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Abstract. Approximating a function from its values f(x;) at a set of evenly spaced
points x; through (N+1)-point polynomial interpolation often fails because of diver-
gence near the endpoints, the “Runge Phenomenon”. Here we briefly describe seven
strategies, each employing a single polynomial over the entire interval, to wholly or
partially defeat the Runge Phenomenon such that the error decreases exponentially fast
with N. Each is successful in obtaining high accuracy for Runge’s original example.
Unfortunately, each of these single-interval strategies also has liabilities including, de-
pending on the method, various permutations of inefficiency, ill-conditioning and a
lack of theory. Even so, the Fourier Extension and Gaussian RBF methods are worthy
of further development.
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1 Introduction

More than a century ago, Carl Runge, C. Meray and Emilie Borel independently made an
astonishing discovery: polynomial interpolation on an equispaced grid was unreliable
[11,27-29,33]. Borel gave an example of non-convergent interpolation at the Heidelberg
Mathematical Congress in 1904, but apparently did not publish it. Even if f(x) is analytic
for all real x, its interpolants fy(x) will diverge as N— oo near the endpoints x==+1 if f(x)
has singularities within the “Runge Zone” in the complex x-plane illustrated in Fig. 1.
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Runge’s own example was f(x) =1/(1+25x2), which is analytic for all real x, but has
a divergent equispaced polynomial interpolant sequence because of poles at x = +£7i/5.
Exponential convergence can be recovered by using the highly nonuniform Chebyshev
grid [3], but what is one to do with experimental data collected at evenly spaced levels?
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Figure 1: The Runge Zone in the complex x-plane for polynomial interpolation with a uniformly spaced grid
on x€[—1,1]. Because the boundary curve is symmetric under reflection with respect to the both the real and
imaginary axes, only the portion in the upper right quadrant of the complex plane is illustrated. If f(x) has any
singularities in the sense of complex variable theory anywhere within the shaded region (or its reflections about
either axis), then interpolation diverges as N —oo. If f(x) has singularities only outside the shaded “Runge
Zone", then interpolation will converge everywhere on x€[—1,1].

As explained in the reviews [5, 6, 16], defeating Gibbs Phenomenon in Fourier also
requires reconstructing a function f(x) everywhere on x € [—1,1] with exponential accu-
racy from knowledge only of its analyticity on the interval and its samples on an evenly
spaced grid of (N+1) points on the interval. Symbolically,

anti—Gibbs = EdgeDetection + Anti —Runge, (1.1)

where edge detection identifies the boundaries of regions that are free of discontinuities
(“edges”, alias “shocks” and “fronts” in fluids), and then an anti-Runge procedure is
applied on each smooth sub-interval to approximate f(x).

There is a wide variety of finite order strategies to defeat the Runge Phenomenon
whereby “finite order” denotes an approximation scheme whose error decreases as
O(1/PX) where P is the number of sample points and K >0 is the “algebraic order of
convergence”. The simplest is piecewise polynomial interpolation: the “connect-the-
dots” diagrams of coloring books allow a preschooler to draw a butterfly or a fish by
drawing linear polynomials from dot to dot with a crayon. This is only first order, but
cubic splines provide a higher order “Old Reliable”.

Our goal is more ambitious, which is to develop schemes with an exponential rate
of convergence as P — co. Curiously, although this problem is over a century old, it is
only in recent times that exponentially-convergent Runge-defeating methods have been
developed. Now, there are so many strategies that it is impossible to describe them in a
single article. In this work, we shall specialize to single-interval schemes:
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Tikhonov Regularization [2];

Gegenbauer Regularization and its generalizations; [5,6,13-15,17-24, 30, 34];

Overdetermined Least-Squares [9];

Mock-Chebyshev sub-sampling [9];

Gaussian Radjial Basis Functions, Slowly Flattening with N [8];

Fourier Extension [4];

Platte’s Undetermined L; Extension.

