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Abstract. Stochastic well-stirred chemically reacting systems can be accurately mod-
eled by a continuous-time Markov-chain. The corresponding master equation evolves
the system’s probability density function in time but can only rarely be explicitly solved.
We investigate a numerical solution strategy in the form of a spectral method with an
inherent natural adaptivity and a very favorable choice of basis functions. Theoretical
results related to convergence have been developed previously and are briefly sum-
marized while implementation issues, including how to adapt the basis functions to
follow the solution they represent, are covered in more detail here.
The method is first applied to a model problem where the convergence can easily be
studied. Then we take on two more realistic systems from molecular biology where
stochastic descriptions are often necessary to explain experimental data. The con-
clusion is that, for sufficient accuracy demands and not too high dimensionality, the
method indeed provides an alternative to other methods.
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1 Introduction

Stochastic descriptions of chemical reactions are necessary tools for understanding and
explaining the mechanisms inside living cells. Models of intra-cellular systems frequently
consist of fewer than 102 molecules of some of the species [26] implying that molecule
discreteness makes the impact of stochasticity very pronounced. For instance, random-
ness has been shown to drive and improve the regularity of oscillations [46], create new
steady-states [45] and cause separation in bistable systems [13].
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The chemical master equation (CME) is a popular and accurate stochastic model for
chemically reacting systems. It is a consequence of the Markov property: if the system
is measured at discrete times t1 < t2 < ···tn, then the probability for the measurement
(yn,tn) given the present state (yn−1,tn−1) does not involve earlier states. Typically, be-
cause of the existence of activation energies, reactive collisions between molecules are
rare events as compared to nonreactive ones giving rise to a randomization and a loss of
memory [24]. This loss of memory is then accurately captured by the Markov property
and remains a valid approximation so long as the measurement scale is slower than the
often extremely short auto-correlation time of the system.

The master equation is a differential-difference equation in D dimensions, where D is
the number of reacting agents, and is therefore a very computationally intensive problem.
Effective numerical methods are of both practical and theoretical interest.

Recent progress at directly representing the state-space and solving the CME include
the Finite state projection algorithm [38], later improved using Krylov-subspace methods
[5, 36]. See also [18] where techniques from adaptive PDE-solvers are used in the context
of the CME. For larger state-spaces, numerical solution of the Fokker-Planck equation [19]
and adaption of the Sparse grids technique [29] have been suggested. As a master equation
for continuous stochastic processes, numerical solution of the Fokker-Planck equation is
an interesting subject in itself. There are, however, important cases for which the CME
cannot be approximated by the Fokker-Planck equation [22]. The sparse grids technique
aims to reduce the computational complexity of high dimensional smooth problems. Its
application to the CME is quite recent and appear promising.

In the present paper we implement and apply a spectral method developed previ-
ously in the report [17] to the master equation. The method employs basis functions that
are orthogonal with respect to a discrete measure in line with the discreteness of the so-
lution and avoids the need for continuous approximations to the master operator. An
interesting feature of our implementation is a built-in adaptivity of the basis which al-
lows the basis functions to follow the dynamical behavior of the solution. Our proposed
scheme is reminiscent of an approach for polyreaction kinetics considered earlier in [9],
and we will further comment on this point in Section 5.

The “curse of dimension”, the phenomenon that the complexity of traditional dis-
cretization methods applied to high-dimensional problems grows exponentially with the
problem size is thus not removed, but it is mitigated. With a spectral method that con-
verges exponentially, the resolution per dimension can be much smaller than any direct
representation provided that the solution is smooth enough. As we shall see, another
point in directly attacking the CME is the way stiff equations can be handled through
suitable implicit time integration.

The paper is organized as follows. In Section 2 the master equation as a governing
equation for stochastic chemical systems is discussed along with theoretical properties of
importance to the numerical analysis. The spectral method is proposed in Section 3 where
approximation and stability results developed in the report [17] are summarized. This
section also discusses a plausible implementation in some detail, including the “moving
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basis” technique. Section 4 is devoted to numerical experiments and investigates the
performance of the method when applied to three different systems, two of which are
representative from the field of molecular biology. The paper is concluded by discussing
the various merits of the method and pointing to possible future considerations.

2 Background

As an introduction to the subject we devote this section to some theoretical and practi-
cal results. The first strict derivation of the CME as an exact description of well-stirred
chemical reactions in thermal equilibrium occurred in [24]. Many properties, including
extensions, of this equation of interest to the physicist are discussed in [20, 31].

2.1 The master equation

We now let D different species react according to R prescribed reactions. In a stochastic
description of this system, we let p(x,t) be the probability that a certain number x∈ZD

+=
{0,1,2,···}D of molecules is present at time t.

The reactions are now “jumps” between the states x with a certain jump intensity, or
reaction propensity, wr : ZD

+ → R+. This is the transition probability per unit of time for
moving from the state x to x−Nr;

x
wr(x)−−−→ x−Nr, (2.1)

where by convention, Nr ∈ZD is the transition step and is the rth column in the stoichio-
metric matrix N.

The master equation [20, 31] is then given by

∂p(x,t)

∂t
=

R

∑
r=1

x+N
−
r ≥0

wr(x+Nr)p(x+Nr ,t)−
R

∑
r=1

x−N
+
r ≥0

wr(x)p(x,t)

=:Mp, (2.2)

where the transition steps are decomposed into positive and negative parts as Nr =N
+
r +

N
−
r .

