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Abstract. We propose an adaptive strategy for solving high frequency Helmholtz scat-
tering problems. The method is based on the uniaxial PML method to truncate the scat-
tering problem which is defined in the unbounded domain into the bounded domain.
The parameters in the uniaxial PML method are determined by sharp a posteriori er-
ror estimates developed by Chen and Wu [8]. An hp-adaptive finite element strategy
is proposed to solve the uniaxial PML equation. Numerical experiments are included
which indicate the desirable exponential decay property of the error.
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1 Introduction

To numerically solve the scattering problem in an unbounded domain, the first problem
to be settled is to truncate the computational domain without introducing excessive error
into the computed solution. Two basic approaches have been developed for this goal, the
perfectly matched layer (PML) and radiation boundary conditions, of which we choose
the former one to formulate our problem.

Since Berenger [4] which proposed a PML technique for solving the time dependent
Maxwell equations, various constructions of PML absorbing layers have been proposed
and studied in the literature (cf., e.g., Turkel and Yefet [18], Teixeira and Chew [17]). The
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basic idea of the PML technique is to surround the computational domain by a layer
of finite thickness with specially designed model medium that would attenuate all the
waves that propagate from inside the computational domain.

As the PML has to be truncated at a finite distance from the domain of interest, its
external boundary produces artificial reflections. It is proved in Hohage et al. [13], Lassas
and Somersalo [14] that the PML solution converges exponentially to the solution of the
original scattering problem as the thickness of the PML layer tends to infinity. In practical
applications involving PML techniques, one cannot afford to use a very thick PML layer
if uniform finite element meshes are used due to excessive computational costs. On the
other hand, a thin PML layer requires a rapid variation of the artificial material property
which deteriorates the accuracy if too coarse mesh is used in the PML layer.

The adaptive PML technique was proposed in Chen and Wu [5] for a scattering prob-
lem by periodic structures (the grating problem), in Chen and Liu [6] for the acoustic
scattering problem, and in Chen and Chen [7] for the Maxwell scattering problem. The
main idea of the adaptive PML technique is to use the a posteriori error estimate to deter-
mine the PML parameters and to use the adaptive finite element method to solve the PML
equations. The adaptive PML technique provides a complete numerical strategy to solve
the scattering problems in the framework of finite element which produces automatically
a coarse mesh size away from the fixed domain and thus makes the total computational
costs insensitive to the thickness of the PML absorbing layer.

The uniaxial PML method is widely used in the engineering literature. It provides
greater flexibility and efficiency to solve problems involving anisotropic scatterers as op-
posing to circular PML method. In Chen and Wu [8], the adaptive PML technique devel-
oped for circular PML methods in [5–7] is extended to the uniaxial PML methods and the
convergence proof of the uniaxial PML method is given.

While the low-order adaptive method based on the uniaxial PML technique can save
considerable computational costs, it still suffers from the drawback that the CPU time
and memory storage grow rapidly as the accuracy requirement of the computed solution
increases. Even for scatterers only a few wavelengths in size, the computer resources
required may be excessive for computing far field patterns to a few digits of accuracy
by low-order methods. One remedy is to use the hp version of the finite element which
simultaneously refines the mesh and increases the degrees of elements uniformly or se-
lectively. In contrast to the classical h version with low-order basis functions which yields
algebraic decay of error in terms of the number of unknowns, the hp version enjoys the
attractive feature of exponential rate of convergence with proper choices of meshes and
element degrees (see, e.g., Babuška and Guo [2] for elliptic equations).

Our purpose in this paper is to recover this essential feature to achieve high accuracy
of the hp FEM in the scattering problem with singular solutions, especially, for high wave
numbers. Our hp-adaptive finite element strategy is based on the a posteriori error es-
timate developed by following the procedure of [8], of which the new ingredient is the
dependence of the element degree in our local error estimator. We borrow the hp Clément
interpolant in Melenk and Wohlmuth [10] to achieve this sharp hp error estimates.
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The layout of this paper is as follows. In Section 2 we recall the classical two dimen-
sional Helmholtz-type scattering problem and the boundary integral representation of
the solution to the exterior Helmholtz equation. By using the method of the complex co-
ordinate stretching in Chew and Weedon [20], we recall the uniaxial PML formulation. In
Section 3, we introduce the finite element approximation. In Section 4, based on the error
representation formula, we derive the a posteriori error estimate which includes both the
PML error and the finite element discretization error. In Section 5 we give a complete
description of our hp adaptive algorithm. Finally in Section 6 we present two examples
to show the competitive behavior of the method.

