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Abstract. An efficient p-multigrid method is developed to solve the algebraic systems
which result from the approximation of elliptic problems with the so-called Fekete-
Gauss Spectral Element Method, which makes use of the Fekete points of the triangle
as interpolation points and of the Gauss points as quadrature points. A multigrid
strategy is defined by comparison of different prolongation/restriction operators and
coarse grid algebraic systems. The efficiency and robustness of the approach, with
respect to the type of boundary condition and to the structured/unstructured nature
of the mesh, are highlighted through numerical examples.
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1 Introduction

The Spectral Element Method (SEM), developed in the 80’s to solve with spectral-like
methods Partial Differential Equations (PDE) in non-Cartesian (non-cylindrical, non-
spherical,···) geometries, has proved to be very successful during the two last decades,
see, e.g., [8, 16]. Its main drawback is however to be not really adapted to very complex
geometries, due to the non-simplicial shape of the elements which are the image of the
cube Ω̂=(−1,1)d, where d is the space dimension, in which the polynomial approxima-
tion holds.

Some ways have been suggested to support triangular/tetrahedral elements and
hence simplicial meshes. Among them is the one proposed in [16], which makes
use of the “collapsed coordinate system” resulting from a singular mapping from the
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2D/3D cube onto the triangle/tetrahedron. This approach has appeared of great interest,
but suffers from a non-symmetric distribution of the interpolation points in the trian-
gle/tetrahedron, with an useless accumulation of these points in one of the vertices.

The SEM being a nodal method, i.e., the basis functions are Lagrange polynomials
based on interpolation points, the main research axis was then to provide points in the
simplex showing nice interpolation properties, i.e., such that the Lebesgue constant does
not increase fastly with the degree of the polynomial approximation, see, e.g., [4,5,13,14].
Here we are interested in Fekete points based methods, as proposed for the triangle in
[27], due to their nice interpolation properties and strong link with the Gauss-Lobatto
Legendre (GLL) nodes of the quadrangle based SEM, say QSEM, since Fekete points and
GLL points coincide in the d-dimensional cube [2].

In contrast to the GLL points, the Fekete points are however not Gauss points, so
results obtained with the earlier triangle based SEM, say TSEM, proposed in [28] may
be disappointing. High-accuracy quadrature rules are indeed needed to preserve the
“spectral accuracy” of SEM type methods, which are based on variational formulations.
This has motivated new researches, to find a unique set of points with nice interpolation
and quadrature properties [29, 30] or at least to develop more sophisticated quadrature
rules [31]. Such researches are not yet satisfactory. Thus, the quadrature rule of [31] is
costly and requires a linear mapping from the reference triangle T to the spectral element;
if the mapping is non-linear, then a quadrature rule specific to each element must be
set up [15]. For us we have proposed to consider the Gauss points of the triangle as
quadrature points and the Fekete points as interpolation points, in the frame of a “Fekete-
Gauss TSEM” [20].

Once the approximation procedure is fixed it remains to develop efficient solvers for
the associated algebraic systems. As well known, the matrices resulting from high order
approximations are indeed ill-conditioned, with O(N4) condition numbers in 2D, where
N≡ p is the total degree of the polynomial approximation in each spectral element. We
thus have focused on domain decomposition techniques, each spectral element being
considered as a subdomain. The following methods have been considered:

• Neumann-Neumann Schur complement methods [21]: Addressing the Schur com-
plement with Neumann-Neumann type preconditioners has yielded promising re-
sults. Moreover, the condition number of the Schur complement only shows a
O(N) behavior.

• Overlapping Schwarz methods [22]: Impressive results can be obtained but with
the drawback that, in contrast to the QSEM, a “generous overlap” (overlap of one
entire mesh element) must be used due to the non-tensorial distribution of the
Fekete points in the element.