As indicated, the summations are performed over feasible reactions only. In what
follows, we shall only consider formulations where wr(x) = 0 whenever x 6≥N

+
r . This

assumption is justified as follows (cf. [31, Ch. VII.2] and [20, Ch. 7.5]): let i be such that
Nri > 0. Then wr defines a certain reaction for which one or several xi’s are annihilated.
Obviously, this reaction cannot occur unless there are sufficiently many xi’s left to anni-
hilate and we therefore postulate that wr is zero for xi ∈{0,1,··· ,Nri−1}.

Under this assumption, the adjoint operator M∗ has the following convenient repre-
sentation [31, Ch. V.9]: if (p,q) is a pair of not necessarily normalized or positive functions
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defined over ZD
+, then provided both sides make sense,

M∗q=
R

∑
r=1

wr(x)[q(x−Nr)−q(x)]. (2.3)

If now X = [X1,··· ,XD] is the D-dimensional time-dependent stochastic variable for
which p is the probability density function, then by taking the inner product with a suit-
able test-function T : ZD

+→R in (2.2) and using (2.3) we get

d

dt
E[T(X)]=

R

∑
r=1

E[(T(X−Nr)−T(X))wr(X)]. (2.4)

Using this form of the adjoint, equations for the various moments of X can be formed
(see [15] for a numerical investigation of this approach). In fact, the most common de-
terministic approach corresponds to T(x)=x and gives, upon ignoring higher order mo-
ments, the reaction-rate equations. This is a set of D ordinary differential equations (ODEs)
approximating the expected values of the species in the system. There are, however,
many systems for which the reaction-rate equations either fail to reproduce the observed
dynamics [42] or are less meaningful.

The CME is equivalent to a continuous-time Markov chain in the stochastic variable
X:

Xk+1 =Xk+Nem, (2.5)

tk+1 = tk+τk, (2.6)

where em is the mth unit vector chosen according to the prescription

Pr[m= r]=αwr(Xk), (2.7)

where

α≡
(

R

∑
r=1

wr(Xk)

)−1

, (2.8)

and where the time-step τk is drawn from an exponential distribution with mean α. This
formulation is equivalent to Gillespie’s Stochastic Simulation Algorithm (SSA) [23] and offers
the ability to exactly follow sample trajectories of the system. For systems where the
number of reactions to be simulated is very large, SSA becomes inefficient since it follows
the system in complete detail. For this purpose, the tau-leap method [25] was developed
and later improved [2] and analyzed [33, 41].

Although simulating one trajectory can be performed relatively fast for many sys-
tems, models in molecular biology are often very stiff and therefore expensive to solve by
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explicitly simulating the various time-scales. As a remedy, model reduction techniques
have been proposed [6,12,27]. The tau-leap method can be regarded as an instance of the
forward Euler method [33] and as such is not a good alternative for stiff problems. An
implicit version has therefore been developed [40], but this method converges in a very
weak sense only [7, 34, 41].

2.2 Solution properties

If (λ,q) is an eigenpair of M∗ normalized so that the largest value of q is positive and real,
then we see from (2.3) that ℜλ≤0 so that the eigenvalues of M also have this property.
Since generally, M is not a normal operator, this does not imply that the l2-norm cannot
increase with time. However, from the fact that the semigroup corresponding to M is
contractive (see [11, Ch. 1]), this stability property holds provided that the l1-norm is
used instead:

Theorem 2.1. Let the initial data p(x,0) be a not necessarily normalized or positive, but l1-
measurable function. Then any solution to the master equation is non-increasing in the l1-
sequence norm. That is,

∑
x≥0

|p(x,t)|≤ ∑
x≥0

|p(x,0)| (2.9)

for any t≥0.

We also consider the steady-state limit t → ∞ and start by giving two preliminary
definitions. A decomposable linear operator can be cast in the form (by relabeling the
states)

M=

[
M11 0

0 M22

]

, (2.10)

while a splitting operator can be written as

M=





M11 M12 0
0 M22 0
0 M32 M33



. (2.11)

Master operators of this form are not fully connected and essentially consist of multiple
isolated subsystems.

Theorem 2.2. Let p(x,0) be an l1-measurable discrete function defined on ZD
+ and let M be

neither decomposable nor a splitting. Then the master equation (2.2) admits a unique steady-
state solution as t → ∞. Moreover, if p(x,0) is a discrete probability density, then so is the
steady-state solution.
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For a proof with many references and a thorough discussion we refer the reader to [31,
Ch. V.3]. Formally, the result is only valid when the number of states is finite. For master
equations describing physical systems, however, the number of states must obviously be
bounded. We therefore expect reasoning based on assuming a finite number of states to
be valid for all physically realizable systems.

We consider finally the linear birth-death process [3] as a model problem in one di-
mension:

∅
k−→ X

X
µx−→ ∅

}

, (2.12)

where conventionally we use uppercase letters to denote molecule names, while lower-
cases are used for counting the number of molecules. Eq. (2.12) states that X-molecules
are added to the system at constant rate and depleted at a rate proportional to the total
number of molecules. The corresponding CME can be written in terms of the forward-
and backward difference operator ∆q(x)=q(x+1)−q(x) and ∇q(x)=q(x)−q(x−1),

∂p(x,t)

∂t
=Mp(x,t)=−k∇̄p(x,t)+µ∆[xp(x,t)], (2.13)

where we use a bar over ∇ to express the convention that p(−1,t)=0. This problem can
be solved analytically if initial data is given in the form of a Poissonian distribution of
expectation a0,

p(x,0)=
ax

0

x!
e−a0 . (2.14)

The full dynamic solution is

p(x,t)=
a(t)x

x!
e−a(t), (2.15)

where a(t)=a0 exp(−µt)+k/µ·(1−exp(−µt)). Evidently, the steady-state distribution is
a Poissonian distribution with expectation k/µ.

