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Abstract. A fluid mixture model of tissue deformations has been studied in this pa-
per. The model is a mixed system of nonlinear hyperbolic and elliptic partial differen-
tial equations. Both theoretical linear stability and numerical analysis are presented.
Comparisons between standard numerical methods that utilize Runge-Kutta methods
coupled with the WENO scheme and the immersed interface methods are given. Nu-
merical examples are also presented.
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1 Introduction

In this paper, we consider a mathematical model developed in [3,8,9] for modeling defor-
mations of contractile mesenchymal tissues. The tissues are considered to be composed
of two inter-penetrating material phases: an aqueous phase and a cell-fiber phase. The
aqueous phase is composed of all the water and dissolved extracellular components of
the tissues. The cell-fiber phase consists of the cells and the remaining, generally fibrous,
extracellular components. It is assumed that: (1) the two phases occupy complementary
portions of the space, (2) the aqueous phase behaves as a Stokes fluid, (3) the stresses in
the cell-fiber phase are dissipated by permanent deformation on the relevant time scale
and can also be treated as a Stokes flow. These assumptions lead to the following system
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of partial differential equations (in 1D):

∂θ

∂t
+

∂(θv)

∂x
=0, 0< x< L, (1.1)

∂

∂x

(

1−θ

ϕθ
·
∂p

∂x
−v

)

=0, (1.2)

∂

∂x

(

2M
∂v

∂x
−p+θψ+σln(1−θ)

)

=0, (1.3)

where 0< θ <1 is the volume fraction of cells and fibers, v is the velocity of the cell-fiber
phase, p is the pressure, ϕ is the drag coefficient, ψ is the contractility coefficient, σ is the
swelling coefficient, and M is the viscosity coefficient of the cell-fiber fraction. Note that
the parameters ϕ, M, ψ and σ are nonnegative and can depend on time, space, and θ.

A reasonable range of dimensional and non-dimensional parameters are presented in
Table 1; see [3, 8] for the references.

Table 1: Expected ranges of parameter values in which ǫ is a small positive number.

parameter symbol units range

specific drag ϕ kg/m3-sec 1012∼1014

coefficient

tissue viscosity M kg/m-sec 105

specific contractility ψ kg/m-sec2 103∼104

coefficient

swelling number σ kg/m-sec2 10∼103

volume fraction of θ0 - ǫ∼ (1−ǫ)
cell-fiber phase

The boundary conditions (BC) are given as follows

v(0,t)=v(L,t)=0,
∂θ

∂x
(0,t)=

∂θ

∂x
(L,t)=0,

∂p

∂x
(0,t)=

∂p

∂x
(L,t)=0. (1.4)

One way to model two adjacent tissues is to simply include them in the same equations
and account for their different densities with θ. Thus a simple interaction between two
tissues can be modeled with piecewise constant initial condition (see Fig. 1),

θ(x,0)=

{

θl , if 0≤ x< x1 or x2 < x≤ L,

θu, if x1≤ x≤ x2,
(1.5)

where we use θl for the smaller constant (lower), and θu for the larger constant (upper).
In this paper, we will focus on simulating tissue deformations numerically for the

one dimensional model. Note that the mathematical model is a non-linear, mixed (hy-
perbolic and elliptic) system of differential equations. Shock waves will be developed in
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Figure 1: A typical initial data of θ.

the time evolution process. The purpose of this paper is to investigate the stability of the
equilibria, and to verify stability and accuracy of our numerical methods.

We will present two numerical methods to solve the one-dimensional system. The
first one is to use high order numerical methods such as WENO (weighted essentially
non-oscillatory) schemes, for example, [2, 4, 10] for the hyperbolic equation and the stan-
dard central finite difference scheme for the elliptic equation. In the second approach, we
use the immersed interface method to track the shock waves, which avoids non-physical
oscillations.

2 The linear stability analysis

There are four physical coefficients, ϕ, M, ψ and σ in the system (1.1)-(1.3). In order to
predict the overall behavior of the solution, it is necessary to carry out linear stability
analysis.

An obvious steady state of the model, which can be easily verified, is the following





θ
v
p



=





θ0

v0

p0



, (2.1)

where θ0 is a constant. For simplicity, we will take v0 = p0 = 0. We have the following
theorem about the stability of the equilibrium.