2 The PML equation

Let the scatterer D⊂R2 be a bounded domain with Lipschitz boundary ΓD, and nD be
the unit outer normal to ΓD. Our aim is to solve the following Helmholtz-type scattering
problems with perfectly conducting boundary:

∆u+k2u=0 in R
2\D̄, (2.1)

∂u

∂nD
=−g on ΓD, (2.2)

√
r

(

∂u

∂r
−iku

)

→0 as r= |x|→∞. (2.3)

Here g∈H−1/2(ΓD) is determined by the incoming wave. We assume the wave number
k = ω/c is a constant, with ω being the angular frequency of the waves and c the sound
speed of the fluid in the background media.

L2

L1

d2

d1

Ω1

Ω2

Γ1

Γ2

ΓD

D

Figure 1: Setting of the scattering problem with the PML layer.

Let D be contained in the interior of the rectangle B1={x∈R2 : |x1|<L1/2,|x2|<L2/2}.
Let Γ1=∂B1 and n1 the unit outer normal to Γ1. We denote f and T f =∂u/∂n1 the Dirichlet
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and Neumann trace of u on Γ1, respectively. By the third Green formula, the solution to
the Helmholtz equation (2.1)-(2.3) satisfies

u=−Ψk
SL(T f )+Ψk

DL( f ) in R
2\B̄1,

where Ψk
SL,Ψk

DL are respectively the single and double layer potentials

Ψk
SL(λ)(x)=

∫

Γ1

Gk(x,y)λ(y)ds(y), ∀λ∈H−1/2(Γ1),

Ψk
DL(g)(x)=

∫

Γ1

∂Gk(x,y)

∂n1(y)
g(y)ds(y), ∀g∈H1/2(Γ1).

Here Gk=
i
4 H

(1)
0 (k|x−y|) is the fundamental solution of the Helmholtz equation satisfying

the Sommerfeld radiation condition, where H
(1)
0 (z) is the zeroth-order Hankel function

of the first kind.
To introduce the absorbing PML layer, we use the notation in Fig. 1. Let Ω1 = B1\D̄

be the physical domain, i.e., the subdomain where we are interested in computing the
solution of (2.1)-(2.3). Let

B2 ={x∈R
2 : |x1|< L1/2+d1,|x2|< L2/2+d2}

be the rectangle which contains B1. Our PML equation is defined in the computational
domain Ω2 =B2\D̄. The inner and outer boundary of the absorbing layer are denoted by
Γ1 and Γ2, respectively.

We consider the anisotropic model medium property in the PML, with

α1(x1)=1+iσ1(x1), α2(x2)=1+iσ2(x2),

applying to the vertical and horizontal layers, respectively. They satisfy

σj ∈C(R), σj ≥0, σj(t)=σj(−t), and σj(t)=0 for |t|≤ Lj/2, j=1,2.

Furthermore, we make the following assumptions on the fictitious medium property,
which is rather mild in the practical application of the uniaxial PML method

(H1)

∫

L1
2 +d1

0
σ1(t)dt=

∫

L2
2 +d2

0
σ2(t)dt=σ, σ>0 is a constant;

(H2) σj(t)= σ̃j

( |t|−Lj/2

dj

)m

, m≥1 integer, σ̃j >0 is a constant, j=1,2.

We follow the method of complex coordinate stretching [20] to introduce the PML
equation. Let x̃j denote the complex coordinate defined by

x̃j =

{

xj if |xj|< Lj/2,
∫ xj

0 αj(t)dt if |xj|≥ Lj/2.
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For z∈C\[0,+∞), denote by z1/2 as the analytic branch of
√

z with Im(z1/2)>0. Let

ρ(x̃,y)= [(x̃1−y1)
2+(x̃2−y2)

2]1/2

be the complex distance. As previous, we denote f the Dirichlet trace of u on Γ1, and
define

G̃k(x,y)=
i

4
H

(1)
0 (kρ(x̃,y)).

