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Abstract. Variations on space-time Discontinuous Galerkin (STDG) discretization as-
sociated to Runge-Kutta schemes are developed. These new schemes while keeping
the original scheme order can improve accuracy and stability. Numerical analysis is
made on academic test cases and efficiency of these schemes are shown on propagat-
ing pressure waves.
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1 Introduction

Controlling the numerical diffusion with an upwinding technique is not a new idea, but
this task is rather difficult when solving the nonlinear equations of gas dynamics for com-
pressible flows with a DG approach [2–5]. The numerical flux in space (for example the
Roe flux or the Lax-Friedrichs flux) are fixed once and for all and there are no parameters
to be tuned except those of the Runge-Kutta time scheme.

What we propose here in this paper is to devise variants of the DG approach. The
space-time DG approach (STDG) [7–9] leads to naturally implicit schemes solved itera-
tively. Our first variant is to use a truncated explicit process to replace the iterative im-
plicit solver (STDG-RK). The second variant STDG-α consists in an adapted upwinding
in time of the STDG scheme when computing the time fluxes. This scheme can improve
convergence for steady flows as a higher CFL can be used in the pseudo-time solver. A
third variant (RKDG-NDC) consists in upwinding the Runge-Kutta space DG approach,
leading to a unified formulation with the iterative implicit STDG scheme. These schemes
allow control of numerical diffusion.
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A numerical study of precision and stability is presented for the 1D linear advection
equation and the Burgers equation both for steady and unsteady problems.

DG is a nonlinear scheme. To preserve monotonicity, limiters should be used when
solving nonlinear problems. But in many cases (nonlinear aeroacoustics, subsonic, tran-
sonic and vortical flows for example), they are not necessary. In this paper, all computa-
tions are done without limiters. MUSCL results are shown to provide reference results as
the classical DG can be seen as an extension of the MUSCL approach [1].

Results are shown on the academic test case of a planar wave propagating upstream a
subsonic flow. The RKDG-NDC result is compared to a computation without numerical
diffusion control. As will be seen, the RKDG-NDC shows very little diffusion without
loss of accuracy or stability.

Another result concerns the study of a planar acoustic wave interacting with a cir-
cular temperature spot on a Cartesian mesh. This study is connected to high frequency
combustion instability [11] This aeroacoustic application is displayed associated with an
AMR technique [12–14].

These formulations are easily extended to curvilinear grid as shown in the case of a
transonic flow around the NACA0012 airfoil.

2 Numerical discretization

Following the works of many authors (see for example Cockburn [6] or van der Vegt
[7–9]), DG is now standard for solving conservation law equations. This paper is a se-
quel of [3] in which different classical space DG variants were compared to MUSCL. We
look here at a space-time DG formulation which gives better results than previously for
nearly the same computational effort. In our implementation of RKDG (Space) or STDG
(Space-Time) formulations in our Euler solver, only a P1 approximation has been used
(but P1 and P2 accuracy tests have been conducted on a 1D scalar equation). The Euler
implementation has been realized within an AMR platform [12].

2.1 Governing equations

We consider the Euler equations written in the compact conservative form:

∂tW +
−→
∇ ·F(W)=0, (2.1)

where W is the conservation variable vector:

W = (ρ, ρ
−→
U , ρE), (2.2)

and F=( f ,g,h)T the flux vector:






f = (ρu ,ρu2+p,ρuv,ρuw , u(ρE+p) ),
g = (ρv ,ρuv,ρv2 +p,ρvw , v(ρE+p) ),
h = (ρw ,ρuw ,ρvw ,ρw2+p,w(ρE+p)),

(2.3)
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ρ is the density,
−→
U the velocity, E the total energy and p the pressure given by the state law

for perfect gas (the specific heat ratio γ is supposed to be constant). These equations can
be re-written more conveniently for the space-time formulation into the full divergence
form:

∇t ·F(W) = 0, (2.4)

with ∇t = (∂t ,∂x1 ,∂x2 ,∂x3) and F =(W,F(W))T.

