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Abstract. In this paper, we consider high order multi-domain penalty spectral Galerkin
methods for the approximation of hyperbolic conservation laws. This formulation has
a penalty parameter which can vary in space and time, allowing for flexibility in the
penalty formulation. This flexibility is particularly advantageous for problems with
an inhomogeneous mesh. We show that the discontinuous Galerkin method is equiv-
alent to the multi-domain spectral penalty Galerkin method with a particular value of
the penalty parameter. The penalty parameter has an effect on both the accuracy and
stability of the method. We examine the numerical issues which arise in the implemen-
tation of high order multi-domain penalty spectral Galerkin methods. The coefficient
truncation method is proposed to prevent the rapid error growth due to round-off
errors when high order polynomials are used. Finally, we show that an inconsistent
evaluation of the integrals in the penalty method may lead to growth of errors. Nu-
merical examples for linear and nonlinear problems are presented.
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1 Introduction

Spectral and discontinuous Galerkin methods are widely used for the numerical solution
of hyperbolic conservation laws [1, 2, 8, 12, 13, 17, 19]. These methods seek a polynomial
approximation of the solution for which the projected residual of the differential equation
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to the polynomial space vanishes. Traditionally, spectral Galerkin methods (sGM) have
used high order polynomials on one element, while discontinuous Galerkin methods
(dGM) use lower order polynomials on many elements. However, multi-domain sGM
exist and are known as spectral element methods. In order to increase the accuracy of the
approximation, these methods can use more smaller elements (h-refinement) or raise the
degree of the polynomial in each element (p refinement). High order polynomials have
numerical issues such as sensitivity to roundoff errors, so it is important to carefully
study their effects on accuracy and stability when used in multi-domain penalty spectral
Galerkin methods.

The penalty formulation penalizes the boundary or interface conditions at each ele-
ment by introducing some term which depends on a parameter. This penalty parameter
allows a great deal of flexibility, as it can change over space and time. We demonstrate
the advantages of the flexibility in the choice of penalty parameter, especially in the case
where an inhomogeneous grid system is used. An inhomogeneous grid can be due to a
difference in element size or in polynomial order at each element, but this type of grid is
subject to non-physical reflecting or dispersive modes which may appear in the solution.
By modifying the penalty conditions near the grid discontinuity, we show that the sGM
can reduce the non-physical modes while computing the other elements efficiently and
accurately. We further consider the effects of the penalty method on the stability and ac-
curacy. In this context, we show that the dG formulation is a special case of the penalty
multi-domain sGM, for a particular value of the penalty parameter.

Next we discuss the effect of round-off errors for high order sGM. These round-off
error effects can arise from the ill-conditioned mass matrix for high order polynomials,
and the numerically inconsistent evaluations of the mass matrix and the load vector. The
coefficient truncation method is introduced to reduce round-off errors. This method trun-
cates high order coefficients in the solution of the linear system which do not show rapid
decay, thus preventing error growth. To prevent roundoff error without losing high order
information, we truncate not the coefficients of the polynomial but rather the right-hand
side of the system, after Gaussian elimination is performed but before back-substitution.
The second round-off error effect we explore is the error resulting from inconsistent eval-
uations of the two sides of the equation. While the right-hand-side of the linear system is
evaluated by quadrature, the left-hand side can usually be computed exactly. In the case
of orthogonal polynomials, this matrix is a diagonal matrix which simplifies the process
of solving the system. However, computing one side of the equation exactly and the
other by quadrature results in inconsistency errors which rise when the polynomial or-
der is raised. We show these numerical inconsistency errors, and their dependence on
the penalty parameter, in numerical computations.

The paper is structured as follows. In Section 2, we formulate the multi-domain
penalty sGM and demonstrate the effect of the penalty terms on the stability and ac-
curacy. The penalty sGM with inhomogeneous grid and the flexibility of the penalty
methods are discussed. The equivalence of the dGM to the sGM is shown as well. In Sec-
tion 3, the effect of round-off errors on the high order sGM is discussed. The coefficient
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truncation method is introduced and numerical consistency is studied for the reduction
of round-off errors. In Section 4, we summarize our results and discuss future research
directions.

2 Penalty spectral Galerkin method

In this paper, we consider the one-dimensional hyperbolic conservation law

ut+ f (u)x =0, x∈Ω=[−1,1], u : [−1,1]×R+→R,t>0, (2.1)

with the initial condition u(x,0)= g(x), and boundary conditions

B±u(x,t)=h±(t), x∈∂Ω,

where B± are the boundary operators at the domain boundary ∂Ω. For simplicity, we
will consider mainly the case f ′(u)=∂ f /∂u≥0, for which the boundary condition is

u(−1,t)=h+(t).