Theorem 2.1. Assume that the parameters ϕ, M, ψ and σ in (1.1)-(1.3) only depend on θ. Then
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the solution (2.1) of the system (1.1)-(1.3) is unstable if

ψ+
∂ψ

∂θ
θ+

∂σ

∂θ
ln(1−θ)>

σ

1−θ
, (2.2)

where the functions ψ, σ, and their derivatives are evaluated at θ0. Otherwise it is stable.

Sketch of the proof. We consider small perturbations of the form





θ
v
p



=





θ0

0
0



+ε





θ1

v1

p1



=





θ0

0
0



+ε





c1

c2

c3



eλt+ikx, 0< ε≪1, (2.3)

where c1, c2 and c3 are constants and k is a typical Fourier mode.

Plugging in θ, v, and p above into (1.1)-(1.3), expanding all terms using the Taylor
expansion, and collecting the terms corresponding to ε, we get

λ=
k2 1−θ0

ϕ0

(

ψ0+(ψ0)′θθ0+(σ0)′θ ln(1−θ0)−
σ0

1−θ0

)

1+2k2 M0
1−θ0
ϕ0θ0

, (2.4)

where

ϕ0 = ϕ(θ0), ψ0 =ψ(θ0), σ0 =σ(θ0), M0 = M(θ0),

(ψ0)
′
θ =

∂ψ

∂θ
(θ0), (σ0)

′
θ =

∂σ

∂θ
(θ0).

Note that λ is a function of k2, and it is a real number and bounded. The system is
unstable if λ>0, which is true when

ψ0+(ψ0)
′
θθ0+(σ0)

′
θ ln(1−θ0)−

σ0

1−θ0
>0. (2.5)

To analyze the system further, we need to choose specific ψ and σ. To facilitate test-
ing our method on various functional forms, we nondimensionalized the system using
length scale L of 1 mm and time scale 1 hour. We analyzed and simulated several cases
listed in Table 2.

Table 2: Choices of the nondimensionalized functions ϕ, ψ, and σ. In the table ǫ is a small positive number.

Models M ϕ ψ σ

1 0.5 ǫ C1 C2

2 θ
0.5+θ 1.0 θ 1−θ

3 0.5eθ eθ C1 C2

4 0.5eθ eθ 1.8e−θ e−θ
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Note that the stability condition (2.5) depends on θ0, ψ, σ, and derivatives of ψ and
σ. Hence we can treat Models 1 and 3 in the same way since in both cases ψ and σ are
constants. In these two cases, λ can be expressed as

λ=
k2 1−θ0

ϕ0
(ψ0−

σ0
1−θ0

)

1+2k2 M0
1−θ0
ϕ0θ0

. (2.6)

The system is unstable for all k if (2.5), which is reduced to

ψ0 >
σ0

1−θ0
,

that is, when contractility outweighs swelling, instability results.

We are also interested in the case where the initial θ has a jump discontinuity as plot-
ted in Fig. 1, in which we take L = 1 for simplicity of the discussion and thereafter. In
general, the tissue will swell or contract to an equilibrium state. For such an initial θ, we
can determine ψ that makes the system be an equilibrium state. Note that ∂θ/∂t =0 but
θx does not exist at the discontinuities. We use

[θ]= lim
x→α+

θ(x)− lim
x→α−

θ(x)= θ+−θ−

to denote the jump of θ at x=α. For Model 1, it is easy to get the relation of the parameters
in the equilibrium,

−ψ[θ]−σ[ln(1−θ)]=0. (2.7)

Hence,

ψ=−
σ[ln(1−θ)]

[θ]
=−

σ(ln(1−θu)−ln(1−θl))

θu−θl
. (2.8)

For the other models, it is much more complicated to find such relation of the param-
eters corresponding to equilibrium state.

When ψ=σ/(1−θ0), we conclude that λ=0 indicating a neutral stability. Fig. 2 shows
the plot of the values ψ determined by (2.8), ψ(θl)=σ/(1−θl), and ψ(θu)=σ/(1−θu) with
σ = 1, and θl = 0.1. Fig. 2 indicates that for the given σ and θl , the system will be at the
steady state if one chooses ψ and θu along the solid curve; the system will be stable if one
chooses ψ under the dash-dot horizontal line; the system will be unstable if one chooses
ψ above the dashed curve; and the system will be unsettled with the solution near θl

appearing to be unstable and the solution near θu appearing to be stable if one chooses ψ
and θu from the region under the dashed curve and above the dash-dot horizontal line.
We will call this region an oscillation region. Note that the steady state curve always lies
between ψ(θl) and ψ(θu). This implies that any perturbation around the steady state with
the piecewise constant initial θ will be depressed at the middle part (the solution near θu)
but the solution will grow near the two ends (the solution near θl).



