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Abstract. We extend the construction and analysis of the non-overlapping Schwarz
preconditioners proposed in [2, 3] to the (non-consistent) super penalty discontinuous
Galerkin methods introduced in [5] and [8]. We show that the resulting precondition-
ers are scalable, and we provide the convergence estimates. We also present numerical
experiments confirming the sharpness of the theoretical results.

AMS subject classifications: 65F10, 65N55, 65N30

Key words: Schwarz preconditioners, super penalty discontinuous Galerkin methods.

1 Introduction

Discontinuous Galerkin (DG) finite element methods have experienced a huge develop-
ment in recent years. Although they have proved to enjoy many advantages in a number
of circumstances, their practical utility is still limited by the much larger number of de-
grees of freedom they require compared to other classical discretization methods. To
handle this possible limitation, some domain decomposition preconditioners have been
proposed and analyzed in the past five years for strongly consistent and stable DG approx-
imations of second order elliptic problems (cf. [2, 3, 12]).

In this paper we turn our attention to the non-consistent super penalty DG methods,
namely the Babuška-Zlámal [5] and the Brezzi et al. [8] formulations. Although the idea of
over-penalizing goes back to the early stage of the development of DG methods, this idea,
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together with the design of efficient solvers for the resulting schemes, have recently re-
ceived a renewed interest (cf. [6,7]). Because of a non-consistency in the Babuška-Zlámal
and Brezzi et al. formulations, a super penalty procedure has to be applied in order to
achieve optimal approximation properties. The over-penalization has dramatic effects
on the condition number of the resulting linear system of equations. In fact, if on a given
quasi uniform mesh Th with granularity h, polynomials of degrees ℓh are used for the ap-
proximation, the condition number of the resulting stiffness matrix is of order O(h−2ℓh−2)
(cf. [10]). In [2], it was numerically observed that the proposed non-overlapping Schwarz
methods applied to the super penalty DG approximations result in a dramatic reduction
on the condition number of the preconditioned linear systems of equations. However,
the observed convergence rates differ considerably with respect to the ones exhibited
by consistent DG discretizations. In this paper, we present the theoretical analysis that
justifies those observed rates. We follow the theory developed in [2, 12] but using the
natural norm for the super penalty schemes; i.e., the norm induced by the bilinear form
defining the scheme which does not scale as the energy norm of stable and consistent
DG methods. As a consequence, some auxiliary results required in our analysis need to
be reformulated and extended. The sharpness of our theoretical results is confirmed by
some numerical experiments.

2 Super penalty discontinuous Galerkin discretizations

In this section, we set up some notation, introduce the model problem we will consider,
and recall the variational formulation of super penalty DG methods. Throughout the
paper, we shall use standard notation for Sobolev spaces (cf. [1]), and x . y will mean
that there exists a generic constant C>0 (that may not be the same at different occurrences
but is always mesh independent) so that x≤Cy.

Let Ω⊂R
d, d=2,3, be a convex bounded Lipschitz polygonal or polyhedral domain

and f ∈L2(Ω). To ease the presentation, we consider the following model (toy) problem

−∆u= f in Ω , u=0 on ∂Ω . (2.1)

Meshes. Let Th be a shape-regular and quasi-uniform conforming partition of the domain Ω

into disjoint open elements T, where each T is the affine image of a fixed master element
T̂, i.e., T=FT(T̂), and where T̂ is either the open unit d-simplex or the d-hypercube in R

d,
d = 2,3. Letting hT be the diameter of the element T ∈Th, we define the mesh size h by
h=maxT∈Th

hT , and assume, for simplicity, that h<1. We denote by F I
h and FB

h the sets
of all interior and boundary faces of Th, respectively, and set Fh =F I

h∪F
B
h .

Remark 2.1. All the theory we present in this paper can be applied, with minor changes,
to the case of non-matching grids, under suitable additional assumptions on Th; cf. [3].

Trace operators. Let F∈F I
h be an interior face shared by two elements T+ and T− with

outward normal unit vectors n
±. For piecewise smooth vector-valued and scalar func-
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tions τ and v, respectively, we define the jump and average operators on F∈F I
h by

[[τ]]=τ
+ ·n++τ

− ·n−, [[v]]=v+
n

++v−n
−, on F∈F I

h ,

{{τ}}=(τ
++τ

−)/2, {{v}}=(v+ +v−)/2, on F∈F I
h ,

(2.2)

where τ± and v± denote the traces of τ and v on ∂T± taken from within T±, respectively.
On a boundary face F∈FB

h we set, analogously,

[[τ]]=τ ·n, [[v]]=v n , {{τ}}=τ, {{v}}=v, on F∈FB
h . (2.3)

DG finite element space. For a given (integer) ℓh ≥ 1, the DG finite element space Vh is
defined by

Vh ={v∈L2(Ω) : v|T◦FT ∈Mℓh(T̂) ∀ T∈Th},

where Mℓh(T̂) is either the space of polynomials of degree less or equal to ℓh on T̂, if T̂ is
the reference d-simplex, or the space of polynomials of degree at most ℓh in each variable
on T̂, if T̂ is the reference d-hypercube.

