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Abstract. The present paper introduces bilinear forms that are equivalent to the
recovery-based discontinuous Galerkin formulation introduced by Van Leer in 2005.
The recovery method approximates the solution of the diffusion equation in a discon-
tinuous function space, while inter-element coupling is achieved by a local L2 pro-
jection that recovers a smooth continuous function underlying the discontinuous ap-
proximation. Here we introduce the concept of a local “recovery polynomial basis” –
smooth polynomials that are in the weak sense indistinguishable from the discontinu-
ous basis polynomials – and show it allows us to eliminate the recovery procedure.
The recovery method reproduces the symmetric discontinuous Galerkin formulation
with additional penalty-like terms depending on the targeted accuracy of the method.
We present the unique link between the recovery method and discontinuous Galerkin
bilinear forms.
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1 Introduction

Highly accurate schemes for solving the advection equation are preferably obtained by
means of the discontinuous Galerkin (DG) method. This method approximates the solu-
tion in an element-wise continuous function space that is globally discontinuous. Because
of the physics of advection, the method acquires a natural upwind character that renders
the discontinuities at the cell interfaces harmless and stabilizes the scheme.

When combining advection with diffusion, though, we run into a problem: the dis-
continuous function space that works so well for advection does not combine naturally
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with the diffusion operator. In the course of 30 years, various bilinear DG forms have
been introduced for approximation of the diffusion operator; the symmetric DG form,
stabilized either with the penalty term of Baker [1] (usually attributed to Arnold [2]) or
the penalty term of Bassi, Rebay et al. [3], also credited to Brezzi [4], are most widely
used.

In constructing bilinear forms for diffusion, the essence lies in choosing the numerical
fluxes that are responsible for the coupling of the discontinuous solution approximation
across the cell interfaces. Traditionally, these numerical fluxes are defined such that the
bilinear form satisfies a number of mathematical conditions (the more the better) such as
symmetry, coercivity, boundedness, consistency and adjoint consistency. Until recently,
however, an analysis in which bilinear forms for diffusion, with desirable mathematical
properties, appear simply as a result of a physical argument, was lacking.

In 2005 Van Leer et al. presented the “recovery method.” Here the coupling through
the numerical fluxes is obtained by arguing that, for diffusion, the discontinuous solution
approximation should locally be regarded as an L2 projection of a higher-order continu-
ous function. This acknowledges the physical datum that diffusion produces a smooth
solution at any t >0 even from discontinuous initial values. The local “recovered” func-
tion couples neighboring cells and provides the information for computing the diffusive
fluxes.

In the present paper we consider the 1-D diffusion equation in order to present the
link between the recovery method and traditional discontinuous Galerkin bilinear formu-
lations. Key to the systematic derivation of the diffusive fluxes that appear in the bilinear
forms is the discovery of the “recovery polynomial basis:” to each piecewise continuous
polynomial basis of degree k defined on two adjacent cells corresponds a unique continu-
ous polynomial space of degree 2k+1. In consequence, to the approximation of the solu-
tion as an expansion in the discontinuous basis functions locally corresponds an identical
expansion in the smooth recovery basis; the latter permits computing of the numerical
fluxes across the cell interfaces. And, because of the duality of the polynomial spaces, the
numerical fluxes in terms of the discontinuous basis functions follow immediately.

Thus, for any polynomial space of degree k the recovery method is equivalent to a
unique, basis-independent bilinear discontinuous Galerkin formulation.

The outline of the paper is as follows. In the next section the recovery method is
reviewed, in Section 3 the recovery basis is introduced, and in Section 4 the numerical
fluxes are computed. These lead to the bilinear forms presented in Section 5. The final
section lists the paper’s conclusions.

2 The recovery method

Let us consider the diffusion equation ut = Duxx which for convenience we discretize on
the regular infinite grid

Zh ={jh | j∈Z,h>0} . (2.1)
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On the partitioning of open cells Ωj =]jh,(j+1)h[ we introduce the function space associ-
ated with discontinuous Galerkin methods

P k(Zh)=
{

w : w∈P k(Ωj), j∈Z

}

, (2.2)

with P k(Ωj) a polynomial space of degree k, and we introduce the jump and average
operators that are useful for discontinuous Galerkin formulations. For a function w we
define

[w]|(j+1)h = w|Ωj
nΩj

+ w|Ωj+1
nΩj+1

,

〈w〉|(j+1)h = 1
2

(

w|Ωj
+ w|Ωj+1

)

.
(2.3)

Here, nΩj
is the one-dimensional outward normal of cell Ωj at point (j+1)h.