The PML extension of u|Γ1
outside B1 thus can be introduced as follows

ũ(x)=−Ψ̃k
SL(T f )+Ψ̃k

DL( f ) in R
2\B̄1.

Here Ψ̃k
SL,Ψ̃k

DL are similar to Ψk
SL,Ψk

DL respectively, with the integral kernel Gk(x,y) re-
placed by G̃k(x,y). It is obviously to see the PML extension satisfies

∂2ũ

∂x̃2
1

+
∂2ũ

∂x̃2
2

+k2ũ=0 in R
2\B̄1,

which yields the desired PML equation in Cartesian coordinates

∂

∂x1

(

α2

α1

∂ũ

∂x1

)

+
∂

∂x2

(

α1

α2

∂ũ

∂x2

)

+α1α2k2ũ=0 in R
2\B̄1.

Since

H
(1)
0 (z)∼

√

2

πz
ei(z− π

4 ) as |z|→∞,

it is easy to see H
(1)
0 (z) decays exponentially on the upper half complex plane. Heuristi-

cally, we expect ũ(x) have the same property for x away from Γ1. The PML problem is
then to find û, which approximates u in Ω1

∇·(A∇û)+α1α2k2û=0 in Ω2, (2.4)

∂û

∂nD
=−g on ΓD, û=0 on Γ2, (2.5)

where

A=diag(α2(x2)/α1(x1),α1(x1)/α2(x2))

is a diagonal matrix.

The well-posedness of the PML problem (2.4)-(2.5) as well as the convergence of its
solution to that of the original scattering problem is studied in [8]. The main goal of
the following sections is to develop an hp adaptive strategy to solve the truncated PML
problems (2.4)-(2.5).
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3 Finite element approximation

In this section we describe the precise assumptions on the underlying meshes and in-
troduce the finite element approximation of the PML problems (2.4)-(2.5). Let Mh be a
conforming regular triangulation of the domain Ω2, i.e., it satisfies

1. (partition) The elements K∈Mh may have one curved edge align with ΓD so that
Ω2 =

⋃

K∈M
h
K.

2. (conformity) No vertex of any element lies in the interior of a side of another ele-
ment.

3. (shape regularity) The ratio between the diameter of an element and that of its
inscribed circle is bounded above by a constant independent of the triangulation.

In particular, the regularity assumption does not rule out locally refined meshes that arise
in an adaptive refinement procedure.

For a mesh Mh of elements Kj,1 ≤ j ≤ J, and a distribution of polynomial degrees
P =(p1,p2,··· ,pJ), we construct a continuous finite element spaces

Vhp =Vhp(Mh
;P)

of which the restriction on each element Kj is a polynomial with the degree not exceeding
pj. Define

◦
Vhp =

◦
Vhp(Mh;P)={v∈Vhp : v=0 on Γ2},

and b : H1(Ω2)×H1(Ω2)→C the sesquilinear form given by

b(ϕ,ψ)=
∫

Ω2

(

A∇ϕ·∇ψ̄−α1α2k2 ϕψ̄
)

dx. (3.1)

Standard arguments in the finite element framework lead to the following discrete prob-

lem from the weak formulation of problem (2.4)-(2.5): Find u
hp
∈

◦
Vhp such that

b(u
hp

,ψ
hp

)=
∫

ΓD

gψ̄
hp

ds, ∀ψ
hp
∈

◦
Vhp. (3.2)

4 A posteriori error estimates

Having the finite element approximation u
hp

in hand, the central issue in the a posteriori
error estimation is to find a quantitative representation of the true error u−u

hp
measured

in a specified norm in terms of the Galerkin approximation u
hp

and the boundary data g.
In this section we will derive such an error representation formula.
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For any ϕ ∈ H1(Ω1), let ϕ̌ be its extension in ΩPML = Ω2\Ω̄1 such that ϕ̌|ΩPML = w
satisfying

∇·(A∇w)+α1α2k2w=0 in ΩPML, (4.1)

w= ϕ on Γ1, w=0 on Γ2. (4.2)

We define

T̂ϕ=∂w/∂n1, ϕ̃= ¯̄̌ϕ.