In parallel, it was of interest to revisit the p-multigrid approach, which makes use of
a fixed simplicial mesh and of different approximation levels, each of them associated
with a different polynomial degree. For the QSEM this was initially suggested in [18,
23, 24] and recently used in conjunction with Overlapping Schwarz preconditioners for
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Computational Fluid Dynamics (CFD) purposes in [11]. Of course, results have also been
achieved in the frame of standard spectral methods [12, 33] or in the frame of hp-finite
elements, see, e.g., [17, 19], and the basics of multigrid methods may be found in famous
books, see [3, 32] and references herein. Preliminary results of p-multigrid methods for
the TSEM were presented in [9].

The paper is organized as follows. In Section 2 we briefly recall some basic elements
of the Fekete-Gauss TSEM, see the “TSEM-3” approach of [20] for more details. In Sec-
tion 3, we consider the single triangle case and check different strategies to set up the
prolongation and restriction matrices as well as the coarse grid algebraic systems. The
study is carried out for second order elliptic problems and extends the one given in [9].
Once a strategy has been fixed we go to real spectral element discretizations, in Section
4, and focus on the robustness of the method with respect to the mesh and to the type of
boundary condition. We conclude in Section 5.

2 The Fekete-Gauss TSEM

The QSEM makes use of the GLL points for both the interpolation and the quadrature
points: GLL points indeed have nice approximation and integration properties. Such a
single set of points does not exist for the triangle. Consequently, the Fekete-Gauss TSEM
makes use of two sets of points:

• The Fekete points, as interpolation points.

Let T = {(r,s) : −1≤ r,s, r+s≤0} be the reference triangle and PN(T) the set of real
polynomials on T of total degree≤N. Let n=(N+1)(N+2)/2 be the dimension ofPN(T)
and {ψj}

n
j=1 any basis ofPN(T). The Fekete points {xi}

n
i=1 are those which maximize over

T the determinant of the Vandermonde matrix V, such that Vij =ψj(xi), 1≤ i, j≤n.

Some nice properties of the Fekete points are the following [1, 2, 27]: (i) The La-
grange polynomials, say {ϕi(x)}n

i=1, based on the Fekete points achieve maximum at
these points; (ii) Fekete points are GLL points for the cube; (iii) On the sides of the triangle
the Fekete points coincide with the GLL points. This result has an important application:
Fekete point triangular elements naturally conform with standard quadrilateral spectral
elements.

With uN for the spectral element approximation of u we then write:

u(x)≈uN(x)=
n

∑
i=0

uN(xi)ϕi(x), x∈T. (2.1)

• Gauss points, as quadrature points.

The determination of the Gauss points of the triangle is not a trivial task and so has
motivated a lot of researches [26]. Of course, it is possible to start from the Gauss points
of the square and to use a mapping from the quadrangle onto the triangle [16, 25], but to
achieve an exact integration, say in PM(T) with M≈2N and m≈n quadrature points, it
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is better to look for a symmetric distribution of the Gauss points. Recent results on this
topic may be found in [6]. Then:

∫

T
vdT≈

∫

T
vM dT =

m

∑
i=0

ρivM(yi), (2.2)

where the yi and ρi are the Gauss quadrature points and weights, respectively, see, e.g.,
[7].

The Fekete-Gauss TSEM shows some advantages:

• Just like the QSEM, the Fekete-Gauss TSEM makes use of a highly accurate quadra-
ture rule. Moreover, this may be done in a flexible way, i.e., exact integration in
P2N−q, q=0,1,··· .

• Differentiation matrices allow to compute derivatives at the Gauss points from the
Fekete point values: no interpolations are needed to compute the stiffness matrix.

• Non-linear mappings (curved triangles) are easily supported.

However, some drawbacks with respect to QSEM should be mentioned:

• The mass matrix is not diagonal. This is especially a drawback in the frame of
evolution problems when using an explicit scheme for the time integration.

• Differentiation matrices are n-dimensional rather than (N+1). This fact is true for
any non-tensorial arrangement of the grid-points (price of unstructured meshes).