2.2 Space-time discontinuous Galerkin formulation

At each point (x,t) ∈ Ω× [0,T], an approximate solution Wh(x,t) is searched from an
initial solution W(x,t = 0) and boundary conditions. The 3D computational domain is
partitioned using a structured mesh:

Ω=
N
⋃

i=1

Ωi, (2.5)

and the centroid of each cell Ωi is noted xi+1/2. In each cell, the solution is expanded on
a local basis of polynomials of degree at most 1:

∀x∈Ω, ∀t∈ [0,T], Wh(x,t) = ∑
i,n

(

∑
ℓ=0,4

pℓ
i,n(x,t)W̄

ℓ,n
i

)

, (2.6)

where {pℓ
i,n, ℓ=0,4} is the local basis of Legendre polynomials:



















p0
i,n(x,t)=

{

1 if (x,t)∈Ωi×[tn,tn+1],
0 elsewhere,

pℓ
i,n(x,t)= (xℓ−xℓ

i+1/2)p0
i,n(x,t) (ℓ=1,2,3),

p4
i,n(x,t)= (t−tn+1/2)p0

i,n(x,t),

(2.7)

W̄
ℓ

i,n are the degrees of freedom on the space-time slab Dn
i = Ωi×[tn,tn+1] which approx-

imate the mean and the gradient cell values.
In the following, all integrations are computed in the physical space, as in Allmaras’s

thesis [15]. Thus, element mappings are avoided, as in finite volume methods. The dis-
cretization is built from the weak formulation of (2.4) obtained by multiplying each equa-
tion with a test function ϕh in the approximation space Vh generated by our local basis
and by integrating by parts on Ωi×[tn,tn+1]:

∮

∂Dn
i

ϕhF̃ (Wh)·
−→nt dσ −

∫

Dn
i

−→
∇ ϕh ·F(Wh)dΩdt = 0 (2.8)

with nt the outward normal to Dn
i and

Vh = {ϕh ∈ L2(Ω×[0,T]) |∀(i,n), ϕh|Dn
i
= ϕi,n ∈ P1(Dn

i )}, (2.9)
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where P1(Dn
i ) represents the polynomials of degree at most 1 on Dn

i . In (2.8), F̃ (Wh)
represents the boundary values of F . From the relation:

∂Dn
i = Ωi×{tn}

⋃

Ωi×{tn+1}
⋃

∂Ωi× [tn,tn+1] (2.10)

and our choice of Legendre polynomials, we can now introduce our first parameter α.

If we use an upwind discretization in time with ∆t = [tn ,tn+1] and (α≥0):











∮

Ωi×{tn+1}
ϕhWh ·

−→nt dσ ≡
∫

Ωi

ϕh(tn+1)Wh(tn+1/2+α∆t/2)dΩ,
∮

Ωi×{tn}
ϕhWh ·

−→nt dσ ≡ −
∫

Ωi

ϕh(tn)Wh(tn−1/2+α∆t/2)dΩ,
(2.11)

then, the weak formulation leads to the system:























W̄
0,n
i =W̄

0,n−1
i +α

∆t

2
W̄

4,n−1
i +

∆t

2
Ri

0,n−
∆t2

12
Ri

4,n,

W̄
l,n
i =W̄

l,n−1
i +∆t[M−1

i (Ri
m,n)m=1,3]ℓ (ℓ=1,2,3),

W̄
4,n
i =(Ri

0,n+
∆t

6
Ri

4,n)/α,

(2.12)

with the following notations for the residuals:

Rℓ,n
i =

1

a(ℓ)

(

−
∫ tn+1

tn
dt

∮

∂Ωi

pℓ
i F̃·−→nxdσx +

∫ tn+1

tn
dt

∫

Ωi

F·
−→
∇ pℓ

i dΩ

)

, (2.13)

where

a(ℓ) =
∫ tn+1

tn
dt

∫

Ωi

pℓ
i pℓ

i dΩ (2.14)

and

Mi =

(

1

a(ℓ)

∫

Ωi

pℓ
i pm

i dΩ

)

ℓ,m

(2.15)

represents the local mass matrix which is diagonal with Cartesian grids. nx is the out-
ward normal to Ωi. Both nx and Ωi (thus dσx) are time independent. In these expressions,
F̃ represents the interface numerical flux evaluated using a 4 point Gauss quadrature
formula (in 3D) associated with a classical flux formula (Roe, LLF,···). The numerical
implicit scheme can be re-formulated as:























W̄
0,n
i =W̄

0,n−1
i +

∆t

2
(Ri

0,n+Ri
0,n−1)−

∆t2

12
(Ri

4,n−Ri
4,n−1),

W̄
l,n
i =W̄

l,n−1
i +∆t[M−1

i (Ri
m,n)m=1,3]ℓ (ℓ=1,2,3),

W̄
4,n
i =(Ri

0,n+
∆t

6
Ri

4,n)/α.