Similar to (3.1), the sesquilinear form of the original Helmholtz problem is written as

a(ϕ,ψ)=
∫

Ω1

(

∇ϕ·∇ψ̄−k2 ϕψ̄
)

dx−
∫

Γ1

Tϕ·ψ̄ds. (4.3)

The continuous weak formulation is, find u∈H1(Ω1) such that

a(u,ψ)=
∫

ΓD

gψ̄ds, ∀ψ∈H1(Ω1).

The existence of a unique solution of the scattering problem is known (cf., e.g., [12],
McLean [15]). Then the general theory in Babuška and Aziz [1, Chap. 5] implies that
there exists a constant µ>0 such that the following inf-sup condition is satisfied

sup
0 6=ψ∈H1(Ω1)

|a(ϕ,ψ)|
‖ψ‖H1(Ω1)

≥ µ‖ϕ‖H1(Ω1)
, ∀ ϕ∈H1(Ω1). (4.4)

By definition of (4.3), we have ∀ϕ∈H1(Ω1),

a(u−u
hp

,ϕ)

=
∫

ΓD

gϕ̄ds−
∫

Ω1

(A∇u
hp
·∇ϕ̄−α1α2k2u

hp
ϕ̄)dx+

∫

Γ1

Tu
hp
· ϕ̄ds

=
∫

ΓD

gϕ̄ds−b(u
hp

, ϕ̃)+
∫

ΩPML
(A∇u

hp
·∇ ¯̃ϕ−α1α2k2u

hp
¯̃ϕ)dx+

∫

Γ1

Tu
hp
· ϕ̄ds. (4.5)

From the definition of ϕ̃, integrating by parts, we deduce that

∫

ΩPML
(A∇ ¯̃ϕ·∇u

hp
−α1α2k2 ¯̃ϕu

hp
)dx=−

∫

Γ1

T ¯̃ϕ·u
hp

ds.

On the other hand,

−
∫

Γ1

T ¯̃ϕ·u
hp

ds=
∫

ΩPML
(A∇ ¯̃ϕ·∇ǔ

hp
−α1α2k2 ¯̃ϕǔ

hp
)dx=−

∫

Γ1

Tǔ
hp
· ϕ̄ds.
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Substituting above equation into (4.5) and using the discrete variational form (3.2), we

obtain our error representation formula, that is, ∀ϕ
hp
∈

◦
Vhp,

a(u−u
hp

,ϕ)

=
∫

ΓD

gϕ̄ds−b(u
hp

, ϕ̃)+
∫

Γ1

(Tuh−T̂uh)ϕ̄ds

=
∫

ΓD

g(ϕ−ϕ
hp
)ds−b(u

hp
, ϕ̃− ϕ̃

hp
)+
∫

Γ1

(Tuh−T̂uh)ϕ̄ds. (4.6)

This formula is the start point of the following a posteriori error estimation which is the
basis to design our adaptive strategy. In our adaptive strategy to be presented later in
the paper, the PML parameter is determined a priori so that the corresponding error is
much smaller than the hp-discretization errors could become. We remark that different
PML parameters lead to different computational domains and different coefficients in the
PML equation. Therefore, it is more advantageous to determine them a priori rather than
adaptively based on the a posteriori error estimate.

For any K∈M
h
, we denote by hK its diameter. Let B

h
denote the set of all sides that

do not lie on ΓD and Γ2. For any e ∈ B
h
, he stands for its length. For any K ∈M

h
, we

introduce the element residual:

RK :=∇·(A∇u
hp
|K)+α1α2k2u

hp
|K .

For any interior side e∈B
h

which is the common side of K1 and K2 ∈M
h
, we define the

jump residual across e:

Je :=(A∇u
hp
|K1

−A∇u
hp
|K2

)·νe,

using the convention that the unit normal vector νe to e points from K2 to K1. If

e=ΓD∩∂K

for some element K∈M
h
, then we define the jump residual

Je :=2(∇u
hp
|K ·nD +g).