The recovery method for the 1-D diffusion equation is based on the following weak
formulation: find u∈P k(Zh) such that

∑
Ωj∈Z

∫

Ωj

utvdx=D ∑
Ωj∈Z

∫

Ωj

uvxxdx

+D
(

[v] fx|Γint
− [vx] f |Γint

)

, ∀v∈P k(Zh), (2.4)

where Γint = {jh} j∈Z
is the set of cell-interfaces and f is the locally recovered smooth

function whose value and derivative we use at each cell interface x = eh, e ∈ Z. The
recovery requirement is that f is indistinguishable from u in the weak sense on the cells
Ωe−1 and Ωe, meaning that we find f ∈P2k+1(Ωe−1∪Ωe) such that

∑
j=e−1,e

∫

Ωj

f vdx= ∑
j=e−1,e

∫

Ωj

uvdx, ∀v∈P k(Ωe−1)∪P k(Ωe). (2.5)

In Van Leer et al. [5, 6] we have presented linear systems from which the polynomial
coefficients of f follow. In the next section we introduce a new concept, the recovery basis,
which is at the heart of the recovery procedure; it greatly simplifies both computation and
further analysis of the diffusive fluxes.

3 The recovery basis

As the basis for (2.2) we consider polynomials φi(ξ) in the hierarchical space P k(]0,1[) of
degree k that satisfy

∫ 1

0
φi(ξ)φl(ξ)dξ =

{

0 if i 6= l
1 if i= l

with i and l =0,··· ,k. (3.1)

For the sake of determinacy (it is not essential), we choose the orthonormal Legendre
polynomials defined on the open interval ξ =]0,1[ (see [7], page 775):

φn(ξ)=
1

2n

√
2n+1

[n/2]

∑
m=0

(−1)m

(

n
m

)(

2n−2m
n

)

(−1+2ξ)n−2m. (3.2)
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Figure 1: The first four orthonormal Legendre polynomials φ0(ξ) = 1, φ1(ξ) =
√

3(−1+2ξ), φ2(ξ) =
√

5(1−
6ξ+6ξ2) and φ3(ξ)=

√
7(−1+12ξ−30ξ2+20ξ3) defined on the interval ξ =]0,1[.

Fig. 1 shows the first four polynomials of this basis. On the grid (2.1), the function space
(2.2) is spanned by the piecewise continuous polynomials

φi,j(x)=

{

φi(
x−jh

h ) x∈Ωj ,
0 otherwise.

(3.3)

To obtain a L2 approximation of a given smooth function U(x) (for instance an initial-
value distribution) we solve the bilinear form: find u∈P k(Zh) such that

∑
j∈Z

∫

Ωj

uφi,jdx= ∑
j∈Z

∫

Ωj

Uφi,jdx, ∀φi,j∈P k(Zh). (3.4)

With the approximation

u= ∑
j∈Z

k

∑
i=0

ci,jφi,j(x), (3.5)

and using (3.1), the solution of (3.4) reads

ci,j =
∫ 1

0
U(h(ξ+ j))φi(ξ)dξ, i=0,··· ,k, j∈Z. (3.6)

The L2 approximation (3.5) is in general discontinuous at the cell-interfaces. The function
values and derivatives of u(x) are formally not defined at the nodal points jh, whereas
they were for U(x). This motivates recovery.

We shall now go to the root of the recovery procedure. We consider two adjacent cells
Ωe and Ωe+1 and describe the local recovery procedure (2.5) for the piecewise continuous
approximation (3.5). On the union of the cells we introduce the basis polynomials (to be
specified later)

ψi,j(x)=

{

ψi(
x−jh

h ) x∈Ωj∪Ωj+1, i=0,··· ,2k+1,
0 otherwise.