• The resulting algebraic system matrix, say A, is ill-conditioned: The condition num-
ber of A shows an O(N4) behavior in 2D, with respect to O(N3) for the QSEM.

3 Multigrid strategy

The goal of this Section is to develop a p-multigrid strategy, i.e., to define the prolonga-
tion/restriction operators between different approximation levels, an efficient way to set
up the coarse grid algebraic systems and the smoothing procedure. This is done by con-
sidering only one triangular spectral element. We address here the two grid-case, but the
approach can be easily extended to an arbitrary number of grids. For the sake of simplic-
ity we use the term grid to denote the set of Fekete points {xi}

n
i=1∈T associated with a

given approximation polynomial degree N over T.

The superscripts c and f are hereafter used to denote the coarse and fine grids, respec-
tively associated with a low and a high polynomial degree. Thus, for the coarse grid Nc

is the polynomial approximation degree, {xc
i }

nc
i=1 the set of Fekete points and {ϕc

i }
nc
i=1 the

corresponding Lagrange polynomials. Accordingly, for the fine grid we use N f , {x
f
i }

n f

i=1

and {ϕ
f
i }

n f

i=1, with N f > Nc.
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In the frame of spectral methods, defining the prolongation operator is quite natural.
Using the polynomial interpolant yields:

u f (x
f
i )=

nc

∑
j=1

uc(xc
j )ϕc

j (x
f
i ), 1≤ i≤n f , (3.1)

where uc (u f ) denotes uNc (uN f
). In matrix notation we thus obtain the prolongation

operator P, such that:

u f = Puc , [P]ij = ϕc
j (x

f
i ). (3.2)

Note that the side point values of u f only depend on the side point values of uc. There are
indeed N+1 Fekete points on each side of T, so that the Lagrange polynomials based on
points on the other sides or inside T vanish at this side. As a result, the operator P shows
a special structure. Thus, if the boundary points are arranged before the inner points:

P=

(

PBB 0
PIB PI I

)

, (3.3)

where the subscripts B and I are used for boundary and inner points, respectively. Op-
erator P is a n f×nc matrix whereas PBB is a 3N f×3Nc block. In the multigrid context,
the prolongation operator extends a coarse grid error ec to obtain a fine grid correction
e f = Pec. Thus, the side point values of e f only depend on the side point values of ec.

Defining the restriction operator, say R, is less trivial. As just done for the prolonga-
tion operator, one may proceed by interpolation to obtain:

uc(xc
i )=

n f

∑
j=1

u f (x
f
j )ϕ

f
j (xc

i ), uc = Ru f , [R]ij = ϕ
f
j (xc

i ). (3.4)

A clever handling of the highest frequencies cannot really be expected from the inter-
polation strategy and one may then prefer to proceed by projection or more generally by
filtering. To this end, let {ψi}

∞
i=1 be an orthogonal hierarchical basis over the triangle T,

e.g., the Koornwinder-Dubiner basis [10], then:

u f (x)=
n f

∑
j=1

ûjψj(x) and uc(xc
i )=

n f

∑
j=1

Qjûjψj(xc
i ), (3.5)

so that: R=ṼcQVf
−1. Here, Vf is the previously defined Vandermonde matrix for the fine

grid and Ṽc the nc×n f matrix such that [Ṽc]ij =ψj(xc
i ), i.e., an extension of the coarse grid

Vandermonde matrix Vc. The matrix Q is diagonal of dimension n f×n f , with the Qj for
elements. For a projection one simply has Qj = 1 if j≤ nc and Qj = 0 if nc < j≤ n f . For a
filtering, the values of the Qj should be associated with the total degree of the polynomial
ψj, say N(j). Using, e.g., the raised cosine filter Qj =(cos(N(j)/N f )π)+1)/2.
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In the frame of variational methods, weak formulations with L2(T) inner products are
involved. Taking that into account yields to set up a restriction operator by transposition
of the prolongation operator. Indeed,