In practice, this case can be easily generalized using the flux splitting and treating each
flux with the appropriate boundary condition.

In 1988, Gottlieb and Funaro introduced a penalty boundary condition for the spectral
collocation approximation of Eq. (2.1) [6] and there has been much research on the penalty
collocation methods [3, 7, 9–11]. The main motivation of penalty boundary conditions
for collocation methods is that the differential equation is satisfied exactly at a given set
of collocation points, while at the boundaries we add a term which penalizes for the
approximation’s distance from the prescribed boundary conditions. This means that the
equation is satisfied exactly at the interior points, and asymptotically at the boundary
points. The numerical approximation is the polynomial

U(x,t)=
m

∑
k=0

bk(t)Pk(x),

where Pk(x) are the basis polynomials of degree k in x and bk(t) are the unknown ex-
pansion coefficients, which will be determined. The spectral collocation penalty method
leads to the requirement that

Ut+ f (U)x =τQ+
m(x)

(

f (U(−1,t))− f
(

h+(t)
))

,

at each of the collocation points x = xj. The penalty parameter τ can depend on x and t.
Q+

m(x) is a polynomial of degree m which vanishes at all the collocation points xj, except
at the boundary point x =−1, so that the penalty term is only applied to the boundary
point.
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To formulate the penalty Galerkin spectral method, we assume a solution of the form
U(x,t)=∑

m
k=0bk(t)Pk(x) and find the expansion coefficients by requiring that the projec-

tion of the residual onto the solution subspace vanish. To satisfy the boundary conditions,
we can impose a penalty term on the strong formulation (as in the collocation case), and
then require the projection of the residual of the penalized equation to vanish. Alterna-
tively, we can impose the penalty term after the projection. If we choose Pk(x) to be a set
of orthogonal polynomials, such that

∫

Ω
Pk(x)Pj(x)dx=γkδjk,

the penalty Galerkin formulation yields the system

γjb
′
j(t)+

∫

Ω
f (U)xPj(x)dx=τ j

(

f (U(−1,t))− f (h+(t))
)

∫

Ω
Q+

m(x)Pj(x)dx, (2.2)

for j=0,··· ,m, where the superscript ′ denotes the derivative with respect to time and γj

are the normalization factors.
We have flexibility in the choice of the penalty parameter τ j and Q+

m(x) for the Galerkin
method. One way to accomplish this is to set Q+

m(x) to be polynomials of degree 0, that
is, Q+

m(x)=1=P0(x). In this case, the penalty terms appear only in the equation for b′0(t),
that is,

γ0b′0(t)=−
∫

Ω
f (U)xdx+2τ0

(

f (U(−1,t))− f (h+(t))
)

= f (U(−1,t))− f (U(1,t))+2τ0
(

f (U(−1,t))− f (h+(t))
)

,

γjb
′
j(t)=−

∫

Ω
f (U)xPj(x)dx, j=1,··· ,m.

We refer to this formulation as the strong formulation. However, this choice of Q+
m(x)=1

does not lead to good stability properties for a linear hyperbolic wave equation, as we
will discuss below. A different choice of Q+

m(x) may resolve this problem. For example,
if we let

Q+
m =

m

∑
k=0

1

γk
Pk(−1)Pk(x),

then the integral in the penalty term can be evaluated exactly

∫ 1

−1
Q+

m(x)Pj(x)dx=
∫ 1

−1

m

∑
k=0

1

γk
Pk(−1)Pk(x)Pj(x)dx= Pj(−1).

For the orthogonal polynomials such as Chebyshev or Legendre polynomials, Pj(−1)=

(−1)j. In this case the formulation becomes similar to the collocation case above:

γjb
′
j(t)=−

∫

Ω
f (U)xPj(x)dx+τ j

(

f (U(−1,t))− f (h+(t))
)

(−1)j,
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Figure 1: Eigenvalues in complex plane with the penalty formulation with m = 8 (left) and m = 20 (right) for
τ=−1. The symbols ◦ and × represent the eigenvalues with the weak and strong penalty methods respectively.

for j = 0,··· ,m. We refer to this formulation as the weak formulation. For the linear
hyperbolic wave equation this penalty term yields a better stability profile.

To see the difference between these two formulations, consider the simple advection
equation ut+ux=0 with both the strong and weak penalty formulations. Fig. 1 shows that
the strong formulation (represented by ×) has positive real eigenvalues which will lead
to instability, while the eigenvalues for the weak formulation (represented by ◦) are all
in the left half plane. This is a clear indication that the choice of the penalty polynomial,
Q+

m(x) is critical for stability. From now on, we will consider only the weak formulation.