The analytical solution in this example is a partial motivation for the choice of ba-
sis functions in the next section. Charlier’s polynomials are orthogonal with respect to
the Poisson process and seems to be natural candidates for representing solutions to the
master equation.

3 A discrete spectral method

Spectral Galerkin methods are generally considered to be efficient solution strategies for
linear time-dependent problems in the absence of difficult geometries [30]. For stochastic
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differential equations (SDEs), stochastic Galerkin methods [37, 49, 50] have been devised for
many types of equations, but the direct application of spectral methods to the CME is
more recent. In contrast to most SDEs from applications, which are often derived by
adding noise to a deterministic description, the CME follows from first principles and is
a consequence of the Markov assumption only.

3.1 Approximation of functions on Z+

A theory for the approximation of functions defined on Z+ was developed in the report
[17] and we summarize our findings in this section. The main result is Theorem 3.1 which
states that, given sufficient regularity in the solution to the CME, there is a certain basis in
which the error rapidly decays with increasing resolution. Expanding smooth solutions
to the CME in this basis thus reduces the number of degrees of freedom substantially.

For p∈{1,2,∞}, we use the normed lp(Z+)-spaces,

lp(Z+)=
{

q : Z+→R;‖q‖lp(Z+) <∞
}

, (3.1)

‖q‖p

lp(Z+)
≡ ∑

x≥0

|q(x)|p, (3.2)

where the usual sup-norm is to be understood when p = ∞. For p = 2 we additionally
associate the discrete Euclidean inner product,

(p,q)≡ ∑
x≥0

p(x)q(x). (3.3)

Define now the falling factorial function by xm = ∏
m−1
i=0 (x−i) along with the following

hierarchy of parameterized discrete Sobolev-spaces:

hm(Z+)=
{

q : Z+→R;‖q‖hm(Z+) <∞
}

, (3.4)

‖q‖2
hm(Z+)≡

m

∑
k=0

a−k‖
√

xk ·q(x)‖2
l2(Z+), (3.5)

and where the choice of the parameter a∈R+ will be discussed in Section 3.3.

We first note the evident boundedness of the operation multiplication by a polyno-
mial which follows from the definition (3.5):

Proposition 3.1. The map F : hm+2n(Z+)→hm(Z+) defined by F(q)= xn ·q(x) is continu-
ous.

The following result was proved in [17, Report] and can be used together with Propo-
sition 3.1 to bound the regularity of quite general master operators. Recall from (2.13)
that ∇̄p(x)≡ p(x−1)−p(x) with the exception of ∇̄p(0)≡−p(0).
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Proposition 3.2. The maps ∇̄: hm(Z+)→hm(Z+) and ∆: hm(Z+)→hm(Z+) are continuous.

We can also define weighted Sobolev-spaces with weight w(x)= ax/x!·e−a. The inner
product is then

(p,q)w ≡ ∑
x≥0

p(x)q(x)w(x) (3.6)

with generated norm ‖·‖l2w
. In analogy to (3.4) and (3.5) we can extend this to a hierarchy

of weighted spaces hm
w . The rationality behind this construction is that the two hierarchies

of Sobolev-spaces hm
w and hm are connected through the isomorphism p→w1/2 p, implying

that approximation results in hm
w carry over to hm.

Denote by Ca
n(x) the normalized nth degree Charlier polynomial [32, Report] with pa-

rameter a > 0. These polynomials form an orthonormal set of functions with respect to
the l2w-product; (Ca

n,Ca
m)w = δnm. Write XN for the span of the (Charlier-) polynomials of

degree ≤N and define πN as the orthogonal projection onto XN associated with (·,·)w.

The normalized Charlier polynomials satisfy the recurrence

Ca
0(x)≡1,

Ca
1(x)≡ a−x√

a
,

Ca
n+1(x)=

n+a−x
√

a(n+1)
Ca

n(x)−
√

n

n+1
Ca

n−1(x), (3.7)

and they also obey the interesting relation

Ca
n(x)=(−1)n

√

n!

an
Lx−n

n (a), (3.8)

where La
n denote Laguerre polynomials [32, Report] with the usual normalization.

Furthermore, define Charlier’s functions by Ĉa
n(x) := Ca

n(x)·w(x)1/2 along with the
space

X̂N ={p(x)=q(x)·w(x)1/2;q∈XN}.

Evidently, these functions are orthonormal under the usual l2-product (·,·) and we use
π̂N to denote the corresponding orthogonal projection on X̂N .

We quote from [17, Report] the following approximation result.

Theorem 3.1. For any nonnegative integers k and m, k≤m, there exists a positive constant C
depending only on m and a (or only on m provided a ≥ 1 is given) such that, for any function
p∈hm(Z+), the following estimate holds

‖π̂N−1p−p‖hk(Z+)≤C(a/N)m/2 max(1,N/a)k/2‖p‖hm(Z+). (3.9)
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Theorem 3.1 is related to similar results for continuous approximation; see for exam-
ple [43].

There are several reasons for why the space X̂N is preferred to XN when seeking
approximations to solutions of the master equation. First, any Galerkin formulation in
the inner product (·,·)w will at best lead to convergence in the weighted norm ‖·‖l2w

. In

contrast, a convergent Galerkin formulation in the l2-product implies the existence of
error estimates in the much stronger l2-norm. Second, solutions in XN are not probability
distributions and statistical measures of interest, such as the mean and variance, can not
be defined.