(u f ,ϕ
c
i )=(u f ,

n f

∑
j=1

ϕc
i (x

f
j )ϕ

f
j )=

n f

∑
j=1

ϕc
i (x

f
j )(u f ,ϕ

f
j ), (3.6)

so that R= Pt.
In the context of a multigrid method, the restriction operator acts on a residual at the

fine grid level, r f , to obtain a vector bc = Rr f at the coarse grid level. If R is obtained
by interpolation, then it shows a structure similar to P. If R is obtained by projection,
then it does not show any special structure. Finally, if R is obtained by transposition of P,
then its structure is such that the inner point values of bc only depend on the inner point
values of r f .

Once the prolongation and restriction operators have been fixed, it remains to set up
the coarse grid matrix, say Ac.

Matrix Ac may be set up directly, i.e., like the fine grid level matrix A. This approach
was the one used in the earlier paper [23].

Matrix Ac may also be set up by aggregation of A: Ac = RAP. Note that this must
be done with the elemental matrices, i.e., before stiffness summation, if more than one
element is considered, or before taking care of the boundary conditions. Concerning the
boundary conditions at the coarse grid level, or more generally at all sublevels if more
than two grid levels are considered, they must be taken homogeneous and of the same
type, Dirichlet, Neumann or Robin, involved in the initial problem.

The aggregation approach is generally coupled to the definition of the restriction op-
erator by transposition. One can indeed easily check that: If Ac = RAP and R= Pt, and if
A is symmetric and positive definite, then ec such that Acec = Rr f solves the constrained
optimization problem: Minimize

φ(u∗)=
1

2
(Au∗,u∗)−(b,u∗) constrained by (3.7)

u∗=u f +Pec .

First one notices that, since A = At, any solution of the non-constrained problem solves
Au∗= b, i.e., u∗ solves the fine grid level system. If one replaces u∗ with u f +Pec, after
some simple manipulations we obtain:

φ(u f +Pec)≡ φ̂(ec)=
1

2
(Pt APec,ec)+(Pt Au f ,ec)−(Ptb,ec)+Cte.

Now we compute the gradient of φ̂(ec) and equal it to 0. This yields:

Pt(Au f−b)+Pt APec =0.
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MG(Nc,Nm,N f )
1. On the fine grid

Pre-smoothing: uk
f =GS(uk−1

f ,A,b), k=1,··· ,K.

u0
f←uK

f .

Form the residual: r f =b−Au0
f .

2. On the middle grid
Restrict the residual: bm = Rm

f r f .

Pre-smoothing: ek
m =GS(ek−1

m ,Am,bm), k=1,··· ,K.
e0

m← eK
m.

Form the residual: rm←bm−Ame0
m.

3. On the coarse grid
Restrict the residual: bc = Rc

m rm.
Solve the residual problem: Acec =bc.

4. On the middle grid
Correct the solution: e0

m← e0
m+Pm

c ec.

Post-smoothing: ek
m =GS(ek−1

m ,Am,bm), k=1,··· ,K.
e0

m← eK
m.

5. On the fine grid

Correct the solution: u0
f←u0

f +P
f

m e0
m.

Post-smoothing: uk
f =GS(uk−1

f ,A,b), k=1,··· ,4.

u0
f←uK

f

Figure 1: The above algorithm describes one V-cycle of a p-multigrid procedure based on three levels, say
MG(Nc,Nm,N f ). In this case one has two restriction operators, from the fine grid to the middle one, Rm

f , and

from the middle grid to the coarse one, Rc
m. Similarly one has two prolongation operator, Pm

c and P
f

m. “GS”

means here one sweep Gauss-Seidel smoothing. Vectors u0
f and e0

m are initialized to 0. The integer K denotes

the number of GS iterations, i.e., K =4 in the present numerical experiments.