The penalty parameter τ also plays an important role in the stability of the method.
Fig. 2 shows the eigenvalues with the dGM and the penalty sGM for two different values
of τ. The top figures show the eigenvalues in the complex plane for τ j = τ =−1,∀j(left)
and τ j = τ =−2,∀j (right) for polynomial order m =8. In each figure, the symbols ◦ and
× represent the eigenvalues with the dGM and the sGM respectively. From the left top
figure it is clear that the dGM and sGM are identical for τ =−1, but when τ is increased,
as in the top right figure, the real part of one eigenvalue increases. This one eigenvalue
alone is responsible for the growth in the spectral radius ρ. This eigenvalue will later be
implicated in penalty sGM’s increased sensitivity to roundoff errors for large τ.

The left bottom figure in Fig. 2 shows the spectral radius ρ increasing as a function of
the polynomial order m for the dGM τ =−1. The right bottom figure shows the spectral
radius ρ as a function of the penalty parameter τ, for various polynomial orders, on a
logarithmic scale. The figure shows that ρ increases fast around τ =−1.

The figures show that the stability of the formulation depends on the penalty param-
eters τ j, as well as Q+

m(x). Later we will see that the choice of penalty parameter will
affect the accuracy as well as stability of the method.

2.1 Multi-domain spectral penalty Galerkin methods

When using sGMs, there are two ways to improve the numerical solution. We can in-
crease the order of accuracy by raising the polynomial order, or we can improve the
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Figure 2: Top: Eigenvalues in complex plane with τ =−1 (left) and τ =−2 (right) for m=8. The symbols ◦
and × represent the eigenvalues with the dGM τ =−1 and the sGM respectively. Bottom: The spectral radius
ρ versus m with the dGM (left) and versus τ with the sGM with various m (right) in logarithmic scale.

resolution by dividing the domain into many smaller sub-domains. To formulate the
multi-domain method, we divide the domain Ω = [−1,1] into N sub-domains, or ele-
ments, Il, l = 1,··· ,N. For simplicity, we assume here that each element has the same
polynomial order, m, but this is not necessary in general, and for some applications may
not be advisable. The solution in each domain is given by

Ul(x,t)=
m

∑
k=0

bl
k(t)Pk(ξ(x)), x∈ Il =[xl−1/2,xl+1/2],

where Il is the lth element with the domain interval ∆xl and

xl−1/2 = xl−
∆xl

2
, xl+1/2 = xl +

∆xl

2
,

where xl the cell center. Finally, ξ(x) is the linear map ξ :x 7→ [−1,1]. For each element, we
have for each j=0,··· ,N

m

∑
k=0

dbl
k(t)

dt

∫

Il

Pj(ξ(x))Pk(ξ(x))dx+
∫

Il

Pj(ξ(x)) f (Ul)xdx=T
j

Il
, (2.3)
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where T
j

Il
is the penalty term for the jth coefficient. Assuming, as above, that f ′(U)≥ 0,

the penalty term can take the form

T
j

I0
=τ j

(

f (U0(−1,t))− f (h+(t))
)

Pj(−1)

T
j

Il
=τ j

(

f (Ul(xl− 1
2
,t))− f (Ul−1(xl− 1

2
,t))

)

Pj(−1) l =1,··· ,N

where the τ js may be different in each sub-domain.
This formulation easily generalizes to the case where f ′(U) is allowed to be negative.

In that case, we split the flux
f = f ++ f−

into its positive ( f +(U)
′
≥0) and negative ( f−(U)

′
≤0) parts. For scalar hyperbolic equa-

tions,
f = f +, when f ′(U)>0

and
f = f−, when f ′(U)<0.

For the system of Eq. (2.1), f± are defined as

f±=
∫

A±dU,

where A is the Jacobian matrix, i.e., A= f ′(U). The Jacobian A is then given by

A±=TΛ±T−1,

where T is the similarity transformation matrix of A and Λ+ and Λ− are the matrices
composed of the positive and negative eigenvalues respectively with Λ = Λ++Λ− so
that f = f ++ f−.