Q. Jiang, Z. Li and S. R. Lubkin / Commun. Comput. Phys., 5 (2009), pp. 620-634 625

0.1 0.45 0.8
1

2

3

4

5

θ
u

ψ

ψ(θ
u
) 

ψ(θ
l
) 

ψ
equiv.

 

Figure 2: The plot of stability region of system with σ=1, ψ= σ
1−θ , ψequiv. determined by (2.8), and θl=0.1. The

dashed line and dash-dot line indicate the ψ with which the system is neutral stable for θu and θl , respectively;
the solid line indicates the ψ value with which the system is at equilibrium.

We demonstrate the stability analysis in Fig. 3 with the initial condition

θ(x,0)=

{

θl +εcos(kx), if 0≤ x< x1 or x2 < x≤1,

θu +εcos(kx), if x1≤ x≤ x2.
(2.9)

The parameters are σ=1.0, θu =0.5, θl =0.1, ψ=1.47, ε=0.05, k=60π, x1=0.4, and x2=0.6.

In Fig. 3, the dash-dot line in the plot shows the steady state solution; the dotted
line shows the initial data and the solid line shows the solution at t = 20. As discussed
above, the perturbation middle part decays in time and approaches steady state, and the
perturbation near the two ends grows with time.

For Model 2 and 4, we still can find the eigenvalue relations for the stability analysis,
but it is difficult to find the exact steady state solutions in terms of the parameters.

The parameters for Model 2 are

ψ= θ, σ=1−θ. (2.10)

We have derived that

λ=
k2 1−θ0

ϕ0
(2θ0−ln(1−θ0)−1)

1+2k2 M0
1−θ0
ϕ0θ0

. (2.11)

The system is unstable if (2.5), which is reduced to

2θ0−ln(1−θ0)−1>0

in this case. Using the MATLAB built-in function f zero, it is easy to find that λ>0 when
θ0 >0.31.
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Figure 3: Solution plots with the perturbed initial data (2.9) with M = 0.5, ϕ = 0, σ = 1, ψ = 1.47, θu = 0.5,
θl = 0.1, ε= 0.05, k = 60π, x1 = 0.4, and x2 = 0.6. In both plots, the dash-dot line shows the steady state; the
dotted one shows the initial data and the solid one shows the solution at t=20.

The parameters for Model 4 are

M=0.5eθ ; ϕ= eθ; ψ=1.8e−θ ; σ= e−θ. (2.12)

We have showed that λ can be expressed as

λ=
k2θ0(1−θ0)e−2θ0 f (θ0)

θ0+k2(1−θ0)
, (2.13)

where

f (θ0)=1.8(1−θ0)−ln(1−θ0)−
1

1−θ0
. (2.14)

Note that the sign of λ depends on the sign of f (θ0). Hence, the system is unstable under
(2.5), which is reduced to

1.8(1−θ0)−ln(1−θ0)−
1

1−θ0
>0.

For smaller θ, say, θ<0.37, we have λ>0, and the linearized system is unstable. For larger
θ, we have λ <0, and the linearized system is stable and will approach the equilibrium.
For the piecewise constant initial condition with θl <0.37 and θu>0.37, the situation is the
same as in Model 1 and 3. The solution is unstable near the ends but stable in the middle.
This presents a challenge for numerical computations.

3 Numerical methods

From (1.2), one can obtain
1−θ

ϕθ
px−v= c,
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where c is a constant. Applying the boundary conditions for pressure and velocity, we
have c=0, i.e., (1−θ)px/(ϕθ)=v. We can eliminate p from the system (1.1)-(1.3) to get

∂θ

∂t
+

∂(θv)

∂x
=0, (3.1)

∂

∂x
(2M

∂v

∂x
)−

ϕθ

1−θ
v+

∂(θψ)

∂x
+

∂(σln(1−θ))

∂x
=0. (3.2)

Our numerical computation is based on the above simplified system. Finite difference
methods are employed to solve the system. A Runge-Kutta method is used for time
discretization. The WENO scheme is used for spatial discretization for the hyperbolic
equation. We describe two approaches. The first approach assumes no knowledge of the
shock locations. The second approach is the immersed interface method that uses the
jump conditions to solve the differential equations to second order accuracy assuming
knowledge of the locations of the discontinuities.