In contrast, three-subdomain methods use one algorithm for a large, central subdo-
main while applying different tactics to the two thin subintervals that include the end-
points x = +1. Borrowing a term from fluid mechanics, it is helpful to label these two
narrow subdomains the “boundary layers”. A common theme is that the width D of the
boundary layers must shrink as the number of interpolation points P increases in order
to ensure convergence. The central layer of width 2(1—D) can be treated by Fourier
interpolation in combination with either

1. series acceleration by any one of several sequence acceleration schemes or
2. windowing using either an analytic or a C* window.

The boundary layers can be treated by standard Lagrangian polynomial interpolation on
an evenly-spaced grid; we prove in Part II that convergence is guaranteed provided that
the width D of the boundary layers contracts with increasing N. Alternatively, one may
overlap the two domains and use a semi-infinite basis set such as the TM,(x) rational
Chebyshev functions.

Another option is to use Lagrangian polynomial interpolation of degree M on many
subdomains, increasing M with N so that the number of subdomains increases and the
width of each subdomain steadily decreases. Still another option is Martin Berzins” ENO-
type polynomial interpolation scheme. This does not explicitly subdivide the interval
into non-overlapping subdomains, but does use many different polynomial approxima-
tions of different orders to adapt to f(x) [1].

These multidomain or multi-polynomial algorithms will be compared and contrasted
in Part II. However, an accelerated Fourier/polynomial-boundary-layer scheme has al-
ready been analyzed in [7]. This note shows that at least some multidomain methods
are very robust, well-conditioned, and backed by theory. Similarly, Platte and Gelb have
presented an as yet unpublished three domain scheme using windowing at the SIAM
Annual Meeting in 2006, and shown it works well.

It is, of course, easier to apply a single tactic over the whole domain than to use
different algorithms on different subintervals or to use a whole lot of subintervals. It is
therefore important to understand the virtues and flaws of the single-interval schemes as
we shall try to catalogue here.

One property common to many anti-Runge methods needs explication here: A subge-
ometric rate of convergence.
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Figure 2: Left: Schematic of geometric and subgeometric convergence when either error or absolute value of
the coefficients is plotted versus degree using a logarithmic scale for the error or coefficients, and a scale linear

in N. Right: Same except the horizontal axis is a plot of V'N.

The usual or generic rate of convergence for Chebyshev interpolation of an f(x) that
is analytic on x € [—1,1] is a geometric rate of convergence, that is, the error Ex with a
polynomial of degree N is proportional to

exp(—gN), (1.2)

where g >0 is a constant that depends on f(x); this is an exponential whose argument
is linear in N. (The exponential may be multiplied by a more slowly-varying function of
N such as a power or logarithm, but the leading order approximation to the logarithm
of the error is —qN.) The price that must be paid to guarantee the defeat of the Runge
Phenomenon is that many “anti-Runge” methods yield only a subgeometric rate of con-
vergence, that is, the error is proportional to

exp(—qN") (1.3)

for some exponent r > 0 which is less than one so that the logarithm of the error grows
slower-than-linearly with N. Fig. 2 compares how these rates of convergence appear on
different plots; the right panel assumes that r =1/2, the most common case of subgeo-
metric convergence seen.

2 Tikhonov regularization

Tikhonov regularization has been applied to many ill-conditioned problems including
tomography: reconstructing three-dimensional reality from two-dimensional scattering
behavior. For such “Tikhonov applicable” problems, the ill-conditioning arises because
there are many solutions which are very close to matching the data. For example, to
approximate a function like Runge’s example, f(x) =1/(1+25x?), there are many poly-
nomials that interpolate or almost interpolate f(x) at (N+1) equidistant points. One
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is the polynomial interpolant, which is bad because it oscillates wildly between the grid
points. Another is the polynomial which is the truncation of the Chebyshev series of f(x)
after (N+1) terms. The truncated Chebyshev series converges geometrically as N — oo,
so its values at the points of the equispaced grid must differ from f(x) only by expo-
nentially small amounts; the Chebyshev approximation is much more desirable than the
interpolant because the Chebyshev series is accurate everywhere on x € [—1,1]. Tikhonov’s
brain storm, originally applied to problems such as solving ill-conditioned integral equa-
tions, was to pick the smoothest approximation from the large set of functions that almost
fit the data.