In this case we can extend the penalty terms to include terms not seen in a character-
istic decomposition, so that the multi-domain spectral Galerkin penalty method becomes
for each interior domain,

T
j

Il
= τ

j
1

(

f +(Ul(xl− 1
2
),t)− f +(Ul−1(xl− 1

2
),t)

) ∆xl

2

∫

Ω
Q+

m(ξ)Pj(ξ)dξ

+τ
j
2

(

f−(Ul(xl− 1
2
),t)− f−(Ul−1(xl− 1

2
),t)

) ∆xl

2

∫

Ω
Q+

m(ξ)Pj(ξ)dξ

+τ
j
3

(

f +(Ul(xl+ 1
2
),t)− f +(Ul+1(xl+ 1

2
),t)

) ∆xl

2

∫

Ω
Q−

m(ξ)Pj(ξ)dξ

+τ
j
4

(

f−(Ul(xl+ 1
2
),t)− f−(Ul+1(xl+ 1

2
),t)

) ∆xl

2

∫

Ω
Q−

m(ξ)Pj(ξ)dξ, (2.4)

where τ j are the penalty parameters, and the polynomials Q±
m can be chosen as before.

If τ
j
2 =0=τ

j
3, the above penalty formulation is basically the characteristic decomposition.

The case where
τ

j
1 =τ

j
2 =τ

j
3 =τ

j
4
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is equivalent to no flux-splitting. Adjusting the coefficients allows for flexibility in apply-
ing this method. The major advantage of the flexibility of this formulation is in the case
of the inhomogeneous grid, as we see in the following example.

Example 2.1. Consider the following equation

qt+ fx =0, (2.5)

where q=(u,v)T, and f =(v,u). The initial conditions are

u(x,0)=sin(ωπx), v(x,0)=0

with ω =5. With these initial conditions, the exact solutions are given by

u(x,t)=
1

2
(−sin(ωπ(x−t))−sin(ωπ(x+t))),

v(x,t)=
1

2
(−sin(ωπ(x−t))+sin(ωπ(x+t))).

This equation was previously investigated by Hu and Atkins for the dGM in [14]. The
positive and negative fluxes are given by

f + =(u+v,u+v)T , f−=(v−u,u−v)T .

We can easily show that the sGM is equivalent to the dGM with the characteristic
decomposition if the following penalty parameters are taken, that is, for q1 =u,

τ1 =−
1

2
=τ4, and τ2 =0=τ3,

and for q2 =v,

τ1 =−
1

2
=−τ4, and τ2 =0=τ3.

On the other hand, the case τ1=τ2=− 1
2 and τ3=τ4=− 1

2 are taken for q1=u and τ1=τ2=− 1
2

and τ3 =τ4 = 1
2 for q2 =v, there is no flux-splitting.

In our numerical example, we consider the sGM approximation with a inhomoge-
neous grid. A total of 50 elements are used. In the interval x = [−1,0], there are 47
elements each of size ∆xi =

1
47 ,∀i =1,··· ,47. In the interval x =[0,1], there are 3 elements

with of size ∆xi =
1
3 ,∀i=48,49,50. In each element, polynomial order m=5 is used.

In each interval x=[−1,0] and x=[0,1], the solutions are smooth and there is no need
to use flux splitting at all. The method is then easily implemented without computing the
local flux conditions for the characteristic decomposition. However, the inhomogeneity
of the grid raises the issue of possible non-physical reflection waves at the grid discon-
tinuity at x = 0. The penalty method can be easily implemented to reduce the artificial
reflections at the grid discontinuity x = 0. By adopting the characteristic splitting only
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Figure 3: Left: Inhomogeneous grid with no splitting penalty method. Right: Inhomogeneous grid with no
splitting penalty method except 3 interface elements near x = 0. The interface of two inhomogeneous media
is at x = 0. Top: Solution u(x,t) to Eq. (2.5) at t = 0.15 with m = 5 with a total of 50 elements. Bottom:
Pointwise errors.

for the domains near the grid discontinuity, one can reduce the magnitude of the non-
physical reflections significantly. Furthermore, one can take an advantage of the flexibil-
ity of the method and avoid splitting altogether inside each homogeneous domain.

The left figure of Fig. 3 shows the non-splitting penalty method at t = 0.15. As ex-
pected, there are small fluctuations in the solution in the region x≤0. These fluctuations
are the non-physical reflecting solutions at x = 0 and propagating to the left. The right
figure shows the result with the penalty method where only three elements near x=0 and
two boundary elements, use the characteristic penalty method while the other elements
use the non-splitting method. For the numerical experiment, for example, I46, I47 and I48

are implemented based on the characteristic penalty method. Here note that the grid dis-
continuity x = 0 exists between I47 and I48. We also note that we use the characteristic
penalty method for I1 and I50 to minimize the boundary effects. As shown in the figures,
the penalty method is flexible enough to adapt to the grid inhomogeneity and obtains an
accurate result without any considerable non-physical reflecting modes. This suggests
the use of the cheaper, non-splitting method, in areas away from the boundary and the
grid inhomogeneity, and the more expensive splitting method in the domains close to the
boundary and the inhomogeneity. This issue, in the context of collocation methods, was
briefly discussed in [3, 4].
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2.2 The dGM as a special case of the multi-domain penalty sGM