3.2 Conservation and stability

A nuisance with the projection π̂N is that it does not preserve the probability mass; since
the constant function 1 6∈ l2(Z+) we expect in general that (1,π̂N p) 6=(1,p)=1. A remedy
is devised in [17, Report]; consider the projection π̂0

N p = pN which for some Lagrange
multiplier λ satisfies

(q,pN−p)+λ( f (q),1) = 0
(1,pN−p) = 0

}

for ∀q∈ X̂N , (3.10)

where f is a linear function. For instance, the “tau-method” [30] of enforcing boundary
conditions in spectral methods would be equivalent to the choice f (q)= (Ĉa

N ,q)Ĉa
N. It is

shown in [17, Report] that the tau-projection performs worse than the convenient choice
f (q)= π̂0q. This choice satisfies the bounds

‖π̂0
N p−p‖l2 ≤‖π̂N p−p‖l2 +

|(1,π̂N p−p)|
(1,Ĉa

0)
, (3.11)

‖π̂0
N p−p‖l1 ≤‖π̂N p−p‖l1 +|(1,π̂N p−p)|. (3.12)

Note that |(1,π̂N p−p)| is the probability mass lost by π̂N which we expect to decay ex-
ponentially with N. Hence the additional error in either one of (3.11) or (3.12) is at worst
proportional to this quantity. An asymptotic expression for the denominator in (3.11)
when a is large is given in (3.17) below.

Consider now the stability properties of the Galerkin approximation to the CME (2.2)
according to (3.10). The formulation is as follows: find pN ∈ X̂N such that

(q,∂pN /∂t)+λ(π̂0q,1) = (q,MpN)
(1,∂pN /∂t) = 0

}

for ∀q∈ X̂N . (3.13)

Since M generally is unbounded, indefinite and non-symmetric with non-orthogonal
eigenvectors, we cannot hope to capture the stability properties of (3.13) by any standard
energy estimates. In [17, Report] some partial results were presented based on observa-
tions due to van Kampen [31, Ch. V] and Theorem 2.1. A short summary of these findings
now follows.
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The derivative of the l1-norm can be written down explicitly:

d

dt
‖pN‖l1 = ∑

x≥0

sgn pNMpN

︸ ︷︷ ︸

=:AN

+ ∑
x≥0

sgn pN

[
π̂0

NMpN−MpN

]

︸ ︷︷ ︸

=:BN

, (3.14)

where sgn q is zero for q = 0. It is not difficult to see that we always have that AN ≤ 0.
Furthermore, if M is not decomposable nor a splitting (cf. (2.10) and (2.11)) and BN does
not vanish, then the strict inequality AN < 0 holds. In conclusion, the only cases which
could induce an increase in the l1-norm occurs when BN > |AN |. Assuming sufficient
regularity on M, BN will tend rapidly to zero with increasing N. Hence the coercivity-
type bound

|AN |≥κ(M)‖MpN‖l1

would suffice to prove strict stability in l1.
This argument does not strictly prove l1-stability unless the coercivity estimate is first

proved but it does shed some light on the expected stability properties. Also, the nice
representation (3.14) is due to the mass-preserving projection and thus indicates why
this is a favorable choice.

3.3 Adaptivity

We now pay attention to the choice of the parameter a which must be chosen prior to
forming any projection onto X̂N . We examine a simplified case and claim that if N is small
and p is a “one-peak” probability distribution with expectation value m, then a≈m−1/2 is close
to optimal. By a “one-peak” probability distribution we mean a unimodal distribution
with standard deviation relatively small compared to the expectation value. Admittedly,
solutions to the CME are not always one-peak distributions but we use this setting to get
some guidance.

To motivate the statement we consider the case N = 0 which means that p is to be
approximated by the “half Poissonian distribution”,

P1/2(x; a)=C−1Ĉa
0(x)=C−1

√

ax

x!
e−a. (3.15)

Here C is the normalizing constant given by

C= ∑
x≥0

√

ax

x!
e−a = ∑

x≥0

(a/2)x

x!
e−a/2 f (x), (3.16)

where

f (x)=π1/4

√

Γ(x+1)

Γ(x+1/2)

(

1+

√
a

2x+1

)

,
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where Γ(x+1)= x! is the gamma function [1] and where the last line follows from sum-
ming even and odd terms separately and using Legendre’s duplication formula [1]. To
evaluate the sum in (3.16), we note that it can be compactly written as E[ f (X)] for X a
Poissonian stochastic variable of expectation a/2. Expand f in a Taylor series around a/2
and assume a to be large so that Stirling’s expansion [1] for the gamma function applies.
Inserting formulas for the central moments of the Poissonian distribution then yields af-
ter some work,

C∼23/4π1/4a1/4

(

1− 1

16a
+O

(
a−2
)
)

. (3.17)

Proceeding similarly for the expectation value m and the variance σ2 we obtain

m∼ a+
1

2
+

1

8a
+O

(
a−2
)

, (3.18)

σ2∼2a− 1

4a
+O

(
a−2
)

. (3.19)

The method just described for obtaining these expressions is somewhat related to the
method of Laplace [39] in the theory of asymptotic expansions of integrals. Interestingly,
it can also be shown to be equivalent to a technique due to Ramanujan (see [4], Ch. 3, en-
try 10). The resulting formulas are surprisingly accurate already for quite small values of
a. For example, the indicated three terms in (3.18) yield a relative error less than 0.06%
even for a =2. Taken together, (3.18) and (3.19) show that P1/2 is situated slightly to the
right of a Poisson distribution with the same parameter and is about 41% wider.