The Tikhonov regularization of polynomial interpolation is the polynomial which
minimizes a cost function that is the sum of the interpolation residual norm R plus a

smoothness norm S where
N

R=Y " (flx)— fulx)) (2.1)
=0
with
Xe=—142k/N,  k=0,1,--,N, 2.2)

and one of many possible choices for S is

N d2 2
Szlg(ﬁwk)) , 2.3)

where
yx =cos(7t[2k+1]/[2N+2]). (2.4)

The cost function is
p=R+xS, (2.5)

where x is the “Tikhonov parameter”. The parameter x can be estimated by the “L-
shaped curve method” — essentially minimizing the cost function for many different
values of x. The approximation is insensitive to x for an intermediate range of this pa-
rameter, and the optimum y is the middle of this range.

It should be noted that similar ideas have been developed in statistics under the name
of “smoothing splines” [36] and “ridge regression”; the method is also called “penalized
least squares” and “regularization theory” [12, p. 167].

Boyd showed that Tikhonov Regularization triumphs for Runge’s example [2]. Hur-
rah! But there are also, alas, some “howevers”.

One is that it is expensive to solve the problem repeatedly for many different x. An-
other is that the interpolation matrix on an equispaced grid is very ill-conditioned [35].
The smoother S improves the situation, but the matrix condition number is still high, and
Boyd’s best accuracy was limited to about 10~°.

This method is sufficiently promising to warrant another look, even though it does
not seem as good as the radial basis function and Fourier Extension methods described
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below. It is unknown whether Tikhonov Regularization is successful, even in infinite
precision arithmetic, for functions with singularities arbitrarily close to the expansion
interval.

3 Gegebauer regularization and its generalizations

The Gegenbauer method was invented to defeat Gibbs” Phenomenon. If a fluid flow de-
velops a shock wave where f(x) is discontinuous, its Fourier series (computed using an
evenly-spaced grid) will converge poorly, but still correctly encode information about
the function. To retrieve an accurate approximation, Gottlieb and Shu proposed to em-
ploy a polynomial approximation, restricted to an interval with the discontinuity as an
endpoint, derived from the Fourier series. This is also implicitly a solution to Runge’s
problem since a polynomial approximation is being generated from knowledge of f(x)
only on an equispaced grid.

This idea was sufficiently successful to spawn a large literature and continuing gen-
eralizations. However, there are drawbacks. One is that the degree of the polynomial ap-
proximation N must be small compared to the number P of samples of f(x) — typically,
N~ (P/4)." Another problem is severe numerical ill-conditioning, increasing rapidly
with N.

Another difficulty is that to obtain a geometric rate of convergence, it is necessary to
increase the Gegenbauer order parameter m linearly with N, the Gegenbauer degree, so
that B=m/ N is a constant in the limit N — oco. Boyd showed [5] that this shrinks the Runge
Zone, that is, the region of the complex x-plane where f(x) must be free of singularities
for convergence. Unfortunately, the Runge Zone contracts to the expansion interval only
when B — 0, sacrificing a geometric rate of convergence.

However, this idea has been successful in a variety of applications [14, 15,25, 26, 30]
with new generalizations such as inverse fits and substitution of Freud polynomials for
Gegenbauer.

It may be possible to guarantee convergence if § is allowed to decrease slowly with
N, allowing a subgeometric but still exponential rate of convergence. However, this con-
jecture has not been tested.

4 Overdetermined least-squares

This option was investigated numerically by Boyd and Xu [9] and theoretically by
Rakhmanov [32]. If an approximation of degree N is determined by an unweighted least-
squares fit to a uniform grid with P points, then defining = (N+1)/P, the Runge Zone
shrinks linearly with B. Unfortunately, it appears the only way to guarantee convergence

*Note that the Gegenbauer literature employs N for our P, m for our N, and A for the Gegenbauer superscript
m.
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Multidomain Lagrange Mock-Chebyshev
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Figure 3: Left: Lagrange polynomial interpolation on subdomains with the polynomial degree equal to the
number of subdomains, a multi-interval strategy discussed in Part Il. Right: Interpolation of a single polynomial
over the entire domain using mock-Chebyshev subsampling.

for f(x) with singularities very close to [—1,1] is to choose =0, or more precisely, to
allow P to grow as the square of N. If § is finite as N, P simultaneously tend to infinity,
then there is always a class of f(x), analytic everywhere on the expansion interval, for
which the overdetermined approximation will diverge.