In this section, we will present the dGM and then show that it can be seen as an example
of the multi-domain penalty sGM with a particular penalty term τ =−1. To formulate
the dGM we begin with the Galerkin form for every element Il,

m

∑
k=0

dbl
k(t)

dt

∫

Il

Pj(ξ(x))Pk(ξ(x))dx+
∫

Il

Pj(ξ(x)) f (Ul)xdx=0, j=0,··· ,m.

and integrate by parts to obtain,

m

∑
k=0

dbl
k(t)

dt

∫

Il

Pj(ξ(x))Pk(ξ(x))dx−
∫

Il

dPj(ξ(x))

dx
f (Ul)dx=−Pj(ξ(x)) f (Ul) |

x
l+ 1

2
x

l− 1
2

, (2.6)

for j=0,··· ,m.

As usual, we assume that f ′(U)≥0 without loss of generality. Under this assumption,
the boundary term in the above equation can be evaluated by replacing the left flux with
the incoming flux based on the characteristic direction for l >0,

B
j
Il

:=−Pj(ξ(x)) f (Ul(x,t)) |∂Il

= Pj(−1) f (Ul−1(xl− 1
2
,t))−Pj(1) f (Ul(xl+ 1

2
,t)).

In the case l=0 where the left-most interval is considered, we replace the incoming value
by the given boundary condition,

B
j
I0

= Pj(−1) f (h+(t))−Pj(1) f (Ul(xl+ 1
2
,t)). (2.7)

To see the relationship between the dGM and sGM, we define the auxiliary integrals
F and G

F =
∫

Il

dPj(ξ(x))

dx
f (Ul)dx, G=

∫

Il

Pj(ξ(x)) f (Ul)xdx,

and we note that

F+G=
∫

Il

d

dx

(

Pj(ξ(x)) f (Ul(x,t))
)

dx

= Pj(1) f (Ul(xl+ 1
2
,t))−Pj(−1) f (Ul(xl− 1

2
,t)). (2.8)

With these two integrals and the penalty and boundary terms, the dGM and sGM can be
rewritten, for each domain l:

(dGM) M·b′−F =BIl
, (sGM) M·b′+G=TIl

, (2.9)
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where the ’ denotes a derivative with respect to time, and the mass matrix M and the
coefficient vector b are defined by

Mjk =
∫

Il

Pj(ξ(x))Pk(ξ(x))dx, b=
(

bl
0(t),··· ,bl

m(t)
)T

.

To show that the dGM and sGM formulations are equivalent, we can rearrange the dGM
formulation Eq. (2.9) for l >1

M·b′ = F+BIl

= Pj(1) f (Ul
N(xl+ 1

2
,t))−Pj(−1) f (Ul

N(xl− 1
2
,t))−G+BIl

,

M·b′+G = Pj(1) f (Ul(xl+ 1
2
,t))−Pj(−1) f (Ul(xl− 1

2
,t))+BIl

= Pj(1) f (Ul(xl+ 1
2
,t))−Pj(−1) f (Ul(xl− 1

2
,t))

+Pj(−1) f (Ul−1(xl− 1
2
,t))−Pj(1) f (Ul(xl+ 1

2
,t))

= Pj(−1)
(

f (Ul−1(xl− 1
2
,t))− f (Ul(xl− 1

2
,t))

)

,

which is equal to the penalty term TIl
with τ=−1. For the case l=1, the left boundary term

Ul−1(xl− 1
2
,t) is replaced by the boundary condition h+(t). Thus, the dGM formulation

is just a special case of the penalty multi-domain sGM. We saw in Figs. 1 and 2 that
different values of the penalty parameter yield different stability properties. Additionally,
changing the value of τ will also change the size of the errors. To see this, consider the
following example.

Example 2.2. Consider the sGM for

ut+ux =0, x∈ [−1,1], t>0,

with the initial condition
u(x,0)=−sin(πx)

and periodic boundary conditions. Using the multi-domain sGM with N = 10 and the
weak penalty formulation, we examine the effect of the penalty parameter τ on the errors.
Fig. 4 shows the L2 errors for different τ and m =3 (left) and m =6 (right) at t =0.1. The
figures show that the optimal value of τ is not τ =−1, i.e., the dGM is not the optimal
method within the class of sGMs. Furthermore, we observe that the optimal value of τ
also depends on the polynomial order. Note that L2 errors are ∼10−4 and ∼10−9 for m=3
and m=6, respectively.