Let pK ,pe be the polynomial degree of element K and edge e, respectively. Denote by ηK

and E the local error indicator and the a posteriori error estimate

η
K
=

(

h2
K

p2
K

‖R
K
‖2

L2(K)+
1

2 ∑
e⊂∂K

he

pe

‖Je‖2
L2(e)

)1/2

, E =

{

∑
K∈M

h

η2
K

}1/2

. (4.7)

By the argument in Theorem 2.2 of [10], for any u∈ H1(Ω2) vanishing on Γ2, an hp

Clément type interpolant Iu∈
◦
Vhp can be constructed which is stable in the energy norm,
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that is, for any K ∈Mh and pK ≥ 1, the following estimate holds with C > 0 depending
only on the minimum angle of Mh

||u− Iu||L2(K)+
hK

pK

||∇(u− Iu)||L2(K)+ ∑
e⊂∂K

√

he

pe

||u− Iu||L2(e)≤C
hK

pK

||∇u||L2(K̃). (4.8)

Here K̃ =ω8
K is a local patch of elements, with

ω0
K :={vertices of K}, ω

j
K :=∪{K̄′|K′∈M

h
and K̄′∩ω

j−1
K 6=∅}.

We remark here that for any K∈M
h
, the number of elements in K̃ is bounded from above

since our triangulation is shape-regular.
Now we take ϕ̃

hp
= I ϕ̃ in the error representation formula (4.6) to get

a(u−u
hp

,ϕ) =
∫

ΓD

g(ϕ− I ϕ̃)ds−b(u
hp

, ϕ̃− I ϕ̃)+
∫

Γ1

(Tuh−T̂uh)ϕ̄ds

:= II1+II2+II3. (4.9)

We observe that, by integration by parts

II1+II2 = ∑
K∈M

h

(

∫

K
RK(ϕ̃− I ϕ̃)dx+ ∑

e⊂∂K

1

2

∫

e
Je(ϕ̃− I ϕ̃)ds

)

.

Standard argument in the a posteriori error analysis using (4.8) implies

|II1+II2| ≤ C ∑
K∈M

h

(

h2
K

p2
K

‖RK‖2
L2(K)+

1

2 ∑
e⊂K

he

pe

‖Je‖2
L2(e)

)1/2

||∇ϕ̃||L2(K̃)

≤ C

(

∑
K∈M

h

η2
K

)1/2

||∇ϕ̃||L2(Ω2).

Concerning the third term of (4.9), we resort to the following key estimate between the
Dirichlet-to-Neumann operator for the original scattering problem T and the PML prob-
lem T̂, which is established in [8], for any f ∈H1/2(Γ1),

‖T f −T̂ f ‖H−1/2(Γ1)
≤C|αm|3(1+kL)4e−(γkσ−1)‖ f ‖H1/2(Γ1)

.

Here,

γ=
min(d1,d2)

√

(L1+d1)2+(L2+d2)2
, L=max(L1,L2), αm =max

x∈Γ2

(α1(x1),α2(x2)).

Thus

|II3|≤C|αm|3(1+kL)4e−(γkσ−1)‖u
hp
‖H1/2(Γ1)

‖ϕ‖H1/2(Γ1)
.
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Together with the stability estimates [8] for the Dirichlet problem of the PML equation in
the layer,

‖∇ϕ̃‖L2(ΩPML)≤C|αm|2(1+kL)‖ϕ‖H1(Ω1),

and by the inf-sup condition (4.4), we finally get the a posteriori error estimate

‖u−u
hp
‖H1(Ω1)

≤C sup
0 6=ϕ∈H1(Ω1)

|a(u−u
hp

,ϕ)|
‖ϕ‖H1(Ω1)

≤C|αm|2(1+kL)

(

∑
K∈M

h

η2
K

)1/2

+C|αm|3(1+kL)4e−(γkσ−1)‖u
hp
‖H1/2(Γ1)

. (4.10)

5 hp adaptive algorithm

In this section we propose our implementation of the hp adaptive method. Note that in
the previous section the derived a posteriori error estimate (4.10) consists of two parts:
the finite element discretization error and the PML error. First we determine the PML
parameters a priori through the second term of (4.10). We choose L1,L2 such that D⊂B1

and choose d1,d2 such that

d1

L1
=

d2

L2
=χ, (5.1)

where χ is a constant. Then we choose χ and σ such that the exponentially decaying
factor