3.1 The WENO-Roe scheme

For the hyperbolic equation (3.1), we use the fifth order WENO scheme with Roe flux
(WENO-Roe) for the spatial discretization, combined with third order TVD (total varia-
tion diminishing) Runge-Kutta method [1, 2, 4, 10] for the time discretization.

We use a uniform grid

a= x0 < x1 < ···< xN−1 < xN = L (3.3)

and define

xi+ 1
2
=

xi+xi+1

2
, i=0,1,··· ,N−1. (3.4)

The conservative approximation to the spatial derivative is applied directly to (3.1)

dθi(t)

dt
=−

1

∆x
( f̂i+ 1

2
− f̂i− 1

2
), (3.5)

where θi(t) is the numerical approximation to θ(xi,t), and f̂i+ 1
2

is the numerical flux. Let

u(x)= f (θ(x,t))= θv. Let the finite difference stencils be

Sr(i)={xi−r,··· ,xi−r+k−1}, r=0,··· ,k−1. (3.6)

We can get 2k different ENO reconstructions to form the upwind biased kth order ap-

proximations to the values u
(r)

i+ 1
2

and u
(r)

i− 1
2

, that is,

u
(r)

i+ 1
2

=
k−1

∑
j=0

crjui−r+j, u
(r)

i− 1
2

=
k−1

∑
j=0

c̃rjui−r+j, r=0,··· ,k−1. (3.7)
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Note that c̃rj = cr−1,j, where

crj =
k

∑
m=j+1

∑
k
l=0,l 6=m∏

k
q=0,q 6=m,l(r−q+l)

∏
k
l=0,l 6=m(m−l)

(3.8)

for a uniform grid. We list the constants crj for k=2 and 3 in Table 3.

Table 3: The constants crj.

k r j=0 j=1 j=2

-1 3/2 -1/2

2 0 1/2 1/2

1 -1/2 3/2

-1 11/6 -7/6 1/3

3 0 1/3 5/6 -1/6

1 -1/6 5/6 1/3

2 1/3 -7/6 11/6

The WENO reconstruction will take a convex combination of all u
(r)

i+ 1
2

and u
(r)

i− 1
2

defined

in (3.7), respectively, as the new approximations to u(xi+ 1
2
) and u(xi− 1

2
) with (2k−1)th

order accuracy:

u−
i+ 1

2

=
k−1

∑
r=0

ωru
(r)

i+ 1
2

, u+
i− 1

2

=
k−1

∑
r=0

ω̃ru
(r)

i− 1
2

, (3.9)

where the weights ωr and ω̃r are defined as

ωr =
αr

∑
k−1
s=0 αs

, ω̃r =
α̃r

∑
k−1
s=0 α̃s

, r=0,··· ,k−1, (3.10)

with

αr =
dr

(ǫ+βr)2
, α̃r =

d̃r

(ǫ+βr)2
. (3.11)

The values of dr are given by

d0 =
2

3
, d1 =

1

3
, k=2;

d0 =
3

10
, d1 =

3

5
, d2 =

1

10
, k=3,

and d̃r =dk−1−r from the symmetry. We choose the parameter ǫ=10−6 in all the numerical
tests. The so-called “smooth indicators”, βr, of the stencil Sr(i) are given as follows:

β0 =(ui+1−ui)
2, β1 =(ui−ui−1)

2 (3.12)
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for k=2, and

β0 =
13

12
(ui−2ui+1+ui+2)

2+
1

4
(3ui−4ui+1+ui+2)

2,

β1 =
13

12
(ui−1−2ui+ui+1)

2+
1

4
(ui−1−ui+1)

2,

β2 =
13

12
(ui−2ui−1+ui−2)

2+
1

4
(3ui−4ui−1+ui−2)