2.3 The flexibility of the penalty parameter

One of the main advantages of the penalty sGM is that the penalty parameters can vary
depending on the problem as shown in Example 2.1. To see how the penalty parameter
affects the performance of the approximation of hyperbolic conservation laws, consider
the following numerical example.
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Figure 4: Example 2.2: On the horizontal axis is the value of −τ while on the vertical axis the L2 error of the
numerical solution at time t = 0.1, with N = 10. Left: The errors as a function of −τ for m = 3. Right: The
errors as a function of −τ for m=6.

Example 2.3. Consider Burgers’ equation

ut+(u2/2)x =0, x∈ [−1,1], t>0, (2.10)

with the initial condition u(x,0)= x. Then the exact solution is given by

ue(x,t)=
x

1+t
.

With the given initial condition, there is no incoming boundary condition for the bound-
aries both at x =−1 and x = 1. Also, if x > 0, the characteristic incoming boundary con-
ditions are applied at the left boundary of each element, ∂I−l . If x < 0, the characteristic
incoming boundary conditions are applied at the right boundary of each element, ∂I+

l .
Since the solution is a polynomial of degree only 1, the approximation in each element
can be sufficiently resolved with m=1, i.e., U =∑

1
k=0bk(t)Pk(x). However, the expansion

coefficients bk, for k>1 are not necessarily zero in the Galerkin approximation. The weak
sGM imposes the interface conditions for every mode for which the overall approxima-
tion is affected by round-off errors when the high order approximation is sought. The
penalty sG formulation has more flexibility than the dG formulation (which must have
τ =−1) to deal with such issue by exploiting the penalty parameters. Since the solution
is only a polynomial of degree 1, we employ the following penalty parameters

τ j =

{

τ if j=0,1,
0 otherwise,

(2.11)

where τ is a non-zero constant. This procedure can be automated by examining the size of
the coefficients in the numerical solution, and then designing penalty parameters which
take this into account, so that if the numerical solution in a given domain looks as if it is
of some order m, the penalty terms beyond this order would be zero. Fig. 5 shows the sG
formulation with τ j =−1,∀j =0,··· ,m which is equivalent to the dGM and the modified
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Figure 6: The errors between the exact and approximated coefficients in Example 2.3. Left: dGM approximation.
Right: Modified penalty approximation. The element 1 is in x∈ [−1,− 1
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3 ] and the
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3 ,1].

penalty formulation with the condition of Eq. (2.11). The figures show the L2 and L∞

errors at t = 0.15. We use the Legendre polynomials with the total number of elements
being 3, with

m=20, τ =−5, CFL=0.0001.

As shown in the figure, the modified penalty method represented by ◦ yields the best
results. We also compute the errors between the exact expansion coefficients and the
approximated coefficients. The exact expansion coefficients for each domain are given in
Table 1 at any time t.

Table 1: The exact expansion coefficients for Example 2.3, for each of three domains at time t.

x∈ [−1,− 1
3 ] x∈ [− 1

3 , 1
3 ] x∈ [ 1

3 ,1]

b0(t) − 2
3

1
1+t 0 2

3
1

1+t

b1(t) 1
3

1
1+t

1
3

1
1+t

1
3

1
1+t

bi(t),i>1 0 0 0



S. Gottlieb and J.-H. Jung / Commun. Comput. Phys., 5 (2009), pp. 600-619 613

Fig. 6 shows the errors in the expansion coefficients for both the dGM and the mod-
ified penalty approximations at t = t f = 0.15. The figures show that the errors of each

expansion coefficient are larger than 10−14 for the dGM approximation for bk,k>1 while
they are close or below 10−14 for the modified penalty sGM.

3 Roundoff errors of high order sGM

3.1 Numerical consistency

Although the flexibility of the penalty parameter in sGM can allow more accurate numer-
ical simulations, the choice of the penalty parameter may also increase the sensitivity to
round-off errors due to the inconsistent evaluation of the integrals. In the Galerkin for-
mulation of the system of ODEs for the approximation coefficients, we need to compute
two sets of integrals,

I1 =
∫

Ω
Pk(x)Pj(x)dx, I2 =

∫

Ω
f (U)xPj(x)dx.