The super penalty DG methods. For the discretization of the model problem (2.1), we
consider the Babuška-Zlàmal (BZ) [5] and the Brezzi et al. (BMMPR) [8] super penalty
methods. More precisely, we consider the following class of DG methods:

Find u∈Vh s.t. Ah(u,v)=( f ,v) ∀v∈Vh. (2.4)

Here the DG bilinear form Ah :Vh×Vh→R is given by

Ah(u,v)= ∑
T∈Th

∫

T
∇u·∇v dx+Sh(u,v) ∀u,v∈Vh, (2.5)

where the stabilization term Sh(·,·) is defined by

Sh(u,v)= ∑
F∈Fh

∫

F
α h−2ℓh−1

F [[u]]·[[v]] ds,

Sh(u,v)= ∑
F∈Fh

∫

F
α h−2ℓh

F rF([[u]])·rF([[v]]) ds,

for the BZ method and for the BMMPR method, respectively. In the above expressions,
hF denotes the diameter of F∈Fh, α > 0 is a parameter (at our disposal) independent of
the mesh size, and rF : [L1(F)]d → [Vh]

d is defined by

∫

Ω
rF(ϕ)·τ dx=−

∫

F
ϕ·{{τ}} ds ∀τ∈ [Vh]

d. (2.6)

For simplicity, we assume α ≥1.
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3 Main properties and theoretical tools

We briefly review the basic tools we shall require in the analysis of our Schwarz methods.

We refer to [11] for a local inverse inequality that holds true for piecewise polynomials
of a given order, and to [4] for a trace inequality that holds true for (regular enough)
piecewise functions. We also recall the following equivalence (see [8] for details),

C1h−2ℓh−1
F ‖[[v]]‖2

0,F ≤ h−2ℓh
F ‖rF([[v]])‖2

0,Ω ≤C2h−2ℓh−1
F ‖[[v]]‖2

0,F ∀ F∈Fh ∀ v∈Vh, (3.1)

where C1 and C2 are positive constants.

For the analysis of our Schwarz methods we consider the (mesh dependent) norm
induced by the bilinear form Ah(·,·), i.e., ‖v‖2

A = Ah(v,v) for all v∈Vh (recall that Ah(·,·)
is coercive provided that α >0). The continuity of Ah(·,·) with respect to the norm ‖·‖A

easily follows from the Cauchy-Schwarz inequality, i.e.,

Ah(u,v).‖u‖A‖v‖A for all u,v∈Vh.

For an open connected polyhedral domain D⊆Ω that can be covered by the union of
some elements in Th, we introduce the broken Sobolev space

Hs(D,Th)={v∈L2(Ω) : v|T ∈Hs(T) ∀T∈Th, T⊂D}, s≥1.

An important tool in the analysis of Schwarz methods is represented by a Friedrichs-
Poincaré type inequality valid for broken Sobolev spaces. The next result is a small mod-
ification of the well-known result proved in [4, 12].

Lemma 3.1 (Friedrichs-Poincaré inequality). Let D⊂Ω⊂R
d, d=2,3, be a convex polygonal

or polyhedral domain that can be covered by the union of some elements in Th. Then, there exists
a positive constant Cλ, such that, for all u∈H1(D,Th) with zero average over D, it holds:

‖u‖2
0,D ≤Cλ (diam(D))2

(
∑

T∈Th
T⊂D

|u|21,T+ ∑
F∈Fh
F⊂D

h−1
F ‖[[u]]‖2

0,F

)
≤Cλ(diam(D))2‖u‖2

A , (3.2)

where Cλ =C′CP, with CP the Poincaré constant, and C′ depending only on the shape regularity
of Th.

The proof goes along the lines of that in [4]. For completeness we briefly sketch it.

Proof. It is sufficient to assume that D has unit diameter; the general case follows from a
standard scaling argument. Let u∈H1(D,Th) with

∫
D u dx=0, we consider the auxiliary

Neumann problem

−∆φ=u in D,
∂φ

∂n

=0 on ∂D.
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The above problem has a unique solution (up to an additive constant) φ ∈ H2(D) that
satisfies the elliptic regularity estimate ‖φ‖2,D .‖u‖0,D. Integration by parts, the Cauchy-
Schwarz inequality and the trace inequality hF‖∇φ·n‖2

0,F .‖φ‖2
2,T give

‖u‖2
0,D =

∣∣∣∣−
∫

D
u∆φ dx

∣∣∣∣=
∣∣∣∣ ∑

T∈Th
T⊂D

∫

T
∇u·∇φ dx− ∑

F∈F I
h

F⊂D

∫

F
[[u]]·∇φ ds

∣∣∣∣

.

(
∑

T∈Th
T⊂D

|u|21,T

) 1
2
(

∑
T∈Th
T⊂D

|φ|21,T

) 1
2

+

(
∑

F∈F I
h

F⊂D

h
−(2ℓh+1)
F ‖[[u]]‖2

0,F

) 1
2
(

∑
T∈Th
T⊂D

h
2ℓh
F ‖φ‖2

2,T

) 1
2

.