In conclusion then, if the probability distribution p is reasonably centered around
its expectation value m, then we expect that the optimal approximation in X̂0 is nearly
P1/2(x;m−1/2) in (3.15). As N grows and the approximating space gets larger, this esti-
mate no longer holds true. By Theorem 3.1 we see that a should reasonably decrease for
the error to rapidly become small. We resort to a small informative experiment.

In Fig. 1 the l2-error induced by projecting a fix Poisson distribution onto X̂N using
different a’s and N’s are shown together with the optimal choice of a thus determined.
The behavior of the optimal value aopt is found to agree with the above discussion; for
small N we see that aopt is slightly less than the expectation value, while it decreases with
increasing order N. We note that the global trend of the error near the optimal value is
quite flat so that the precise choice is not so important. The oscillating local behavior of
the error can be explained by considering asymptotic expansions for the Charlier poly-
nomials in terms of Bessel functions (see [10] for this fairly complicated issue).

3.4 Implementation

In this section we will describe the suggested numerical scheme in some detail. The
assembly process is discussed and we also demonstrate a feasible way to continuously
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Figure 1: A Poisson distribution of expectation value 50 is projected on X̂N for N = 0,5,··· ,30 using several
values of a. The l2-error is determined for each choice of a producing the dependence shown. For each value
of N, the asterisk indicates the optimal value of a.

update the parameter a so as to allow the basis functions to capture the dynamics of the
solution.

Since the master operator is defined in D dimensions, we need to make use of multi-
indices which we denote by small Greek letters. If α=[α1,··· ,αD] and x is a D-dimensional
array, then we index x by

xα = xα1,···,αD
. (3.20)

In addition, the following products occur naturally,

βα = βα1
1 ···βαD

D , (3.21)

α!=α1!···αD!, (3.22)

eα = eα1 ···eαD . (3.23)

The easiest way of constructing a basis in D-dimensions is to use a tensor basis. We
thus write

Ĉa
γ(x)≡∏

j

Ĉ
aj
γj

(xj). (3.24)

Evidently, this system of polynomials is orthonormal with respect to the inner product

( f ,g)≡ ∑
x≥0

f (x)g(x)∏
j

a
xj

j

xj!
e−aj = ∑

x≥0

f (x)g(x)
ax

x!
e−a, (3.25)
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where x and a now are vector quantities. The solution to the CME is thus represented
compactly as

p(x,t)=∑
γ

cγ(t)Ĉa
γ(x). (3.26)

Multiplying both sides of the CME (2.2) by Ĉa
δ and summing over ZD

+ yields the set of
equations

c′δ =
(
Ĉa

δ ,Mp
)
=
(
M∗Ĉa

δ,p
)

=
R

∑
r=1

∑
γ

(

Ca
δ(x−Nr)·

√

a−Nr x!/(x−Nr)!−Ca
δ(x),wr(x)cγCa

γ(x)

)

, (3.27)

where the favorable representation of the adjoint has been used. The use of orthogonality
to simplify the above expression is notationally non-trivial but computationally quite
simple. What is left is R different sums to be performed over the dimensions involved
in each reaction; i.e. the dimensions i such that wr depends on xi and/or Nri is non-zero.
The number of dimensions in each sum is almost always bounded by 4. For example, this is
the case with the reaction x+y→ z with propensity w(x,y,e). That is, when two species
interact under the influence of an enzyme e.

The sums themselves are computed using an associated Gauss-Charlier quadrature [16,
Report]. In one dimension it is given by

∑
x≥0

f (x)
ax

x!
e−a =

n

∑
j=1

f (xj)wj+Rn, (3.28)

Rn = ann!
f (2n)(ξ)

(2n)!
, ξ∈ (0,∞). (3.29)

The xj’s are the roots of Ca
n(x) and the weights can be computed according to the formula

wj =−(an)−1/2/[Ca
n−1(xj)·d/dxCa

n(xj)].

The quadrature provides a finite approximation to the Poisson distribution in the form

Pr[x]=
n

∑
j=1

wjδxj
(x), (3.30)

where δy(x)=1 if y=x and zero otherwise. In fact, the density in (3.30) has the same first
2n moments as the corresponding Poisson distribution; for a fix parameter a and n→∞

we thus have that xj ∼ j−1 and wj∼w(xj).
Turn now to a discussion of the interesting and novel strategy of dynamically adapt-

ing the parameter a. Intuitively, the basis is most “active” in a neighborhood of x ∼ a,
and consequently we would like to adjust a so as to rapidly capture the behavior of the
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represented solution. A different but related viewpoint is that the quadrature points tend
to be more densely populated around a and we would like to ensure that no quadrature
points are “wasted”.

Accordingly, let a= a(t)= [a1(t),··· ,aD(t)] in (3.26). Then formally,

∂p(x,t)

∂t
=∑

γ

c′γĈa
γ(x)+∑

γ

(

a′

Ca
γ(x)

d

da
Ca

γ(x)+
x

2

a′

a
− a′

2

)

cγĈa
γ(x), (3.31)

which is just the product rule for derivatives. From (3.8) and a formula for the derivative
of the Laguerre polynomials [1],

d

dx
La

n(x)=−La+1
n−1(x), (3.32)

one readily gets in the scalar case,

d

da
Ca

n(x)=− n

2a
Ca

n(x)+

√
n

a
Ca

n−1(x). (3.33)

Inserting this and using the recurrence (3.7), one can simplify the derivative, thereby
finding

∂p(x,t)

∂t
=∑

γ

c′γĈa
γ(x) (3.34)

+∑
γ

cγ∑
j

Ĉ
a\aj

γ\γj
(x\xj)

(

−1

2

√

γj+1

aj
Ĉ

aj

γj+1(xj)+
1

2

√

γj

aj
Ĉ

aj

γj−1(xj)

)

a′j.