(2.16)
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One can see that introducing the α term works as a relaxation factor on the time
derivative.

The expression (2.13) requires the computation of time integrals. If we use a two-
point Gauss formula to evaluate these integrals, then Ri

4,n can be seen as a time gradient
of residuals and thus the term (Ri

4,n−Ri
4,n−1) in (2.16) works as a dissipative term.

If one uses a one-point integration formula to evaluate the time integrals, Ri
4,n = 0

and writing the one point approximation of Ri
l,n as Rl,n−1/2

i , (2.16) then becomes















W̄
0,n
i =W̄

0,n−1
i +

∆t

2
(Ri

0,n−1/2+Ri
0,n−3/2),

W̄
l,n
i =W̄

l,n−1
i +∆t[M−1

i (Ri
m,n−1/2)m=1,3]ℓ (ℓ=1,2,3),

W̄
4,n
i =Ri

0,n−1/2/α.

(2.17)

This scheme can now be compared to that of a RK2 time discretization applied to a DG
discretization in space with

Rℓ,n−1/2
i =−

1

b(ℓ)

∮

∂Ωi

pℓ
i F(Wn−1/2)·−→n dσ,

where a RK step is written as:







W̄
0,n
i =W̄

0,n−1
i +∆tRn−1/2

i ,

W̄
l,n
i =W̄

l,n−1
i +∆t[N −1

i (Ri
m,n−1/2)m=1,3]ℓ (ℓ=1,2,3),

(2.18)

with

b(ℓ)=
∫

Ωi

pℓ
i pℓ

i dΩ, N =

(

1

b(ℓ)

∫

Ωi

pℓ
i pm

i dΩ

)

ℓ,m

.

Mixing these two formulations (STDG and RKDG), it is possible to devise a new class of
explicit schemes, depending on one parameter β and labeled RKDG-NDC in the follow-
ing:















W̄
0,n
i =W̄

0,n−1
i +∆t (βRi

0,n−1/2+(1−β)Ri
0,n−3/2),

W̄
l,n
i =W̄

l,n−1
i +∆t[M−1

i (Ri
m,n−1/2)m=1,3]ℓ (ℓ=1,2,3),

W̄
4,n
i =Ri

0,n−1/2/α.

(2.19)

The parameter β has been introduced in order to obtain a unified formulation for the
implicit STDG scheme (2.16) (with β = 1/2) and the explicit RKDG scheme (2.18) (with
β=1). For 0.5≤ β≤1, this variant can be considered as a variant of the RKDG approach

with an extra storage for W̄
4,n
i but requiring the same time stepping; the parameter β can

be viewed as a control of the numerical dissipation.
Formulation (2.19) can be written as

Wn =Wn−1+A(Wn,Wn−1). (2.20)
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2.3 Time stepping methods

The STDG formulation (2.16) is unconditionally stable with respect to the physical time
step ∆t but leads to an implicit system

L1(W
n,Wn−1)=0, (2.21)

where
L1(W

n,Wn−1)=Wn−Wn−1−A(Wn,Wn−1)

is solved iteratively with a pseudo-CFL constraint (cf. [10]), using the following system:

∂W

∂t
=−

1

∆t
L1(W ,Wn−1). (2.22)

The explicit STDG-RKp formulations use the following time discretization:

dW

dt
=L2(W ,Wn−1), (2.23)

where

L2(W)=
1

∆t
A(W ,Wn−1)

is realized by means of an explicit p step Runge-Kutta method (RKp) requiring a CFL
criterion on the physical time step. This variant needs an another computation of
A(W ,Wn−1) so that all residues are consistent in time.

In either case, the algorithm is based on the following steps:






















W0 =Wn,
W1 =W0 +C1∆tL(W0),
·····
Wp =W0 +Cp∆tL(Wp−1),
Wn+1 =Wp,

(2.24)

where ∆t is the time step calculated by means of a CFL type criterion and {C1,C2,··· ,Cp}
are constants ranging between 0 and 1 classified by ascending order (Cp = 1 for consis-
tency). The advantage of this method of integration, in addition to being easily imple-
mentable, is that it requires identical memory storage for any value of p.

Computing A(W ,Wn−1) is the most time consuming when dealing with 3D un-
steady computations. Comparisons will be made with the most precise scheme that
is STDG-RK5q where, at each time step (2.22) will be solved iteratively using q itera-
tions of the 5-step Runge-Kutta scheme presented in [10], with coefficients (C1,··· ,C5)=
(.0791451,.1635551,.283663,.5,1).