ω = e−(γkσ−1) = e
−
(

χ
χ+1

min(L1,L2)√
L2

1+L2
2

kσ−1

)

≤10−8,

which makes the PML error negligible compared with the finite element discretization
errors. By (H2),

σj(t)= σ̃j

( |t|−Lj/2

dj

)m

, j=1,2,

where σ̃1,σ̃2 are determined from σ as follows

σ̃j =(m+1)σ/dj, j=1,2. (5.2)

Once the PML region and the medium property are fixed, we use the standard finite
element adaptive strategy to modify the mesh according to the a posteriori error estimate.
Now we present our hp adaptive algorithm as follows:
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Algorithm 5.1:

Given tolerance TOL > 0. Let m = 2 and nh the times of h-refinement on the mesh Mh associated

with degree distribution P before performing p-refinement. In practice, we choose nh=2 or 3.

• Choose L1,L2 such that D⊂B1;

• Choose χ and σ such that the exponentially decaying factor ω≤10−8;

• Set d1,d2 and σ̃1,σ̃2 according to (5.1) and (5.2);
• Generate an initial mesh M(1)

h over Ω2 = B2\D̄ and select the initial element degree distribution

P (1) =1;

• Compute finite element solution u1 ∈
◦
Vhp(M(1)

h ;P (1));

• Compute error indicators η
K

,K∈M(1)

h for u1 ∈
◦
Vhp(M(1)

h ;P (1));
• Set initial n=0,k=1;

• While

Ek =

(

∑
K∈M(k)

h

η2
K

)1/2

>TOL, (5.3)

do

If n<nh, perform h-refinement:

◦ Refine all K∈M(k)
h satisfying ηK >

1
2 max(ηK ,K∈M(k)

h ) to construct a conforming mesh

M(k+1)
h ,

◦ Set the degree of newly generated element same as that of its parent and leave others

unchanged. Denote the new distribution of element degree by P (k+1),

◦ Set n=n+1,

Else, perform p-refinement:

◦ Set pj = pj+1 for each element Kj and let M(k+1)
h =M(k)

h ,

◦ Set n=0,

Compute the finite element solution uk+1 in the new finite element space
◦
Vhp(M(k+1)

h ;P (k+1))

and the error indicators ηKj
,Kj∈M(k+1)

h .

Set k=k+1,

End while

The guideline of the hp adaptive algorithm is to achieve the error equi-distribution
on the elements by using either h-refinement or p-refinement. It is well-known that the
h-refinement is preferred around the singularity of the solution and the p-refinement is
preferred in the region where the solution is smooth. In our algorithm we use the finite
element method of a uniform degree on the mesh. The degree of the finite elements is
successively increased only after nh =2,or 3 number of h-refinements is performed. The
h-refinement is governed by the usual adaptive strategy based on the sharp a posteriori
error indicator which captures the singularity of the solution. We find that this simple hp
adaptive strategy can already achieve the desired exponential convergence of the error
in terms of the number of degree of freedoms.
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(a) Initial mesh M(1)
h with P (1) (b) A refined mesh M

h
with P (3) =3

Figure 2: The initial mesh and the refined mesh.

6 Numerical results

In this section, we provide three numerical examples to demonstrate the efficiency of the
proposed algorithm.

6.1 Poisson’s equation

In this example, we solve an elliptic equation defined in an L-shaped domain to test
whether our algorithm can produce quasi-optimal meshes. The weak formulation is to
find u∈H1

0(Ω) , such that
∫

Ω
∇u·∇vdx=

∫

Ω
f vdx ∀v∈H1

0(Ω).

The local hp-indicator becomes

η2
K

:=
h2

K

p2
K

‖ f +∆u
hp
‖2

L2(K)+ ∑
e∈∂K

he

2pe
‖Je‖2

L2(e).

Here,
Je :=(∇u

hp
|K1

−∇u
hp
|K2

)·νe.

The exact solution is u=r
2
3 sin( 2

3 θ)(x2−1)(y2−1), which is singular at the origin. Fig. 2
gives the initial mesh and an adaptively refined mesh after 6 steps.