2

(3.13)

for k=3.
Once the numerical fluxes fi+ 1

2
are obtained by the WENO reconstruction procedures,

the upwinding scheme is used in constructing the flux for stability. The Roe flux is ap-
plied,

f̂i+ 1
2
=







u−
i+ 1

2

, if ai+ 1
2
≥0,

u+
i+ 1

2

, if ai+ 1
2
<0,

(3.14)

where ai+ 1
2

is the Roe speed at xi+ 1
2

defined as

ai+ 1
2
≡

f (θi+1)− f (θi)

θi+1−θi
. (3.15)

3.2 The time discretization using the TVD Runge-Kutta method

Now considering time discretization, we rewrite (3.5) as

θt = L(θ), (3.16)

where L(θ) is the WENO approximation to the derivative −(θv)x in the PDE (3.1). The
optimal third order TVD Runge-Kutta method is employed:

θ(1) = θn+∆tL(θn),

θ(2) =
3

4
θn+

1

4
θ(1)+

1

4
∆tL(θ(1)),

θn+1 =
1

3
θn+

2

3
θ(2)+

2

3
∆tL(θ(2)),

(3.17)

with CFL (Courant-Friedrichs-Levy) coefficient c=1.

Validation of the numerical method. We first test the numerical method using smooth
solutions to check the order of the accuracy. The set-up of the test example is the follow-
ing:

θt+(vθ)x =0,

vxx+(ψθ)x +(σln(1−θ))x =0,

θ(0,t)= θ(1,t), v(0,t)=v(1,t),

θ0(x)=
1

2
+

1

8
cos(2πx),

(3.18)
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where ψ = 1.8 and σ = 1.0. Since we do not know the exact solution of the system, we
compare the computed results against the one computed from the finest grid which is
N =1280. The justification of such analysis can be found in [5].

Tables 4 and 5 list the grid refinement analysis against the solution computed from
the finest grid. In the tables, the error ratio is defined as

Ratio=
||U(2h)−U∗||

||U(h)−U∗||
,

where U stands for θ or v, U∗ is the solution computed from the finest grid. Tables 4 and
5 show the ratios for θ and v at t=0.05, respectively. The ratio approaches the number 5
indicating second order accuracy, while the number 3 would indicate first order accuracy
(see the justification in [5]). We can see that the proposed method is second order accurate
in both the L1 and L∞ norms at t=0.05 for smooth solutions before any emerging shocks.

Table 4: Accuracy on θ in the System with θ0(x)= 1
2 + 1

8 cos(2πx).

n L∞ error L∞ ratio L1 error L1 ratio

10 7.98e-5 – 5.37e-5 –

20 2.73e-5 2.93 1.02e-5 5.26

40 6.48e-6 4.21 2.50e-6 4.08

80 1.65e-6 3.93 6.08e-7 4.12

160 4.11e-7 4.01 1.48e-7 4.12

320 9.82e-8 4.19 3.49e-8 4.24

640 1.96e-8 5.00 6.94e-9 5.02

Table 5: Accuracy on v in the System with θ0(x)= 1
2 + 1

8 cos(2πx).

n L∞ error L∞ ratio L1 error L1 ratio

10 2.65e-4 – 1.16e-4 –

20 6.97e-5 3.81 3.02e-5 3.84

40 1.74e-5 4.01 7.54e-6 4.00

80 4.37e-6 3.98 1.89e-6 4.00

160 1.08e-6 4.05 4.66e-7 4.05

320 2.57e-7 4.20 1.11e-7 4.20

640 5.13e-8 5.00 2.22e-8 5.00

When the initial data is piecewise constant, that is, with shock waves present, as in
the standard approach, we measure the errors at some distance (0.1 in our test case) from
the discontinuities. Tables 6 and 7 show the grid refinement results (t =0.05) for θ and v
with the following initial data:

θ0(x)=

{

0.5, if 0.3≤ x≤0.7,
0.1, if x<0.3 or x>0.7 .
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Table 6: Accuracy on θ in the System with Discontinuous Initial Data.

n L∞ error L∞ ratio L1 error L1 ratio

10 5.28e-4 – 1.57e-4 –

20 2.65e-4 1.99 6.48e-5 2.42

40 1.32e-4 2.01 2.97e-5 2.18

80 6.65e-5 1.98 1.41e-5 2.10

160 3.32e-5 2.01 6.84e-6 2.06

320 1.56e-5 2.13 3.16e-6 2.16

640 5.66e-6 2.75 1.14e-6 2.77

Table 7: Accuracy on v in the System with Discontinuous Initial Data.