(3.7)
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with ψi(ξ)∈P2(k+1)(]0,2[), and we construct the polynomial space

P2k+1(Ωe∪Ωe+1)=Span
{

ψi,j(x)
}

, j= e, i=0,··· ,2k+1. (3.8)

Writing the recovered smooth approximation as

f =
2k+1

∑
i=0

aiψi,e(x), x∈Ωe∪Ωe+1, (3.9)

our task is solving the bilinear form: find f ∈P2(k+1)(Ωe∪Ωe+1) such that

∑
j∈Z

∫

Ωj

f φi,jdx= ∑
j∈Z

∫

Ωj

uφi,jdx=hci,j , j= e,e+1, i=0,··· ,k. (3.10)

This implies solving the linear system

























∫ 1
0 ψ0(ξ)φ0(ξ)dξ ···

∫ 1
0 ψ2k+1(ξ)φ0(ξ)dξ

... ···
...

∫ 1
0 ψ0(ξ)φk(ξ)dξ ···

∫ 1
0 ψ2k+1(ξ)φk(ξ)dξ

∫ 1
0 ψ0(ξ+1)φ0(ξ)dξ ···

∫ 1
0 ψ2k+1(ξ+1)φ0(ξ)dξ

... ···
...

∫ 1
0 ψ0(ξ+1)φk(ξ)dξ ···

∫ 1
0 ψ2k+1(ξ+1)φk(ξ)dξ















































a0
...

ak

ak+1
...

a2k+1























=























c0,e
...

ck,e

c0,e+1
...

ck,e+1























. (3.11)

We now make the key observation: if we choose the ψi,e(x) such that the matrix in (3.11)
renders an identity matrix, the expansion of f in terms of the smooth basis is identical to
the expansion of u in terms of the discontinuous basis. Then we will have ai = ci,e and
ak+1+i = ci,e+1 for i=0,··· ,k, and

u|Ωe∪Ωe+1
=

k

∑
i=0

ci,eφi,e(x)+
k

∑
i=0

ci,e+1φi,e+1(x),

f =
k

∑
i=0

ci,eψi,e(x)+
k

∑
i=0

ci,e+1ψk+1+i,e(x), x∈Ωe∪Ωe+1.

(3.12)

To achieve this simplicity we must require







∫ 1
0 ψi(ξ)φl(ξ)dξ =

{

1 i= l,
0 i 6= l,

∫ 1
0 ψi(ξ+1)φl(ξ)dξ =0;







∫ 1
0 ψk+1+i(ξ)φl(ξ)dξ =0,

∫ 1
0 ψk+1+i(ξ+1)φl(ξ)dξ =

{

1 i= l,
0 i 6= l;

for i and l =0,··· ,k.

(3.13)

This set of equations represents a weak interpolation problem and, just as for strong
collocation interpolation, has a unique solution for each basis {φi}. In consequence, each
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Table 1: The orthonormal Legendre basis and the recovery basis for degrees k=0,1 and 2. The recovery basis
satisfies the orthonormality conditions (3.13) and makes the matrix in (3.11) the identity matrix.

k
φi(ξ)

0< ξ <1, i=0,··· ,k
ψi(ξ)

0< ξ <2, i=0,··· ,2k+1

0 1

3
2−ξ

− 1
2 +ξ

1
1

(−1+2ξ)
√

3

1
4 + 21

4 ξ− 15
2 ξ2+ 5

2 ξ3

(− 23
12 + 33

4 ξ− 17
2 ξ2+ 5

2 ξ3)
√

3

3
4− 21

4 ξ+ 15
2 ξ2− 5

2 ξ3

(− 7
12 + 17

4 ξ− 13
2 ξ2+ 5

2 ξ3)
√

3

2

1

(−1+2ξ)
√

3

(1−6ξ+6ξ2)
√

5

9
4− 75

4 ξ+ 135
2 ξ2− 185

2 ξ3+ 105
2 ξ4− 21

2 ξ5

( 3
8− 147

8 ξ+ 1155
16 ξ2− 775

8 ξ3+ 1715
32 ξ4− 21

2 ξ5)
√

3

( 99
40− 1083

40 ξ+ 1233
16 ξ2− 713

8 ξ3+ 1449
32 ξ4− 42

5 ξ5)
√

5

− 5
4 + 75

4 ξ− 135
2 ξ2+ 185

2 ξ3− 105
2 ξ4+ 21

2 ξ5

( 9
8− 137

8 ξ+ 1005
16 ξ2− 705

8 ξ3+ 1645
32 ξ4− 21

2 ξ5)
√

3

(− 29
40 + 453

40 ξ− 687
16 ξ2+ 503

8 ξ3− 1239
32 ξ4+ 42

5 ξ5)
√

5

basis in the discontinuous polynomial space P k(Ωe)∪P k(Ωe+1) has a unique recovery
counterpart in P2k+1(Ωe∪Ωe+1).