3 1D scalar problems: Numerical study

In this study, P1 and P2 variants are analyzed for unsteady 1D problems (α=1).
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3.1 P2 equations

For 1D STDG-P2, the local basis is extended with the following functions:


























p5
i,n(x,t)=

( (x−xi+1/2)
2

2
−

∆x2

24

)

p0
i,n(x,t),

p6
i,n(x,t)=(x−xi+1/2)(t−tn+1/2) p0

i,n(x,t),

p7
i,n(x,t)=

( (t−tn+1/2)2

2
−

∆t2

24

)

p0
i,n(x,t),

(3.1)

and the formulation becomes


































































W̄
0,n
i =W̄

0,n−1
i +

∆t

2
[βRi

0,n+(1−β)Ri
0,n−1]−

∆t2

12
(Ri

4,n−Ri
4,n−1),

W̄
1,n
i =W̄

1,n−1
i +

∆t

2
[βRi

1,n+(1−β)Ri
1,n−1]−

∆t2

12
(Ri

6,n−Ri
6,n−1),

W̄
5,n
i =W̄

5,n−1
i +∆tRi

5,n,

W̄
4,n
i =(Ri

0,n−
∆t

30
Ri

7,n)/α,

W̄
6,n
i =(Ri

1,n+
∆t

12
Ri

6,n)/α,

W̄
7,n
i =(Ri

4,n+
∆t

10
Ri

7,n)/α.

(3.2)

3.2 Accuracy analysis

First, we look at the two algorithms (2.22), (2.23) to solve the nonlinear implicit system
(2.21) on the scalar 1D equation.







∂u

∂t
+

∂F(u)

∂x
= g in Ω×[0,T],

u(x,0)=u0(x),
(3.3)

where F(u)=u in the linear case and F(u)=u2/2 in the non linear Burgers case. Ω=[0,1]
and g is a right hand side such that uex = sin6π(x−t) is solution to these two problems
(g= 0 in the linear case and g(x,t) = 6π(−1+cos(6π(x−t)), u0(x)= sin(6πx)). Dirichlet
boundary conditions are imposed at boundaries with incoming velocity and extrapolated
values at boundaries with outgoing velocity. Schemes are compared at T = .5.

The first scheme (STDG-RK5q) has no CFL restriction at the cost of increasing q the
number of inner iterations. The second scheme (STDG-RK2) has a CFL restriction of
.2. Costs are measured in number of work units (WU), a work unit being the com-
putation of A(W ,Wn−1). In Table 1, is shown the cost for the two schemes for 3 dif-
ferent numbers of discretization points Nx for a similar relative L2 norm of the error
E2 = ‖u−uex‖L2/‖uex‖L2 at CFL=.2 and at T = .5. For STDG-RK5q, this is obtained by
adjusting the value of q.



476 M. Borrel and J. Ryan / Commun. Comput. Phys., 5 (2009), pp. 469-483

Table 1: Cost comparison at CFL=.2 for the two STDG-P1 variants. Left: linear case; Right: Burgers case.

Nx E2 RK2 RK5q

15 1.9 e-001 114 760

30 3.5 e-002 225 1500

60 6.3e-003 450 3750

Nx E2 RK2 RK5q

15 1.0e-001 114 950

30 2.5e-002 225 1875

60 7.7e-003 450 3750

Table 2: Cost comparison at CFL=.2 for the two STDG-P2 variants. Left: linear case; Right: Burgers case.

Nx E2 RK4 RK5q

15 4.3e-002 228 950

30 4.5e-003 450 1875

60 8.7e-004 900 3750

Nx E2 RK4 RK5q

15 4.3 e-002 228 760

30 1.1 e-002 450 1875

60 5.7e-003 900 3750

Table 3: Comparison at CFL=.2 for the linear case between the classical RKDG and RKDG-NDC variant for
P1 and P2.

Nx E2 E2 WU(P1) E2 E2 WU(P2)
RK2DG-P1 RKDG-NDC-P1 RK4DG-P2 RKDG-NDC-P2

15 2.8e-001 1.1 e-001 72 1.1 e-002 6.2 e-003 144

30 5.0e-002 1.5 e-002 146 1.2 e-003 5.6 e-004 292

60 9.3e-003 4.4e-003 296 1.8 e-004 1.2 e-004 592

Thus these schemes are of order close to 2.5 in the linear case and to 2 in the Burg-
ers case. The STDG-RK5q is unconditionally stable if one increases the number of sub-
iterations. For a similar precision to that of CFL=.2 computation, the numbers of work
units for increasing CFL is the following:

WU(CFL = .2) = 760, WU(CFL = .5) = 1950, WU(CFL = .9) = 2500.