Taking into account Pt = R and b−Au f = r f yields the desired result:

Acec = Rr f , Ac = RAP.

Single triangle numerical test: Depending on,

• the restriction strategy: Interpolation (I), Transposition (T), Projection (P) or Filtering
(F).

• the coarse matrix set up: Direct (D) or Aggregation (A),
five multigrid strategies have been considered, I-D, T-D, P-D, F-D and T-A, and
compared through a single triangle numerical test.
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A multi-level V-cycle is used. For the smoothing at each level, following the study
carried out in [9], we simply use 2×4 Gauss-Seidel iterations per grid level, without any
relaxation or preconditioning. At the coarsest level, the solution is obtained with an exact
solve, the coarsest algebraic system being inverted once for all.

The previous developments can easily be extended to more than 2 grids and the num-
ber of grids is arbitrary in our implementation. For the sake of comprehension, in Fig. 1
we describe in detail the adopted p-algorithm in the case where three grids are consid-
ered. As before, subscripts f and c refer to the fine and coarse grids, respectively, while
m is associated with any middle grid.

Tests for one triangle have been carried out for the elliptic PDE: −∆u+u= f in g(T),
where g is a given linear mapping, with Dirichlet boundary conditions and a source term
f which correspond to the exact solution

uexact =sin(2x+y)sin(x+1)sin(1−y).

Up to 4 grids have been used. As a matter of example, the set of Fekete points associated
with four different polynomial degrees are shown in Fig. 2.
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Figure 2: The different grids of the V-cycles.

Results are given in Table 1, where are reported the number of smoothing iterations
and the number of V-cycle for each strategy and different grid combinations. Moreover,
comparisons are also provided with the standard Gauss-Seidel solution. Note that these
results slightly differ from the preliminary ones given in [9], due to the fact that no map-
ping g was used at this time.
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Table 1: Number of iterations at the fine grid level/number of V-cycles to get a residual less than 10−6.
Comparisons with Gauss-Seidel (GS) method.

(Nc,··· ,N f ) I-D T-D P-D F-D T-A GS

(6,12) 76 / 10 36 / 5 80 / 10 80 / 10 36 / 5 101
(3,6,12) 76 / 10 36 / 5 80 / 10 80 / 10 36 / 5 101

(6,12,18) 112 / 14 76 / 10 116 / 15 120 / 15 76 / 10 244
(3,6,12,18) 112 / 14 76 / 10 116 / 15 120 / 15 76 / 10 244

The present single triangle numerical tests yield the following conclusions:

• I-D, P-D and F-D strategies give coherent results. One observes that using the more
involved Projection or Filtering strategies does not yield any improvements of the
results with respect to Interpolation one.

• T-D and T-A Strategies give the best results. This could be expected since strategies
based on the use of the transpose of the prolongation operator for restriction are
well justified for approximations of variational formulations.

• The number of V-cycles and so the number of iterations at the fine grid level de-
pends essentially on N f and not on the number of levels of the V-cycle. This is
especially interesting: Even with a high polynomial approximation degree at the
finest grid level, one can think to reach the coarsest (and so the cheapest) one with
Nc =1 for the direct solve.

4 Numerical tests on simplicial meshes

The T-D and T-A multigrid strategies, which are well justified both theoretically and from
the single triangle numerical tests, have been implemented in a TSEM solver of elliptic
problems. Since the restriction and prolongation operators do not depend on the map-
ping from the reference triangle T to the spectral element, the global coarse grid algebraic
matrix Ac is first set up by using the usual stiffness summation technique. Thus, if two
grids are involved:

Ac =∑
k

′
R Ak P, R= Pt, (4.1)

where ∑
′ stands for stiffness (assembling) summation and Ak for the elemental matrix

associated with the element k. Second, one imposes the boundary conditions to obtain
the final form of matrix Ac. As previously mentioned, at the sublevels the boundary
conditions are homogeneous and of the type of those of the fine grid level.