Here we had to be able to remove dimensions from the product — the precise meaning
of the above notation is simply

Ĉ
a\aj

γ\γj
(x\xj)≡∏

i 6=j

Ĉai
γi

(xi). (3.35)

It follows that

(

Ĉa
δ ,

∂p(x,t)

∂t

)

= c′δ+∑
j

(

−1

2

√

δj

aj
cδ−1j

+
1

2

√

δj+1

aj
cδ+1j

)

a′j (3.36)

where δ±1j is just [δ1,··· ,δj±1,··· ,δD]. Once a′=[a′1,··· ,a′j,··· ,a′D] has been prescribed, it is

straightforward to combine (3.36) and the right hand side of (3.27) to produce equations
for the derivatives of the coefficients.

We have seen in Section 3.3 that it is difficult to exactly find the best value of a to
represent the solution p. Once a sufficiently good value has been determined, however,
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Algorithm 3.1:

1. Compute c′δ by assembling (3.27).
2. Determine the derivative of the expectation value according to the coefficients just computed

and let a′ take this value; a′j ≡ (xj,∂/∂t p(·,t)).
3. Account for the dynamic basis by updating c′δ according to (3.36).

it seems natural from the discussion in Section 3.3 to dynamically update a with the
expectation value. Suppose therefore that a good choice of a(t=0) has been made so that
p(·,t=0) is efficiently represented. Then we define a′(t) for t≥0 by the derivative of the
expectation value and obtain Algorithm 3.1.

In practice we also enforce a≥ 1 since Theorem 3.1 is uniform under this restriction.
The usefulness of this technique is demonstrated in Section 4.3

To conclude this section we finally comment on the mass-preserving issue since we
have actually only discussed how to form the l2-projection π̂N . The reason for this is that
forming π̂0

N follows as a corollary: simply compute the derivative of the mass under π̂N ,
then update the lowest order derivative c′0 so that the resulting coefficients carry a sta-
tionary mass. In the case of a stationary parameter a this amounts to simply summing
the ansatz (3.26) over all the integers using a suitable Gauss-Charlier quadrature. When
the parameter is dynamic one proceeds in a similar fashion although this time one has
to compute the derivative of the mass according to the slightly more involved expres-
sion (3.34).

In summary it is a straightforward (but not trivial) task to write general software us-
ing the suggested scheme. Inputs include the reactions (wr,Nr) and a reaction topology to
help sorting out the dependence between the dimensions. After forming a suitable initial
distribution, any ODE-solver (explicit or implicit) can be used to evolve the coefficients
in a time-dependent setting. Alternatively, an iterative linear or nonlinear solver can be
used in the case of a steady-state formulation. The dynamic parameter a helps capture so-
lutions which vary over many scales in time, but a static parameter is usually preferable
for steady-state solutions.

4 Numerical experiments

We will now demonstrate the feasibility of the proposed method by numerically solv-
ing three different models. The first is a one-dimensional model problem with known
solution and is used to demonstrate the application of the theory and the numerical con-
vergence. The second model is four-dimensional with two metabolites and two enzymes,
and the task is to find the steady-state distribution. By contrast, the third model is dy-
namic and takes place in two dimensions only. Here, the behavior of the solution is more
complicated and the example provides a setting for which the deterministic reaction-rate
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approach fails. The section concludes with a discussion of efficiency and a comparison
with Monte-Carlo simulations.

4.1 Convergence and application of the theory

As a numerical demonstration of convergence and in order to highlight the application
of the theory in Section 3.1 we first consider the linear birth-death problem (2.12) with
time-dependent solution given by (2.15).

To see how the theory of Section 3.1 fit in this case we first note that the master oper-
ator in (2.13) is bounded when regarded as an operator hm+2→hm, which follows imme-
diately from Propositions 3.1 and 3.2. In order to complete a strict convergence proof of
the scheme, we need stability and a regularity estimate of the solution. The former issue
was discussed in Section 3.2 and we therefore proceed under the assumption of stabil-
ity. In the present case the regularity is immediate since we do know the exact solutions.
To generally determine conditions on the master operator in D dimensions for a certain
given degree of regularity of the solution seems difficult, even in steady-state.

The experiments were conducted as follows. We let the parameters be defined by
[k,µ]=[1,10−3] in (2.12) which makes the expectation value in steady-state to be m=1000.
At t=0, the initial data is set to a Poisson distribution with mean 10 and the system is then
evolved until t=104. By comparing the solution thus obtained to the exact solution (2.15),
the time-averaged error was determined. A dynamic parameter a was used to help the
basis functions follow the solution as explained in Section 3.4. The method would not
have worked without this feature since the solution varies over many scales.
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Figure 2: Time-average error of the scheme applied to (2.12) in different norms.