The discontinuous and smooth recovery polynomial bases satisfying (3.13) are given
in Table 1 for some values of k. Fig. 2 shows the discontinuous orthonormal Legendre
polynomials and the corresponding smooth recovery polynomials for k=1. Fig. 3 shows
the piecewise constant function and its recovery counterpart for k = 0 to 3. The smooth
basis function tends weakly to the underlying discontinuous one as k is increased. Fig. 4
shows the L2 approximation according to (3.12) of f =cos( 9π

4h x) both in the discontinuous
basis (left) and in the recovery basis (right). In the latter representation we can compute
unique values of the function and its derivative at the cell interface.

4 Numerical fluxes

We are now ready to express the diffusive fluxes in (2.4), recovered according to (2.5), in
terms of the discontinuous polynomials in the function space (2.2) for any degree k; we
shall restrict ourselves to lower values of k.

We first consider the case k=1. Using the expansion (3.12) of f and the relevant entries
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Figure 2: The discontinuous and recovery basis for
k=1 and cells Ω0 and Ω1 with h=1.
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Figure 3: The piecewise constant function and its
counterpart in the recovery basis for k=0 to 3.
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Figure 4: L2 approximation of f =cos( 9π
4h x) on cells Ω0 and Ω1 (h=1/4). (a) the approximation in the Legendre

basis with k=2, (b) the corresponding recovered function in the recovery basis.

for ψi from Table 1 we compute the trace at x=(e+1)h:

f ((e+1)h)= ∑
i=0,1

ci,eψi(1)+ ∑
i=0,1

ci,e+1ψ2+i(1),

=
1

2
c0,e+

1

3
c1,e

√
3+

1

2
c0,e+1−

1

3
c1,e+1

√
3. (4.1)

Comparing this result with the expansion of u we see, with ε→0, that

u((j+1)h−ε)= ∑
i=0,1

ci,eφi(1)= c0,e+c1,e

√
3,

u((j+1)h+ε)= ∑
i=0,1

ci,e+1φi(0)= c0,e+1−c1,e+1

√
3.

(4.2)
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Table 2: The expansion of (4.3) and (4.4) for discontinuous polynomial space of degree k=0,1 and 2.

k f (jh) fx(jh)

0 〈u〉 − 1
h [u]

1 〈u〉− 1
12 h[ux] − 9

4h [u]+〈ux〉
2 〈u〉− 3

64 h[ux] − 15
4h [u]+〈ux〉− 9

240 h[uxx]
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Figure 5: The typical finite-element hat-polynomials and their recovery counterpart. In these bases, the expan-
sions (3.12) hold.

Applying the jump and average operators and using the fact that the Legendre basis is
hierarchical we find

f ((e+1)h)= 〈u〉|(e+1)h−
1

12
h [ux]|(e+1)h , (4.3)

and analogously

fx((e+1)h)=− 9

4h
[u]|(e+1)h+ 〈ux〉|(e+1)h . (4.4)

The derivation for other polynomial degrees is similar to the above procedure; Table
2 shows the results for k = 0 to 2. As indicated before, and verifiable by construc-
tion, for a given degree k, to each Legendre polynomial (3.2) in the function space
P k(Ωe)∪P k(Ωe+1)⊂P k(Zh) corresponds a unique recovery polynomial in the function
space P2k+1(Ωe∪Ωe+1). In consequence, basis transformations apply on both polyno-
mial spaces simultaneously, with the result that any polynomial in the space P k(Ωe)∪
P k(Ωe+1)⊂P k(Zh) has a unique recovery polynomial in the space P2k+1(Ωe∪Ωe+1). As
an example we show in Fig. 5 the typical finite-element hat-polynomials and their recov-
ery counterparts satisfying the expansions (3.12). Two of the four hat polynomials are
continuous at x=1, with the result that the corresponding recovery polynomial becomes
a good approximation.
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Because of the existence of the recovery polynomials, which span P2k+1(Ωe∪Ωe+1),
the recovered approximation f ∈P2k+1(Ωe∪Ωe+1) is independent of the basis on which it
was computed and, likewise, the resulting diffusive fluxes are basis independent. Hence,
starting from the hat-polynomials (k=1), one finds the same interface values of f and fx

as given in (4.3) and (4.4).