While I1 can be evaluated exactly, because the form of the polynomials is known explic-
itly in general, I2 can not generally be evaluated, and so quadrature must be used. We
define the integral operators E and Q, where E is the exact integration operator

E(g)=
∫

Ω
g(x),

and Q some quadrature rule such as Gauss quadrature rule used to evaluate the given
integral

Q(g)=
m

∑
i=0

giωi∼
∫

Ω
g,

where ωi are the weights. The Galerkin formulation can now be performed in one of four
ways:

E(PlPj)=E( f (U)xPj)+Tl, E(PlPj)=Q( f (U)xPj)+Tl,

Q(PlPj)=E( f (U)xPj)+Tl, Q(PlPj)=Q( f (U)xPj)+Tl.
(3.1)

We say that the Galerkin formulation is numerically consistent if the integrals are evalu-
ated in the same way on both sides of the equations (both by E or both by Q), and it is
numerically inconsistent if the two integrals are evaluated differently on the two sides of
the equation.

The phenomenon we are considering is essentially a numerical one. For high poly-
nomial order, the numerically consistent formulation yields more accurate results, and
lower sensitivity to roundoff errors, than the inconsistent formulation. Consequently the
above four different formulations, Eq. (3.1), show different errors.
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Example 3.1. We first consider the following steady-state problem

ut+ux =sin(πx), x∈ [−1,1], t>0,

with initial condition

u(x,0)=us(x)+ǫMδ(x),

where ǫM is machine accuracy, ǫM =10−16 and δ(x) is the random function, 0≤ δ(x)≤1
with the normal distribution. The boundary condition is

u(−1,t)=−
1

π
cos(−π), ∀t>0.

The steady-state solution is then given by

us(x,t)=−
1

π
cos(πx).

For the numerical experiment, the final time is t f =1, the total number of domain N =30,
the penalty parameter τ =−5, and the CFL number CFL=0.001 for

∆t=CFL×∆x=6.6667×10−5

are used where each element has the same element size and polynomial order.

Fig. 7 shows the convergence of L2 and L∞ errors with m for the weak penalty formu-
lation with τ =−5 and the dG formulation (i.e., τ =−1). The LHS or RHS are evaluated
either using the quadrature rules labeled by Q or the exact formula labeled by E for the
penalty formulation with τ =−5.

As the figures show, both the L∞ and L2 errors decay exponentially until around m∼7.
For m > 7, these errors grow slightly due to round-off errors. The figures show that
the results with the consistent evaluation of the stiffness matrix of the sGM (QQ) show
better performance for the weak penalty sGM when round-off error become dominant.
The consistent formulation for the penalty sGM yields the best results when m is large.
However, the special case τ=−1, which corresponds to the dGM method, does not suffer
from round-off errors due to the inconsistent formulation.

The drawback of generalizing the penalty term may be an increased sensitivity to the
inconsistent evaluation of integrals. A simple solution to this is to evaluate the integral in
that matrix M using quadrature. However, for the Legendre basis this approach will lead
to a matrix which is not diagonal, because the off-diagonal elements will be very small,
but not be exactly zero. In this case, we would have to solve a linear system. However, if
one uses the monomial basis functions, a linear system has to be solved in any case, and
the use of quadrature to compute this matrix will eliminate the consistency problem.
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3.2 The coefficient truncation method

When using a non-orthogonal basis, such as the monomial basis [5], we obtain a matrix M

which is not diagonal. As noted above, this will also occur if we compute the matrix for
an orthogonal basis by quadrature. The solution of this linear system may also produce
a sensitivity to roundoff errors, which can destroy the accuracy of a solution for large
polynomial values. In this section, we present numerical examples of this problem, and
suggest the coefficient truncation method to resolve it.

Example 3.2. Consider, once again, the linear advection equation

ut+ux =0, x∈ [−1,1], t>0.

The solution of this equation is approximated using a dG formulation with the normal-
ized monomial basis function. Fig. 8 shows the decays of the transformed vector b (left)
and the obtained expansion coefficient vector x (right) for the last element which contains
the right boundary x=1. The parameters used for the numerical approximation are total
number of domain = 5, m=37, t f =0.11, and CFL=0.005.

The left figure in Fig. 8 shows that the element of b decays with m until around m∼33
with the magnitude ∼10−6. Beyond m >33 it is observed not to decrease. This is due to
the large condition number, κ, of the stiffness matrix M, i.e., κ∼ 5.1445×1017 . The right
figure in Fig. 8 shows the decay or growth of the evaluated expansion coefficient vector
x. The figure clearly shows that the expansion coefficients grow rapidly with m. Fig. 9
demonstrates that this results in large errors. This simple example shows that for high
order polynomials, the calculation of the coefficients is very sensitive to round-off error,
and this affects the accuracy of the solution.

To resolve this problem, we modify the penalty method with the truncation method
introduced in [16] for use in the inverse polynomial reconstruction method (IPRM) [15,
18] to reduce deterioration of the error when the polynomial error was large.

