfaces. The weighted
penalty method gives more weight to the incoming fluxes than the outgoing fluxes. The
reflection analysis shows that the weighted penalty method reduces the reflections at the
domain interface by weighting the incoming fluxes. For the numerical experiments, we
use the fixed weight for all time. The weight, however, can be adaptively determined de-
pending on the flow conditions. Such adaptivity will be investigated in our future work.
The weighted penalty method reduces the nonphysical growth at the domain interface
considerably but not completely. The adaptive filtering method is used together with the
weighted penalty method to stabilize any growth at the interface. The adaptive filtering is
only applied at a small number of points at the interface. The direct numerical simulation
shows that the proposed method successfully yields a stable and accurate approximation
of the injector-cavity flows with the inhomogeneous grids. It is qualitatively shown that
the recessed cavity yields a better performance of the pressure fluctuation reduction and
enhances the stability of the recirculation zones inside cavity. The injector located in front
of the cavity also reduces the pressure fluctuations inside cavity. More detailed geometric
configurations maximizing the attenuation of the pressure fluctuations and the stability
of the recirculation inside cavity will be investigated in our future work. The future re-
search work will also center around the development of the 3D spectral penalty method
with the weighted penalty conditions.
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