5 Bilinear forms for the recovery method

Given the unique expansions for several k in Table 2 we may finally reformulate the
recovery method (2.4) with its recovery procedure (2.5) for these degrees as: find u ∈
P k(Zh) such that

Bk(u,v)=
1

D ∑
Ωj∈Zh

∫

Ωj

utvdx, ∀v∈P k(Zh), (5.1)

where∗

k=0 : B0(u,v)=−1

h
[v][u]|Γint

, (5.2)

k=1 : B1(u,v)=− ∑
Ωj∈Zh

∫

Ωj

uxvxdx+ [v]〈ux〉|Γint

+〈vx〉[u]|Γint
− 9

4h
[v][u]|Γint

+
1

12
h [vx][ux]|Γint

, (5.3)

k=2 : B2(u,v)=− ∑
Ωj∈Zh

∫

Ωj

uxvxdx+ [v]〈ux〉|Γint
+ 〈vx〉[u]|Γint

− 15

4h
[v][u]|Γint

+
3

64
h [vx][ux]|Γint

− 9

240
h [v][uxx]|Γint

. (5.4)

Clearly, the recovery-based discontinuous Galerkin method for k ≥ 1 reproduces the
symmetric weak formulation, with a sequence of penalty-like terms; The number of
terms and their coefficients depend on the targeted accuracy of the method. For any k
Baker’s [1] interior penalty term appears. Note that for k = 2 the last term is not sym-
metric. Higher-degree bilinear forms are obtainable by straightforward construction; so
far we have gone up to B6(u,v). The high-order terms are always asymmetric, being
proportional to [∂ku/∂xk] and either [v] or [vx].

Though we have numerical evidence of exponential order of convergence [6], we lack
rigorous proofs of stability, coercivity and boundedness. We wish to point out, though,
that the 1-D bilinear forms we found all are consistent with the weak form of the diffusion

∗Here we use that

∑
Ωj∈Zh

∫

Ωj

uvxxdx=− ∑
Ωj∈Zh

∫

Ωj

uxvxdx+ [uvx]|Γint

and [vx]〈u〉=− 〈vx〉[u]|Γint
+ [uvx]|Γint

.
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operator. To show this, we start from the interior-penalty method, which is known to be
consistent. The present bilinear forms for k≥ 1 contain additional penalty terms; these,
however, are proportional to [∂ku/∂xk] and therefore vanish when u is replaced by the
smooth exact solution.

Moreover, although not symmetric for k≥2, these bilinear forms are also adjoint con-
sistent. Again, the internal-penalty method has the desired property; the added higher-
order penalty terms do not affect this since they are proportional to either [v] or [vx],
which vanishes when v is replaced by the smooth exact solution.

6 Conclusion

In this article we have derived bilinear forms for the recovery-based discontinuous
Galerkin method for the discretization of the 1-D diffusion equation. This method ap-
proximates the solution of the diffusion equation in a discontinuous function space, while
inter-element coupling is achieved by locally recovering a higher-order continuous func-
tion from the continuous function.

At the heart of this recovery procedure is the existence of the recovery basis polyno-
mials: polynomials, defined on two cells, that are in L2-sense indistinguishable from the
discontinuous basis functions.

An important property is that for a fixed degree to each non-smooth basis function in
the discontinuous function space corresponds a unique locally smooth polynomial in the
recovery function space, and visa-versa. We have shown that the diffusive flux (function
value or derivative) computed from the recovered smooth approximation, expressed in
terms of the interface jumps and averages of the discontinuous approximation, is unique;
in particular it is independent of the bases in which the discontinuous and smooth ap-
proximations were expressed.

The recovery method reproduces the symmetric discontinuous Galerkin formulation,
augmented with a number of not necessarily symmetric penalty terms; the number in-
creases with the degree of the approximation space.

We submit this paper provides the tools to further analyze the stability, accuracy, and
other properties of the recovery-based discontinuous Galerkin method.
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