5 Subsampling: The mock-Chebyshev grid

The Runge Phenomenon never occurs when the interpolation points are those of a Cheby-
shev grid:

xft = cos(mj/N),  j=0,1,---N. (5.1)

Chebyshev himself knew in the nineteenth century that as long as f(x) was analytic on
the interval [—1,1], Chebyshev interpolation would converge exponentially fast. How-
ever, the Chebyshev grid is very nonuniform with neighboring points separated by only
O(1/N?) near the endpoints.

A simple way to recover the virtues of Chebyshev interpolation from samples of f(x)
on an evenly spaced grid is to sub-sample, that is, to select from an equispaced grid with
P points the (N+1) points which are closest to the Chebyshev points:

xr‘rzockaheb —

/ Xk, such that ]xk—ijhd’| =min |x,, — x| VYm=1,---,P. (5.2)
m

]
When the number of points on the equispaced grid is
P=round (Y\N?) -1 with x>2/7

an exponential rate of convergence is indeed retrieved as illustrated in [9].
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Figure 4: Errors in the Lo norm for the Gaussian RBF approximation of f(x)=1/(1+25x2), plotted versus
V/N, as computed using multiple precision (solid/circles) and single precision (dashed/stars). The absolute

width € varies with N as (1/2)N3/4. The numerical labels give the values of «, the inverse width parameter of
the RBFs, and x, the condition number of the interpolation matrix.

However, Fig. 3 shows performance is very poor compared to another exponentially
convergent method that will be discussed in Part II. This is not surprising because almost
all values of f(x) on the equispaced grid are simply being discarded, utterly unused in
the approximation. The fact that P~ O(N?) is completely consistent with the theory of
Rakhmanov [32] mentioned in the previous subsection.

Convergence of the method is uniform in the location of the singularities of f(x) in the
sense that the mock-Chebyshev grid succeeds even when the function has a singularity
an arbitrarily small distance € from the expansion interval. However, to reach a given
error tolerance, the degree N of the Chebyshev series must grow proportionally to 1/e.
This implies the number of points P required by the mock-Chebyshev method must grow
as O(1/€?), just as bad as for the overdetermined fit method.

It is noteworthy, though, that like the other schemes, the “mock-Chebyshev” grid is
able to retrieve an exponential-but-subgeometric rate of convergence.

6 Gaussian RBFs

A one-dimensional function can be approximated by a Gaussian radial basis function
(RBF) series as

N “2 )
flx)=} 1,Aje><p (——hz (x—cj) > 6.1)
=
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where the ¢;,j=1,---N, are “centers”, A; are “coefficients”, h is the average grid spacing,
and « is the inverse width relative to /. For our purposes, it is sufficient to specialize by
choosing the ¢; to be the points x; of an evenly spaced grid. The coefficients A; can be
found by interpolation of f(x) at the set x;.

Platte & Driscoll [31] show that if & decreases as \/B /v/N where B is a constant, the
RBF interpolant will diverge if f(x) is singular within a certain domain in the complex x-
plane, which is the Runge Zone for RBF interpolation. (The RBF Zone for RBFs is different
from that for polynomial interpolation using the same interpolation points except in the
limit « — 0.) They show that this domain contracts as  decreases. If the interpolant
converges for fixed B, the rate of convergence is geometric.

Fig. 4 shows that when the width parameter decreases more slowly as « = N
the rate of convergence slows to subgeometric: the error is proportional to exp(—pv/'N)
for some constant p. By using v/N instead of N as the horizontal axis, the error on a
log-linear scale asymptotes to a straight line as shown. The reward for the slower rate of
convergence is that the Runge Phenomenon is eliminated. However, the condition number
x of the interpolation matrix grows exponentially proportional to exp(2.4v/N). In single
precision floating point arithmetic, there is thus a race as N increases: Will adequate
accuracy be achieved before the numerical singularity of the interpolation matrix spoils
the RBF method?