Thus for space time P1 Galerkin discretization, STDG-RK2 seems to be a good alternative
for solving the nonlinear implicit problem.

A similar comparison was done for P2 Galerkin discretization in Table 2. The RK2
time scheme is replaced by the classical 4th order Runge-Kutta scheme. In this case the
global order is the same as the P1 Galerkin scheme. The STDG-P2 will achieve the global
order of 5 but at the cost of a great amount of sub-iterations. For these test cases pertain-
ing to acoustics, it would seem that a Runge-Kutta scheme in time and Galerkin P2 in
space is more efficient as work units per time step will never be greater than 4.

In Table 3 a comparison is made between the classical RKDG (P1 and P2)and the NDC
variants. An optimal value of β which is problem dependant, divides at least by two the
error.

3.3 STDG-RK2-α

The scalar non-linear Burgers equation is considered. Using MATLAB programming
techniques, an optimum value of α can be found improving by a factor of 2 the STDG-
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Figure 1: Effect of the optimal α coefficient. Figure 2: Effect of the optimal α coefficient.

RK2 CFL condition leaving untouched the scheme accuracy for steady cases. In Fig. 1, is
shown in the case of a steady shock the effect of this optimal value (which varies with the
size of the discretization). For a domain [-1,5] discretized with 20 points, the optimum
value is α=2. In Fig. 2, in the case of a shock formation, comparison is made with STDG-
RK5q solved at each time step by q times the 5-step Runge-Kutta scheme (q=1 and q=2).

One sub iteration of the RK5 STDG scheme is inaccurate, but for q≥ 2, results vary
very little. With an optimal value of α, the STDG-RK2 is as precise as the STDG-RK5 at a
cost ratio of 3 to 10.

This scheme is only valid for computing steady flows as for unsteady cases, precision
deteriorates for any value of α 6=1.

3.4 RKDG-β

The case of a moving shock for the Burgers equation is considered. On Fig. 3 is shown
the influence of the β parameter in the RKDG-NDC parameter on the L2 error and the L∞

with a minimum at β= .8. (Recall that β=1 is the original RKDG scheme). This optimum
value of β though discretization dependent brings no CPU overcost, but cannot improve
the original (β=1) CFL constraint.

4 Euler equations: P1 numerical results

All following computations were performed with a 3D AMR code with degenerated di-
rections in 1D and 2D cases. This code solves the Euler equations (2.1).
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Figure 3: The scalar non-linear Burgers equation: RKDG-NDC.

4.1 Planar wave

We consider the problem of an unsteady planar wave on a Cartesian grid. The size of
the cells is 2.5mm and the size of the computational domain is 2.5m. The simulation
consists, starting from an initial state defined by the uniform flow at Mach number 0.4
along the x axis, in imposing a (static) pressure fluctuation at the downstream boundary.
This fluctuation takes the following form

p(t) = p̄+∆psin(2π t/T).

The amplitude ∆p is 89Pa for a total pressure of 101kPa and the period defined by
T=N∆x/c with c the speed of sound and N the wave number which was set equal to 20,
which corresponds to a signal of approximately 6700Hz. The wave goes upstream and a
non reflection condition based on characteristics is imposed at the downstream boundary.
Within this configuration, the wavelength is discretized on approximately twelve cells.

For an optimal value of β, as can be seen on Fig. 4, the RKDG-NDC can provide an
efficient control of the diffusion.

4.2 Planar Gaussian wave

In Fig. 5 the different variants are compared in the case of a pulse propagation over a
long distance. This isentropic pressure pulse is defined in [0,1] initially in the following
way:

δp/p=10−3 exp
(

−
40

∆x
(x−.2)2

)

, δu=δp/ρc,
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Figure 4: Planar wave propagating upstream a subsonic flow: comparison of MUSCL and DG schemes.

Figure 5: Propagating Gaussian acoustic wave (partial view): DG and MUSCL comparison.

with c the sound velocity. This test case measures dispersive and diffusive errors on a
more complex problem than a simple sinusoidal wave.