In Fig. 2, errors in various measures are shown and it is clear that the convergence
is exponential in the order N of the scheme. We now proceed to confirm this type of
convergence for two more realistic models where no explicit solutions are available.
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4.2 Enzyme-control of metabolites

This example comes from [14] and is a model of the synthesis of two metabolites X and
Y by two enzymes EX and EY. The reactions are

∅
k1ex/(1+x/ki)−−−−−−−→ X

X
µx−→ ∅

∅
k2ey/(1+y/ki)−−−−−−−→ Y

Y
µy−→ ∅

X+Y
kxy−→ ∅







∅
k3/(1+x/kr)−−−−−−→ EX

EX
µex−→ ∅

∅
k4/(1+y/kr)−−−−−−→ EY

EY

µey−→ ∅







, (4.1)

with parameters k1 = k2 =0.3, k3 = k4 =0.02, k =10−3, µ =2·10−3, ki =60 and kr =30. As
it stands, (4.1) is the result of an adiabatic [20, Ch. 6.4] simplification of a more complete
model. This is generally done by eliminating intermediate products under the assump-
tion that they rapidly reach steady-state.
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Figure 3: Steady-state solution (marginal distributions) to (4.1). The correlation between the various species
can be understood from first principles, except perhaps for the somewhat irregular dependence between X and
EY.

The steady-state solution as obtained by the scheme is displayed in Fig. 3. We have
tried several different discretizations with the constant value a = [20,20,2,2] as a reason-
able parameter for the basis. The solution was obtained by explicit time-stepping from
initial data in the form of a Poisson distribution with the expectation value a and steady-
state was reached approximately at T =1500. The obtained solution is visually pleasing
and free of numerical artifacts already at the quite coarse discretization [15,15,8,8] (de-
grees per dimension according to the ordering [x,y,ex,ey]) and took about 9 minutes of
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Figure 4: Errors of the scheme applied to (4.1) as measured in different norms. Note that the x-axis displays
the total number of degrees of freedom.

computing time on a workstation to obtain. By comparing each solution to a higher
order reference solution, different norms of the error were computed and the result is
displayed in Fig. 4, where the exponential convergence is reasonably explicit.

4.3 Bistable toggle switch

A biological toggle switch can be formed by two mutually cooperatively repressing gene
products X and Y [21]. The relevant equations are

∅
a/(b+y2)−−−−−→ X

X
µx−→ ∅

∅
c/(d+x2)−−−−−→ Y

Y
µy−→ ∅







, (4.2)

with parameters a=c=1000, b=d=6000 and µ=10−3. It is easy to get a rough feeling for
the behavior of (4.2). Suppose that initially, the number of X-molecules is large and that
the number of Y-molecules is small. Then we see that the production of Y-molecules is
inhibited so that the system will find a stable state with x>y. However, by a certain small
probability the stochastic noise can make the number of Y-molecules eventually grow.
Due to this ’tunneling’ effect, the production of X-molecules will instead be inhibited
and the roles of X and Y may suddenly switch. This behavior is explicitly seen in Fig. 5
where the result of a stochastic simulation with SSA [23] is displayed.
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Figure 5: One realization of (4.2) obtained by Gillespie’s algorithm. In this simulation the system ’switches’

three times and we also see a ’near-switch’ slightly before t=105.
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Figure 6: The solution to (4.2) at time t = [0,1,1.5,2.5]·105 using N = 19 (400 coefficients). The simulation
starts with a Poissonian solution centered at (x,y)= (60,10) and ends in equilibrium where two distinct peaks
have formed. The indicated bounding box contains all quadrature points and follows the solution quite well.
Note the stiffness of the problem: the fast scale is the transport along the line x−y= constant, while the slow
distribution along x ·y= constant is much more of diffusive character.
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Figure 7: Errors of the scheme applied to (4.2) in different norms (time-average) for increasing order N. The
exponential convergence of the method is clearly visible.

We solved (4.2) using various order N and various initial data. The parameter a was
dynamic and followed the expectation value of the solution as explained in Section 3.4.
The stiffness of the problem is clearly visible in Fig. 6, and so an implicit ODE-solver has
been our preferred choice (we used MATLAB’s ode15s).

The error has been estimated using a high order reference solution with stricter tol-
erances for the time-stepper. In Fig. 7 several different norms of the error are displayed
and the exponential convergence of the method is clearly visible. Fig. 6 indicates a visu-
ally pleasing result already at a quite coarse discretization — the solution displayed takes
about a minute of computing time on a workstation to obtain. Overall, no problems of in-
stabilities were ever encountered although phase errors were more pronounced for small
N.

The formation of two distinct peaks is an interesting feature which makes the toggle
switch an example for which the reaction-rate approach must fail. The expectation value
obtained using this method comes to rest near one of the two peaks with an additional
unstable critical point situated in between them. The ’switching’ feature of the system is
thus not present and the deterministic solution provides limiting insight.

4.4 Discussion

Although a complete discussion of spectral methods versus Monte-Carlo simulations is
beyond the scope here, we offer some comments of relevance to the examples presented.
First, note that directly representing the solution in either one of Fig. 3 or 6 is about 100
times more memory consuming than the method proposed.
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It is not a well-defined task to compare a spectral method to a Monte-Carlo simulation
since they produce different information: the density contains all trajectories but contains
no concept of individuality. If we agree to look at the error in moment only, the error ǫ of
the spectral method satisfies

ǫ∼exp(−N1/D) (4.3)

for N modes in D dimensions. The work for obtaining this error becomes in an idealized
case W ∼ N ∼ (−logǫ)D, whereas for a Monte-Carlo method the work is the familiar
W ∼ ǫ−2. Thus, for not too high dimensionality and sufficient accuracy demands, the
proposed method will be more efficient.