The goal is now to check the performances of the present p-multigrid approach, in
T-A form. As pointed out farther, similar results may be obtained with the T-D form.
Especially we are interested in its robustness with respect to the boundary conditions,



676 R. Pasquetti and F. Rapetti / Commun. Comput. Phys., 5 (2009), pp. 667-682

Figure 3: Computational domains and structured and non-structured h-meshes.

Table 2: Number of elements of the structured and non-structured meshes. Corresponding numbers of degrees
of freedom (do f ) at the fine grid level for different polynomial approximation degrees.

Structured non-structured

Number of elements 162 163
do f (N f =12) 11881 12042
do f (N f =18) 26569 26865

to be sure that the performances do not deteriorate when using Neumann rather than
Dirichlet conditions, and also with respect to the structure of the spectral element mesh.

Convergence tests have been carried out for−∆u+u= f in the domain Ω, with Dirich-
let/Neumann or mixed Dirichlet-Neumann boundary conditions. To this end we have
again used the analytical exact solution, uexact, introduced for the single triangle tests, but
computations have also been carried out with “less artificial” source term and boundary
conditions. As shown in Fig. 3, two different domains have been considered. The first
one, Ω = (0,10)2, corresponds to a Cartesian geometry and so may be discretized with
a structured regular mesh, whereas the second one shows a square hole, so that an un-
structured mesh is required. For the structured mesh two coarser and one finer versions
of this mesh have also been considered. Note that despite the weak number of elements
of the mesh, the number of degree of freedom may be important, as shown in Table 2.

Results are provided for different multi-grid approximations, MG(Nc,··· ,N f ). As for
the single triangle test, the algorithm is the one detailed in Fig. 1. We have varied:

• the number of grid-levels, e.g., MG(6,12), MG(3,6,12) and MG(1,3,6,12);

• the polynomial approximation degree at the fine grid level, e.g., MG(3,6,12) and
MG(3,9,18);

• the number of spectral elements.

Comparisons with the (single grid) standard Conjugate-Gradient (CG) solver are pro-
vided. Note that we do not use a preconditioned CG approach which certainly would be
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Figure 4: Dirichlet problem: Convergence histories towards the analytical solution with the structured (left) and
non-structured (right) meshes. One point each V-cycle (or one point each 8 CG iterations).

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0  100  200  300  400  500  600

re
si

du
al

iteration number

MG(6,12)
MG(3,6,12)

MG(1,3,6,12)
MG(3,9,18)

MG(1,3,9,18)
CG N=12
CG N=18

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0  100  200  300  400  500  600

re
si

du
al

iteration number

MG(6,12)
MG(3,6,12)

MG(1,3,6,12)
MG(3,9,18)

MG(1,3,9,18)
CG N=12
CG N=18

Figure 5: Neumann problem: Convergence histories towards the analytical solution with the structured (left)
and non-structured (right) meshes. One point each V-cycle (or one point each 8 CG iterations).

more efficient. The CG results are here only given as reference ones.

In Fig. 4 we compare convergence histories obtained for the Dirichlet problem, when
the boundary conditions and the source term correspond to the exact solution. For the
plot at left, the domain is Cartesian and the mesh is structured, whereas at right one has
the complex domain and the unstructured mesh. The variations of the max norm of the
residual are plotted versus the iteration number at the fine grid level, which require the
main part of the CPU time. Each point corresponds to a V-cycle or to 8 CG iterations,
since at each grid level one has 8 GS iterations with the multigrid method.

Similar results are given for the Neumann problem in Fig. 5.

Results obtained for Dirichlet-Neumann problems and the unstructured mesh are
shown in Fig. 6. The Neumann condition holds at the inner boundary whereas a Dirichlet
condition is applied at the outer. At left we have again used the analytical solution to fix
the source term and the boundary values. At right the following less artificial problem
has been considered: no source term, i.e., f =0, Neumann condition ∂nu =1 at the inner
boundary and Dirichlet condition u=0 at the outer boundary.