It is well known that with properly designed geometric meshes, the hp-FEM exhibits
exponential rate of convergence for elliptic problems (cf., e.g., [2,9]). From the curve plots
of errors and estimators on successive refined meshes (Fig. 3), we can easily see our adap-
tive algorithm realizes the exponential convergence. More precisely, the discretization
error in terms of the energy norm, as well as the a posteriori error estimate, is asymptoti-

cally proportional to e−bN1/3
, where N denotes the number of degrees of freedom.
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Figure 3: The exponential convergence of ‖u−uk‖H1(Ω) and the a posteriori error estimate E
k

of (5.3).

Table 1: Performance of the hp adaptive finite element solution and the error estimator Ek of the form (5.3)
(Example 1).

polynomial
degree

degrees of
freedom

number of
elements

‖u−u
k
‖H1(Ω) Ek/‖u−u

k
‖H1(Ω)

1 34 50 5.8723e-01 4.2724

2 259 118 6.2785e-02 4.3364

3 844 178 6.3797e-03 4.0987

4 1,973 238 1.0477e-03 4.3716

5 3,826 298 1.9904e-04 4.5965

6 6,583 358 3.9662e-05 5.0434

7 10,424 418 8.2094e-06 5.3883

8 15,529 478 1.6864e-06 5.8221

Numerical results in Table 1 show that the effectivity index Ek/‖u−u
k
‖H1(Ω) is insen-

sitive to h or p. Therefore the a posteriori error estimators are reliable and give precisely

the distribution of the error in adaptive hp solution uk ∈
◦
Vhp(M(k)

h ;P (k)),1≤ k≤8.

6.2 The scattering problem with exact solutions

We consider the scattering problem whose exact solution is known: u=H
(1)
0 (k|x|). Let the

scatterer D =[−1,1]×[−1,1]. Equivalently, with respect to the wavelength λ=2π/k, the
size of D is k

π λ× k
π λ. We note that the scattered wave oscillates rapidly along the radial

direction as the wave number gets high. It is essential to obtain some robust estimates
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Figure 4: The exponential convergence of the hp adaptive solution for the group (a) (Example 2).

of the accuracy of a computed solution. Otherwise, the numerical outcome would be of
limited usage.

Through this example we want to show that our hp a posteriori error estimate really
give a measure of the discretization error. Furthermore, the exponential rate of conver-
gence can be achieved by our algorithm. In particular, the error in the domain of interest

‖u−u
hp
‖H1(Ω1)≈Ce−bN1/3

asymptotically, where N denotes the number of degrees of freedom.
We have tested following wave numbers with specific given data:

(a) For k = 5π,10π,20π,50π, choose χ = 1.0 and L1 = L2 = 2+8π/k, that is, the width
of the physical region is 2 times of wavelength. In order to make ω ≤ 10−8, we choose
σ=54.93/k.

(b) For k = 100π,200π,400π,600π, choose χ = 0.5 and L1 = L2 = 2+40π/k, that is, the
width of the physical region is 10 times of wavelength. In order to make ω ≤ 10−8, we
choose σ=82.40/k.

Fig. 4 demonstrates the curves of log‖u−uk‖H1(Ω1)
with respect to N1/3

k , where Nk

is the number of unknowns of the finite element spaces
◦
Vhp(M(k)

h ;P (k)),1 ≤ k ≤ 8, uk ∈
◦
Vhp(M(k)

h ;P (k)) is the hp finite element solution of (3.2). It indicates that the associated
numerical complexity is quasi-optimal:

‖u−u
k
‖H1(Ω1)≈Ce−bN1/3

k

asymptotically, while different cases are related to different coefficients b and C. Al-
though the exponential convergence is shown in Fig. 4 only for group (a), it is also valid
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Table 2: Performance of the hp adaptive solutions and the a posteriori error estimate Ek for the group (b)
(Example 2).

wave
num-
ber

scatterer
size

degrees
of

freedom

polynomial
degree

Ek/‖u−u
k
‖H1(Ω)

relative
error of far

fields

100π 100λ×100λ 1,178,755 5 11.854 6.91508e-04
200π 200λ×200λ 1,961,967 7 9.3031 1.18274e-03
400π 400λ×400λ 4,354,798 6 4.3181 7.07794e-03
600π 600λ×600λ 7,238,844 8 3.5868 3.78647e-02