The simulation ran with a 1000 point mesh (∆x = .001) and a CFL=.1 for 6000 time
steps for the DG variants and 2000 points for a MUSCL-triad scheme [11] computation.
As seen as before, the RKDG-NDC variant is better than the RKDG scheme (on the left
hand side figure) and is as accurate as the STDG-RK2 scheme. It also requires 4 times less
work units. These schemes show minimum diffusion and a little dispersion error. On the
right hand side figure, the RKDG-NDC is compared with the MUSCL-triad scheme on
a mesh twice the size so as to have comparable number of degrees of freedom. For the
1D case, work units are similar between a RKDG-NDC running on a N-size mesh with
Nt time steps and MUSCL running on a 2N-size mesh and 2Nt time steps. The RKDG-
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Figure 6: Pressure wave / temperature spot interaction: description of the different waves (STDG results).

Figure 7: Pressure wave / temperature spot interaction: Comparison of the two variants with AMR.

NDC in 3D may become a little less expensive but dispersive errors are greater than the
MUSCL scheme. Thus a higher order RKDG-NDC will be the subject of further study.

4.3 Acoustic wave interacting with a temperature spot

This problem is derived from [11]: the computational domain is a square of 4cm length
and the dimension of the basis Cartesian grid is 100x100. The patches of the AMR pro-
cedure are refined by a factor 3. The spot is centered at (x = 21mm,y = 20mm) and its
radius is 5mm. Outside the spot, the temperature is 300K and inside the temperature
is 1500K. The pressure is uniform and equal to 1 atm and the velocity is null. Starting
from this initial flowfield, the same Gaussian acoustic wave as in the above section (pos-
itive pulse) moves forward through the computational domain along the x-direction. We
have chosen a case in which the wavelength of this pressure perturbation is larger than
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Transonic flow around a naca0012 airfoil (M=0.8, α=1.25o):

Figure 8: NACA0012: partial view of the curvilinear
grid (449x65 nodes).

Figure 9: Partial view of the Mach contours.

Subsonic flow around a naca0012 airfoil (M=0.5, α=2o):

Figure 10: Convergence history of some variants. Figure 11: Partial view of the Mach contours.

the thickness of the temperature spot. The description of the different waves which occur
during the interaction is presented in Fig. 6. In particular, the caustic waves due to the
interaction of the planar incident wave and the curved diffracted wave originate from
the non-linearity of the governing equations. An important point for this computation is
not to diffuse or to amplify the incident acoustic wave.

We have tested STDG and RKDG-NDC schemes on this problem. As one could expect
from the analysis, the two schemes give very close results but STDG is more stable than
RKDG-NDC and so, allows smaller refinement patches (see Fig. 7).
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Remark 4.1. When implemented with an AMR technique which needs refining locally
the solution in time and in space, the STDG discretization has a great advantage over the
RKDG as time space projection is immediate. This advantage is also available with the
RKDG-NDC scheme as time gradients are easily computed.

4.4 Curvilinear grid

In order to illustrate the behaviour of these DG variants on curvilinear grids, a fine grid
around a NACA0012 airfoil, composed of about 28600 elements in 2D with 320 points
on the profile, (Fig. 8), has been used. Subsonic and transonic steady state results are
presented in Figs. 9-11. In Fig. 10 the convergence history of some variants is presented.
Residuals are plotted versus cost expressed in terms of number of work units. At conver-
gence, all results compare well in terms of precision with classical schemes.

STDG schemes though allowing higher CFL (twice the one for RK2DG) are globally
more expensive in terms of work units.

Finally these schemes are also compared with an implicit (LU) MUSCL scheme to
remind us that is still much room for improvement for these explicit schemes in the case
of steady flows.

5 Conclusion

Variants of space time Discontinuous Galerkin discretizations have been developed. The
first replaces the implicit iterative STDG solver by a truncated explicit one. It is of interest
when dealing with P1 schemes as accuracy and order are respected. This is not so much
the case for STDG-P2 schemes. The second STDG-α is based on a time derivative relax-
ation technique. The third RKDG-NDC can be seen as a unified treatment identifying
(coding wise) STDG and RKDG.

The 1D numerical study and 2D test cases confirm that introducing the upwinding
parameter α allows higher CFL with no loss of accuracy but does not accelerate conver-
gence to a steady state. Other time schemes are to be looked into.

Introducing the unifying parameter β controls numerical diffusion at no over cost
preserving initial stability and accuracy.
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