It is also of interest to point out the influence of the number of elements. This can
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Figure 6: Dirichlet-Neumann problem (non-structured mesh): Convergence histories towards the analytical
solution (left) and with the more realistic problem (right).
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Figure 7: Dirichlet (left) and Neumann (right) problems with four different structured meshes for MG(3,6,12).

easily be done with the structured mesh. In Fig. 7 convergence histories are presented
for both the Dirichlet and Neumann problems, for different spectral element discretiza-
tions. Clearly, the curves of Fig. 7 are quasi-parallel, i.e., the convergence rates are nearly
independent on the number of elements.

From these numerical tests one can state: For the considered elliptic problems the
convergence rates depend essentially on the polynomial approximation degree N f at the
fine-grid level.

Thus, for N f given similar convergence rates are obtained for:

• similar structured and non-structured meshes: The convergence rates do not dete-
riorate when going from the structured to the non-structured mesh;

• Dirichlet, Neumann or Dirichlet-Neumann boundary conditions;

• different numbers of spectral elements;

• different numbers of grid-levels: A direct solve at the coarsest grid-level Nc = 1 is
then possible, thus providing a natural coarse solver.

To be more precise, one can provide such convergence rates. They are generally com-
puted per V-cycle, but to compare MG computations using different numbers of smooth-
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ings, one can prefer to express them per iteration at the fine grid level. With ρ for the
convergence rate and ‖rl‖ for the max norm of the residual at iteration l:

‖rl‖≈ρl‖r0‖, log‖rl‖≈ l logρ+C . (4.2)

Moreover, the scaling of the number of iterations at the fine grid level with respect to
the fine grid polynomial degree N f can also be provided. For the CG method, it is well
known that the number of iterations scales like the square root of the condition number,
say κ, of the system matrix. In the case of the Fekete-Gauss approximation κ =O(N4),
so that the number of iterations is O(N2), and indeed one can check, see Figs. 4-6, that
the ratio of the slopes of the curves corresponding for CG to N f = 12 and N f = 18 differ

approximately by a factor 2.25 = (18/12)2. For MG, one observes that the number of
iterations is O(Nα), with α<2.

Table 3: Convergence rates for N f =12 and N f =18 and associated scaling coefficient for the different test-cases

of Fig. 6 (D. 1/D. 2 for the graph at left/right), Fig. 7 (N. 1/N. 2) and Fig. 8 (D.N. 1/D.N. 2). Case D.N. 3
makes use of the T−D strategy and D.N. 4 of 4 GS smoothings per grid level.

D. 1 D. 2 N. 1 N. 2 D.N. 1 D.N. 2 D.N. 3 D.N. 4

ρ12 0.879 0.877 0.874 0.881 0.879 0.860 0.880 0.880
ρ18 0.925 0.922 0.921 0.936 0.931 0.923 0.932 0.931
α 1.24 1.17 1.22 1.60 1.46 1.56 1.48 1.44

Quantitative results are given in Table 3. For the cases that have been considered we
present, for N f = 12 and N f = 18, the convergence ratio, ρ12 and ρ18, respectively, and
the scaling coefficient α. Results are also provided for the Dirichlet-Neumann test case,
with analytical solution and unstructured mesh, using the T-D strategy, i.e., the system
matrix is not set up by aggregation but directly, see case D.N. 3. One can observes that the
convergence rates for T-D and T-A are very similar and so that the results obtained for
the single triangle transfer well to the full mesh. Another result, case D.N. 4, corresponds
to the Dirichlet-Neumann problem, but using 4 GS smoothings at each level rather than
8. Here again one observes that the convergence rate per iteration is nearly the same,
whereas of course it is the square root per V-cycle. All calculations have been carried out
without preconditioning of the GS smoother, so that one may expect to decrease the value
of the scaling factor α. Note that the values of this parameter in Table 3 are approximate,
since resulting from computations carried out for only two different values of N f .