Figure 5: The mesh of 32,645 elements and polynomial degree of 8 for which DOFs N = 1,046,340. The
scatterer size is 50λ×50λ, χ=1.0, σ=0.35 (Example 2).

for other choices of wave number and thickness of the PML layer.
Numerical results given in Table 2 show that our error estimates provide actual con-

trol of errors in energy norm.
One of the important quantities in the scattering problems is the far field pattern:

u∞(x̂)=
ei π

4√
8πk

∫

∂D

(

u(y)
∂e−ikx̂·y

∂υ(y)
− ∂u(y)

∂υ(y)
e−ikx̂·y

)

ds(y), x̂=
x

|x| .

For the special solution u = H
(1)
0 (k|x|), u∞ has a simple expression u∞ =−

√
2iei π

4

/
√

kπ,
which is independent of the observation direction x̂. As given in Table 2, for each case
in group (b) where the wave number is fairly large, a relative error below 5% can be
achieved with reasonable computational costs.

In Fig. 5 we show the mesh after 16 adaptive iterations when k=50π and χ=1.0. As
expected, the mesh near the outer boundary Γ2 is rather coarse since the PML solution
decays quickly in the absorbing layer.
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Figure 6: The configuration of the scatterer and the PML layer (Example 3).
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Figure 7: The real part of the far-field patterns calculated in the last adaptive step (124,499 elements, p = 8,
DOFs=3,991,812). The scatterer size is 210λ×70λ, χ=dj/Lj =0.2, σ=1.02 (Example 3).

6.3 The scattering by the plane wave

In this example we compute the field scattered from a perfectly conducting metal by the
plane wave uI =eikp̂x, p̂=(0.6,0.8). The scatterer is contained in the box −2.1<x1<2.1 and
−0.7< x2 <0.7, as shown in Fig. 6. In this example, the solution of the original scattering
problem is no longer smooth due to the rough surface of the scatterer.

We test our algorithm when k = 100π and 200π, which corresponds to a scatterer
of 210λ×70λ and 420λ×140λ in size, respectively. The minimum distance between the
scatterer to the inner boundary Γ1 is chosen to be 10 times of wavelength. In both cases
we set χ=0.2. To make ω≤10−8, we choose σ=1.02 for k=100π and σ=0.55 for k=200π.

Fig. 7 demonstrates the real part of the far-field patterns calculated in the last adaptive
step for k = 100π. Fig. 8 shows the far fields calculated in the successive adaptive steps
for the direction θ=π/4 and θ=3π/4. We observe that the calculated values of far fields
become stable for the last several steps.

For non-smooth solution, our algorithm also enjoys the exponential convergence of
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Figure 8: The real part of the far-field patterns when the observing angle θ=π/4 and θ=3π/4. The scatterer
size is 210λ×70λ, χ=dj/Lj =0.2, σ=1.02 (Example 3).
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Figure 9: The quasi-optimality with different thickness of the PML layers. The scatterer size is 210λ×70λ
(Example 3).

the hp-FEM solutions as well as the a posteriori error estimate Ek of the form (5.3). With
fixed wave number k = 100π, we test the influence of different thickness of PML layer.
Fig. 9 shows that the exponential convergence is achieved in both cases.

In Fig. 10 we show the mesh after 22 adaptive steps when k =200π and χ=0.2. This
again demonstrates one of advantages of the adaptive algorithm: it automatically deter-
mines where to refine the mesh and leave unchanged where the solution is smooth. For
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Figure 10: The mesh of 180,415 elements, 5,782,428 DOFs with polynomial degree of 8. The scatterer size is
420λ×140λ, χ=dj/Lj =0.2, σ=0.55 (Example 3).

Figure 11: The mesh of 25,919 elements, 118,575 DOFs with polynomial degree of 3 (zoom in around the lower
right corner). The scatterer size is 420λ×140λ, χ=dj/Lj =0.2, σ=0.55 (Example 3).

the PML formulation, this means we can choose a thick PML layer without making the
computational costs too expensive. Fig. 11 shows part of the mesh zoomed around the
lower right angle after 7 adaptive steps. One observes that the mesh is locally refined
around the corner where the solution is singular.
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