-1/4
7

7 Fourier extension

Fourier Extension is a strategy of approximating a function on a “physical” interval, here
normalized to xe[—1,1], by means of a Fourier series which is periodic on a larger interval
x€[—(14+D),(14-D)] where D>0. When f(x) is unknown outside [—1,1], this is “Fourier
Extension of the Third Kind” in the terminology of [4]. Boyd employed collocation on an
evenly-spaced grid on x€[—1,1] (only) with the Fourier coefficients as the unknowns and
with typically twice as many collocation points as Fourier coefficients (“FPIC-SU” in his
jargon). The overdetermined system was solved by the SVD factorization with typically
three iterative corrections. He also employed SVD filtering, that is, discarded SVD modes
of very small singular value, but this did not prove necessary in our experiments. To
reduce cost by a factor of four, it is advantageous to split f(x) into its symmetric and
antisymmetric parts and fit each separately as explained in [4].

Fig. 5 shows the errors, plotted in the P—D plane where D is the width of the “ex-
tension” zone such that the antisymmetric function f(x) is approximated by a sine series
of period 2(1+D) and P/4 terms. This particular function is much more difficult than
Runge’s example because it has poles at x = 1i/40, only one-eighth of the distance from
the real axis to the poles of Runge’s function, and located with real parts at x = —1,0,1
so that both the center of the interval and the endpoints have narrow peaks. Neverthe-
less, Fourier Extension yields approximations whose error is smaller than 107! (More
limited experiments are reported in [10].)
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Figure 5: Fourier Extension. Base 10 logarithm of the errors in the Lo norm for the approximation of
f(x)=x/(14+1600x%)+1/(1+1600[x — 1] —1/(1+1600[x+1]? through Fourier Extension from x €[—1,1] to
the extended interval x € [—(1+D),(1+D)] through a trigonometric polynomial of degree N which has period
2(14D). All collocation points are restricted to the “physical” interval, [—1,1], and twice as many collocation
points P as coefficients of the trigonometric polynomial were employed, that is, P=2N. The overdetermined
collocation equations, a matrix problem of dimension 2N X N, was solved by SVD factorization with three
iterative corrections.

Numerical ill-conditioning is a problem, but not as much as for some of the competing
single-interval methods. The need for SVD factorization of an overdetermined interpo-
lation matrix makes the method relatively expensive, but on modern workstations, not
very time-consuming. Programming is very easy.

All'in all, Fourier Extension warrants further study.

8 Platte’s undetermined L,/L, approximation

Rodrigo Platte has experimented with an undetermined polynomial fit, that is, the num-
ber of free parameters (N+1) is greater than the number of grid points P. An additional
criterion is necessary to determine a unique approximation. Borrowing a successful idea
from image processing, Platte chose the approximation of smallest L; norm. The unde-
termined L; fit approximated Runge’s function to several decimal places. In later ex-
periments, he obtained even better performance by minimizing the weighted L, norm
instead. A full discussion must be deferred to Platte’s own future publication. However,
this intriguing idea is yet another illustration of the rich variety of methods that can be
deployed against the Runge Phenomenon.
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9 Summary

As noted in Table 1, even the best of the single domain methods are “good but not great”,
which motivates the more complicated multidomain schemes of Part 2.

One criterion of merit is that an anti-Runge method should converge over all of
x € [-1,1] even when f(x) has a singularity only an arbitrarily small distance € away
from the real axis with a number of degrees of freedom that grows only linearly with
1/€. We may dub this the “Uniform Convergence” criterion. Unfortunately, the Gegen-
bauer, Overdetermined Polynomial Fit and the Mock-Chebyshev grid all fail, the last
only because the number of points grows quadratically with 1/e€. For the Tikhonov and
Li-Minimizing schemes, uniform convergence is uncertain. For the Gaussian RBF and
Fourier Extension algorithms, uniform convergence is plausible, based on numerical and
theoretical evidence, but has not been rigorously proved.

Numerical ill-conditioning is a serious problem for many single-interval anti-Runge
methods. The mock-Chebyshev subset scheme is the exception, being blessed with the
same O(1) condition method as standard Chebyshev interpolation with N points. There
is a good theory for the Gaussian RBF method that shows that the condition grows pro-
portional to exp(qv/N) for some constant g. For the others, there is strong numerical
evidence that the condition number x grows rapidly with N also, but there is as yet no
precise characterization.