To apply the coefficient truncation method, we look at the coefficients resulting from
the intermediate step in the Gaussian elimination. Suppose that the set of expansion
coefficients is to be found from the linear equation

M·b′ =h,

then the system is solved by Gaussian elimination to yield an upper triangular matrix
system

U·b′= c.

The coefficients of this system should be rapidly decaying, so to reduce the problem of
round-off errors we impose this requirement by setting

ci =

{

ci if |ci|>ǫt,
0 otherwise.

(3.2)
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Here ǫt is the tolerance level which is to be determined depending on the decay rate of
c. The motivation behind this method is that, as shown in Fig. 1, the spectral radius ρ
increases with m for the Galerkin method and this makes the method sensitive to round-
off errors. The truncation method tries to reduce the magnitude of ρ by truncating the
RHS of the linear system of the Galerkin method by reducing the rank of the matrix.
For example, if the truncation order is n, then the rank of the truncated matrix becomes
m+1−n. With the rank reduced, ρ is also reduced. However, the coefficients b are not
truncated, so that higher modes are not eliminated.

Example 3.3. To demonstrate the success of the truncation method in reducing the effects
of round-off errors, we return to Example 3.2 above. We apply the truncation method
with various tolerance levels, i.e., ǫt = 10−14(+), ǫt = 10−12(◦), ǫt = 10−10(�), and ǫt =
10−6(∇). The left figure in Fig. 8 shows that the elements of b decay faster when the
truncation error is applied for different values of ǫt. The right figure in Fig. 8 shows the
evaluated expansion coefficient vector x. The figure clearly shows that the expansion
coefficients grow with m exponentially without the truncation method while they decay
if the truncation method is applied. The figures also show that the expansion coefficients
become truncated to almost machine zeros or very close to zeros if the truncation method
is applied. In the figure, these truncated values are not displayed as the plot uses the
logarithmic scale. The larger ǫt is used, the faster the truncation of x occurs.

The L∞ errors with m (left) and the pointwise errors with m = 37 (right) are given in
Fig. 9 with the same symbols as in Fig. 8. The left figure in Fig. 9 shows the L∞ decay or
growth with m with and without the truncation method. The figure shows that the L∞

errors decay up to m∼7 and they start to grow beyond m∼20 if the truncation method is
not applied or the truncation method is applied with ǫt =10−14. The truncation method
with ǫ = 10−10 or 10−12 yields the best results up to m∼ 40. If ǫt = 10−6 is used, the L∞

remains around 10−6 for large m. It is observed that for m > 40, the L∞ errors remains
around 10−6 when ǫt =10−6 while the other cases result in the growth of L∞ errors. The
right figure in Fig. 9 shows the pointwise errors with m = 37. The figure shows that the
best result is obtained when ǫt =10−12 is used.

Fig. 9 suggests that the tolerance level used with the truncation method can be chosen
by observing the decay rate of c for a given m. Also, one can use the different tolerance
level ǫt for different elements since each element has different decay rate of c.

4 Summary and conclusion

We described the formulation of the multi-domain penalty sGM and demonstrated that
the flexibility of the penalty formulation can be advantageous, because it allows us to
tailor the penalty parameter to match the problem. This is especially relevant in the case
where the sub-domains have different mesh size or polynomial order, as the flexibility
in the penalty parameters can allow us to avoid costly flux splitting except near the grid
discontinuity. However, different values of the penalty parameter effect the stability,



618 S. Gottlieb and J.-H. Jung / Commun. Comput. Phys., 5 (2009), pp. 600-619

accuracy, and sensitivity to round-off errors. For example, the dGM is simply a sGM
with a particular choice of penalty parameter, which for a linear wave equation has nice
stability properties, though it is not optimal in terms of accuracy.

We presented two numerical issues which arise in the solution of hyperbolic conserva-
tion laws using the multi-domain penalty sGM with high order polynomials. The first is
that consistent evaluation of the stiffness matrix and the load vector yields a better result
when the high order polynomials are used with the penalty formulation. This sensitivity,
too, depends on the penalty parameter, and we note that the case of τ =−1, (the dGM
case) does not seem affected by this numerical consistency issue. The second numerical
issue is the sensitivity of high order sGMs to roundoff errors, which can potentially ruin
the accuracy of the solution. To resolve this issue we introduce the coefficient truncation
method which prevents the rapid growth of the errors with m, and has a stabilizing effect
on the method.

Future studies will center around methods for choosing the penalty parameter to op-
timize for accuracy and stability, as well as further development of the coefficient trunca-
tion method for multi-dimensional problems.
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