n L∞ error L∞ ratio L1 error L1 ratio

10 4.22e-3 – 1.26e-3 –

20 2.15e-3 1.96 5.91e-4 2.14

40 1.11e-3 1.94 2.91e-4 2.03

80 5.83e-4 1.91 1.49e-4 1.95

160 3.06e-4 1.91 7.74e-5 1.93

320 1.48e-4 2.07 3.71e-5 2.09

640 5.30e-5 2.79 1.33e-5 2.79

We obtained first order convergence for θ and v. This is due to the delta function
singularity from (θψ)x and (σln(1−θ))x.

3.3 Applying the immersed interface method

To maintain accuracy for the velocity v near the discontinuities, we apply the immersed
interface method (IIM) [6, 7]. The idea is simple. Initially, we know the locations of the
discontinuities of θ, so we use the IIM to solve v to second order. Then from the computed
velocity, we determine the new locations of the discontinuities and solve θ piece by piece
accurately. The process then is repeated. We use Model 1 to illustrate the idea. The
equation for v can be written as

∂2v

∂x2
= c1δ(x−x1)+c2δ(x−x2),

where c1 =−ψ+σ/(1−θ) and c2 =−c1. The finite difference scheme from the IIM is

Vj−1−2Vj+Vj+1

(∆x)2
=0+Cj, (3.19)
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where Cj is the correction term

Cj =







ci
h−|x−xi |

h2
, if |x−xi|<h,

0, otherwise,
i=1,2.

The IIM gives more accurate results for both θ and v and eliminates non-physical os-
cillations (the Gibbs phenomenon). But in order to use this method, we need a prior
knowledge of the shock locations.

4 Numerical examples

We take L=1 for simplicity in this section. We have done a number of numerical experi-
ments for different parameters. We want to know the long time behavior of the solution
and whether θ (θu part) will grow and then stabilize. Our results indicate that θ in Model
1 grows faster compared with other models. In all cases presented here, we use dotted
lines to represent the initial data, dash-dotted lines to represent the solution at the final
time (often T = 5), and solid lines to represent the intermediate solution between initial
and final time. The initial θ is piecewise constant with the discontinuities at x1 = 0.35,
x2 =0.65 with θl =0.1 and θu =0.5.

In Figs. 4 and 5, we show the computed results using the two different numerical
methods with different parameters. By choosing the parameters according to our stability
analysis, we obtained the desired results with θ in the middle part growing (the first plot
in Figs. 4 and 5) or decaying (the lower bottom plot in Fig. 4). The solution will approach
the steady states after some time.

From the computed results, we can conclude that the two methods, (1) the WENO
and central finite difference scheme and (2) the IIM approach, give qualitatively the same
results in the solution except at the discontinuities. The IIM approach eliminates the non-
physical oscillations by enforcing the jump conditions in the finite difference scheme.

5 Conclusion

In this paper, we have studied a one-dimensional mixed model for cell modeling. The
stability analysis has been conducted which gives the range of the parameters for the sta-
bility and their relations with parameters. Two different numerical methods were stud-
ied. The first one is the standard high order WENO scheme for the volume fraction of
cells and fibers θ and a central finite difference scheme for the velocity v. In the sec-
ond approach, we used the immersed interface method to enforce the jump conditions.
The two methods give qualitatively the same results, but the second method using IIM
eliminates non-physical oscillations with the knowledge of the locations of the shocks.
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Figure 4: Computed solutions using the WENO scheme and central finite difference scheme with different
parameters. The top two plots are computed with ψ = 2.5, σ = 1, and N = 640. The solution θ grows in the
middle. Some oscillations developed near the discontinuities. The bottom plots are computed with ψ=1, σ=1,
and N = 80. The solution θ decays and no oscillations occurred so we take a coarse grid. The final time is
T=5 for the top plots while it is T=20 for the bottom ones since it takes longer time to reach the steady state
solution.
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Figure 5: Computed solution using the IIM scheme. The results are computed with ψ=1.8, σ=1, and N=640.
The final time is T =5. There are no oscillations in the computed solution.
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