Another issue for many methods is the lack of a rigorous theory or in some cases,
any theory. The mock-Chebyshev subsampling algorithm is again the exception as it
falls under the umbrella of standard Chebyshev interpolation. It seems likely that the
Gaussian RBF method can be rigorously justified by combining the theory of polynomial
interpolation on a shrinking interval given in Part II with the Platte-Driscoll theory for
Gaussian RBF interpolation. Rakhmanov has developed a theory for overdetermined
least-squares that shows that this method shrinks the Runge Zone, but cannot eliminate it
for any finite ratio of P/N. There is a limited theory for Fourier Extension that proves that
such extensions are always possible and exponentially convergent when f(x) is known
analytically outside [—1,1], an “Extension of the First Kind”, but no theory for when f(x)
is known only from its samples on [—1,1], an “Extension of the Third Kind”. The L¢-
minimizing method does not have a rigorous theory in the anti-Runge context though
there has been some development of similar ideas in image processing.

Finally, many of the anti-Runge methods are very inefficient compared to standard
interpolation with P points. The mock-Chebyshev scheme, otherwise so desirable, gen-
erates only an approximation of degree v/P and discards most of the grid point values
of f(x). The Gegenbauer and overdetermined least squares both shrink the Runge Zone
only when N is much smaller than P. Fourier Extension in practice usually needs P=2N
and a costly SVD factorization. The Gaussian RBF has P = N, and thus is relatively at-
tractive if sufficient accuracy can be obtained before the ill-conditioning, growing expo-
nentially fast with N, ruins it all. Platte’s intriguing L; method is still unpublished, and
so its numerical efficiency is difficult to assess.
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Table 1: Single-Domain Anti-Runge.

Method Runge K Points P & Degree N
Domain
Tikhonov ? Large P=N
Gegenbauer Shrinks | Large P>>N
Overdetermined Shrinks | Large P>>N
Mock-Chebyshev [—1,1] 0(1) Inefficient: N ~ O(+/P)
Gaussian RBF [-1,1] ?) | exp(9¥N) | N=P
Fourier Extension [—1,1] (?) | Large Typically P=2N
Platte’s L1 /L, Method | ? Large P<N

Note: « is the matrix condition number, P is the number of samples of f(x) and N is the
degree of the approximation.

Other than labeling some methods as “worth-further-development” and others “not-
worth-development”, it is difficult to make definitive judgments about the relative merits
of the algorithms. The first reason is that most criteria of merit — accuracy, cost, theory,
ill-conditioning and ease-of-programming — are all problem-dependent. (The impor-
tance of theory is perhaps “culturally-dependent” in the sense that a mathematician is
much more perturbed by a lack of theory than an engineer.) When one only needs a
few one-dimensional approximations, any method will yield an answer in seconds and
ease-of-programming is paramount. When applying these ideas in tensor-product form
to generate multi-dimensional approximations, cost is much more important. Similarly,
when the approximations will used as subroutines, called millions of times, the cost of
evaluating an approximation may be vastly more important than the cost of obtaining the
coefficients of the polynomial. When f(x) is smooth, ill-conditioning is a minor problem
because N is small; for complicated f(x), the need for large N makes ill-conditioning a
much more serious and perhaps insuperable difficulty.

The second reason to suspend definitive judgments is that multi-interval methods
await full accounting in Part II. Some interesting single-interval ideas have only been
sketched and still await definitive treatment. This short article is necessarily an interim
account written on foolscap rather than a magisterial tome laser-etched into copper.

Nonetheless, it is gratifying that there has been so much recent progress in a problem
more than a century old. Single-interval methods are good but not great. The Gegen-
bauer Regularization method, though only a “Runge-Zone-shrinker” rather than a tactic
that completely eliminates the Runge Phenomenon, has been used successfully in a wide
variety of applications.

The Gaussian RBF and Fourier Extension methods are sufficiently promising to war-
rant further studies. However, the limitations of ill-conditioning and a lack of theory
motivate the multidomain methods studied in Part II.
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