On the other hand, for more than (say) 6 dimensions and/or when only a rough esti-
mate of the average behavior is sufficient, the full spectral solution is probably overkill.
This is also often true for non-stiff models where a direct simulation wastes little or no
time in resolving fast transients. For stiff problems, however, more complicated model
reduction techniques has to be employed and obtaining precise information from the
given model becomes more expensive. For the spectral method, a suitably tuned implicit
solver can be used so that the time-step restriction is much less severe.
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Figure 8: Steady-state solution to (4.2) with parameters a = c = 3000, b = d = 11000 and µ = 10−3 [44]. The

problem starts at t=0 in the lower right state and steady-state is approximately reached at t=5·106. Left: the
result of the spectral method of order 39 (1600 coefficients), contour levels 4·10−4 ·2−i for i = 0,··· ,8. Right:
one single trajectory simulated using SSA. Note that the system switches only two times during the simulation
and that the computational cost for obtaining the solutions displayed is about the same.

One also has to take the various implementation constants into account. Consider as
an example of this the bistable system with parameters chosen as in [44] (see Fig. 8). For
this particular example, a single simulated trajectory is just about as expensive to com-
pute as a highly accurate spectral representation of the solution to the CME (5 minutes
on a workstation for solving the CME and 4 minutes for the single trajectory displayed
in Fig. 8). A word of caution when comparing computing times seems to be in order
here: our MATLAB implementation is experimental and relies completely on the suite of
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included ODE-solvers. It is very likely that a better implementation in a compiled lan-
guage with a specially adapted time-stepper would improve performance drastically. On
the other hand, we have also used a straightforward MATLAB implementation of SSA and
similar improvements are possible here. Refer to [36] for further comparisons and con-
nections between solving the CME and obtaining samples via the SSA and the tau-leap
methods.

We finally wish to emphasize that the proposed method is not to be regarded foremost
as an alternative to Monte-Carlo simulations. Methods for simulating realizations of a
system and computing its probability density are not mutually exclusive and are effective
in answering different kinds of questions.

5 Conclusions

Relying on the Markov assumption only, the master equation is a stochastic description of
general time-continuous systems expressed in discrete coordinates, particularly suitable
as a description of well-stirred chemically reacting systems. If the number of molecules is
large, then an effective and usually accurate description in terms of deterministic ODEs
for the expectation values can be formed. However, stochastic descriptions are preferred
for many systems of interest; important examples can be found inside living cells where
the effects of stochasticity are critical.

Monte-Carlo simulations such as Gillespie’s SSA are effective in computing single
trajectories, but the solution obtained in terms of the full probability density function can
provide additional insight. Statistical parameters can be accurately determined, certain
inverse problems are made feasible or can be solved to greater accuracy, and the exact
nature of the processes involved can be studied more closely.

We have implemented and applied a spectral method for the master equation based
on Charlier functions. Features include high accuracy at a fairly low resolution per di-
mension, convergence properties in the full semi-infinite discrete state-space, and a strat-
egy for dynamically keeping the basis functions adjusted to the solution they represent.
The numerical experiments suggest that the scheme is effective for high enough accuracy
demands and not too high dimensionality.

Although the dimensional curse is still an issue, the exponential convergence makes
the proposed spectral expansion much more effective than a direct representation. We
also would like to point out that the master equation encompasses a very broad class of
problems and no single solution method can be optimal in all settings. — The “curse” is
a genuine one and cannot be addressed without extra assumptions or reductions to the
physical model.

After this work was completed, the author became aware of a similar method for
polyreaction kinetics devised by Deuflhard and Wulkow [9,47,48]. Their original scheme
uses the basis {C̃a

n(x)} :={Ca
n(x)·w(x)} and determines the coefficients by taking the l2-

product with {Ca
n(x)} in a Petrov-Galerkin formulation. The setting is one-dimensional
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and the model problem treated is reminiscent of the birth-death problem (2.12). However,
when applied to the CME of dimensionality higher than one, their scheme does not seem
to be stable with the method of lines discretization. A related recent work directly aimed
at the CME is found in [8, Report].

We can also relate the method to the Poisson representation [20, Ch. 7.7] which assumes
that the solution to the master equation can be written as a superposition of multivariate
uncorrelated Poisson distributions:

p(x,t)=
∫

f (a,t)
ax

x!
e−a da. (5.1)

It is possible to cast the CME into an explicit equation for the new unknown density
f , thereby mapping the CME in (x,t)-space into a partial differential equation in (a,t)-
space. Note, however, that the relation (5.1) may well imply an arbitrarily peaky and
discontinuous f from a fairly smooth p (e.g. f is a Dirac-function for the simple model-
problem (2.12)). This observation suggests that perhaps the Poisson representation is bet-
ter thought of as a tool for deriving various analytical results rather than as a numerical
method.

We would also like to mention some possible improvements to the proposed method.
First, for certain problems the solution may become a very flat distribution. The proposed
basis is really only an effective representation when the essential support of the solution
is clustered around the expected value m as m±O

(√
m
)
. If this condition is violated

so that the solution is very non-Poissonian, a very high order N is needed in order to
resolve the problem. A cure is to scale the solution appropriately which for a discrete
solution amounts to incorporating aggregation. Aggregation of continuous-time Markov
chains has been described in [28] and in the setting of the sparse grids technique for the
master equation in [29].

Another improvement would stem from coupling the described method to the reaction-
rate equations. One is frequently interested in the precise behavior of the solution in a
few dimensions only and the representation in terms of expectation values might well
suffice for the major part. A drastic efficiency gain is thus possible, making really high
dimensional problems tractable. Some steps in this direction for the Fokker-Planck equa-
tion have been taken in [35].
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