At the end, the multigrid approach intends to diminish the computational cost, which
essentially corresponds to the iterative resolution. A crude operation count shows that
the number of elemental operations required by the GS smoothings at the fine grid
level scales like KeN4

f , where Ke is the number of spectral elements. If the number of

GS smoothings is O(Nα), then one can expect a O(Ke N4+α
f ) computational cost. To be

more precise we give in Fig. 8 the variations of the CPU time required to decrease the
residual by a factor 10−6, when varying Ke or N f , i.e., the number of degrees of freedom



680 R. Pasquetti and F. Rapetti / Commun. Comput. Phys., 5 (2009), pp. 667-682

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  5000  10000  15000  20000  25000  30000

sq
rt

(C
PU

 ti
m

e)

dof

MG (2 grids,K=162)
MG (3 grids,K=162)

MG(3,6,12)
MG(6,12)

Figure 8: Dirichlet problem: Square root of CPU time versus the number of degrees of freedom, for different
MG approximations (MG(3,6), MG(6,12), MG(9,18) and MG(1,3,6), MG(3,6,12), MG(3,9,18)) on a 9×9×2
mesh and of MG(3,6,12) and MG(6,12) on different meshes (3×3×2, 6×6×2, 9×9×2, 12×12×2).

do f =O(KeN2
f ). The results are presented for different MG combinations, based on 2 and

3 grid levels. As expected, (i) increasing the polynomial approximation degree N f is more
time consuming than increasing the number of elements Ke and (ii) the 3 level computa-
tions are only slightly more costly than the 2 level ones. These CPU time measurements,
carried out on a SGI workstation, are however mainly governed by hardware reasons
(CPU cache), so that the agreement with the operation count is poor, especially when
varying do f by changing the number of spectral elements since a linear variation could
be expected. Let us also mention that CG solvers are more costly than MG ones: Thus,
for N f =12 we have checked that 8 CG iterations were about twice more time consuming
than MG solves based on 8 GS smoothings at each level.

5 Conclusion

Spectral element approximations of elliptic problems generally result in severely ill-
conditioned algebraic systems. Thus, when using triangular Fekete-Gauss spectral el-
ements, the condition number shows an O(N4) behavior with respect to the total degree
N of the polynomial approximation. It is then of interest to develop efficient resolution
strategies. Here we have presented a p-multigrid approach for Fekete-Gauss spectral
element approximations of elliptic problems.

The p-multigrid method makes use of a single (rough) mesh and it is the degree of
the polynomial approximation which is uniformly changed in each mesh element. Its
efficiency relies on good choices of the smoother, of the restriction and prolongation op-
erators and of the way used to set up the coarse grid algebraic systems. Essentially, it
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has been shown that it was suitable (i) to use the transpose of the natural prolongation
operator for the restriction operator, (ii) to set up the coarse grid systems directly, ı.e., as
the finest one, or by aggregation of the finer ones and (iii) that satisfactory results could
be obtained with a standard Gauss-Seidel smoothing. For the Fekete-Gauss TSEM, the
MG scheme appears scalable with respect to the number of spectral elements and only
weakly sensitive to the number of smoothings per grid level. However, by contrast to
the 1D case explored in [18, 23] and similarly to the 2D SEM [24], the MG scheme is not
scalable with respect to the polynomial approximation degree at the fine grid level.

We have especially focused on the robustness of the method with respect to the mesh
and to the boundary condition types: (i) similar results have been obtained for a struc-
tured meshing of a square domain and for a fully non-structured mesh of the complex
domain which results from the inclusion of a hole inside the square and (ii) no deterio-
ration of the convergence rates have been observed when Neumann conditions are sub-
stituted to the Dirichlet conditions. Moreover, the number of V-cycles required to reach a
negligible value of the residual is independent of the numbers of levels, thus allowing to
use a direct (or CG) solver only at the coarsest level.
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