Then, by using the elliptic regularity of the dual problem, inequality (3.2) follows.

Proceeding similarly as in the proof of Lemma 3.1, it can be proved the following
variant of the trace inequality shown in [12]:

‖u‖2
0,∂D . H−1

D ‖u‖2
0,D +HD

(
∑

T∈Th
T⊂D

|u|21,T + ∑
F∈Fh
F⊂D

h
−(2ℓh+1)
F ‖[[u]]‖2

0,F

)
∀ u∈H1(D,Th).

(3.3)
Condition number estimate. We recall that, given a basis of Vh, any function u∈Vh is
uniquely determined by a set of degrees of freedom. Here and in the following, we use
the bold notation to denote the spaces of degrees of freedom (vectors in R

n) and discrete
linear operators (matrices in R

n×R
n). If A is the stiffness matrix associated to the bilinear

form Ah(·,·) and the given basis, the problem (2.4) can be rewritten as the linear system
of equations Au= f, with A symmetric, positive definite and sparse. It is a simple matter
to check that the matrix A is ill-conditioned. In fact, in [10] it is shown that the spectral
condition number of the stiffness matrix A arising from the BZ discretization, κ(A), can
be bounded by

κ(A) .
α

h2ℓh+2
. (3.4)

For the BMMPR method the proof can be easily adapted and we omit the details. In prac-
tical applications such a bad condition number implies an extremely slow convergence,
for example, of the conjugate gradient iterative solver.

4 Schwarz preconditioners for super penalty DG methods

In this section we present the non-overlapping Schwarz preconditioners for the super
penalty DG approximations introduced before.

Non-overlapping partitions. We consider three level of nested partitions of the domain
Ω, all satisfying the previous assumptions: a subdomain partition TN made of N non-
overlapping subdomains, a coarse partition TH (with mesh size H), and a fine partition
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Th (with mesh size h). For each subdomain Ωi ∈TN , we denote by Fh,i the set of all faces
of Fh belonging to Ωi, and set

F I
h,i ={F∈Fh,i : F⊂Ωi}, FB

h,i ={F∈Fh,i : F⊂∂Ωi∩∂Ω}.

The set of all (internal) faces belonging to the skeleton of the subdomain partition will be
denoted by Γ, i.e., Γ =

⋃N
i=1 Γi with Γi ={F∈Fh,i : F⊂∂Ωi}.

Local spaces and prolongation operators. For each i = 1,··· ,N, we define the local DG
spaces

V i
h ={u∈L2(Ωi) : v|T◦FT ∈Mℓh(T̂) ∀ T∈Th, T⊂Ωi},

and we denote by RT
i :V i

h−→Vh the classical inclusion operator from V i
h to Vh, and by Ri its

transpose with respect to the L2-inner product. We observe that Vh = RT
1 V1

h ⊕···⊕RT
NVN

h .

Local solvers. We consider the super penalty DG approximation of the problem:

−∆ui = f |Ωi
in Ωi, ui =0 on ∂Ωi, i=1,··· ,N.

In view of (2.5), the local bilinear forms Ai :V i
h×V i

h−→R are given by

Ai(ui,vi)=
∫

Ωi

∇hui ·∇hvi dx+Si(ui,vi). (4.1)

Here, the local stabilization forms Si(·,·) are defined as

Si(ui,vi)= ∑
F∈Fh,i

∫

F
α h−2ℓh−1

F [[ui]]·[[vi ]] ds,

Si(ui,vi)= ∑
F∈Fh,i

∫

F
α h−2ℓh

F ri
F([[ui]])·r

i
F([[vi]]) ds,

for the BZ and the BMMPR methods, respectively, with ri
F : [L1(F)]d → [V i

h]
d defined as

∫

Ωi

ri
F(ϕi)·τ i dx=−

∫

F
ϕi ·{{τ i}} ds ∀τ i∈ [V i

h]
d. (4.2)

Remark 4.1. The approximation properties of the local solvers enter directly into the
analysis of the Schwarz methods. From our definition of the local solvers, it can be easily
verified that, for the BZ method, Ah(RT

i ui,R
T
i ui)= Ai(ui,ui); that is, the local solvers are

exact. For the BMMPR method, the local solvers turn out to be approximate in the sense
that Ah(RT

i ui,R
T
i ui) 6= Ai(ui,ui). Indeed, this follows by taking into account the definition

of the local and global lifting operators (4.2) and (2.6), respectively, and by noting that
F ∈ Γi is a boundary face for the local bilinear form, hence {{vi}}= vi on F ∈ Γi, but an
interior face for the global bilinear form, hence {{RT

i vi}}= 1
2 vi on F∈Γi (cf. the definition

of the average operator on interior and boundary faces (2.2)-(2.3), respectively).
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Coarse solver. For a given integer ℓH, 0≤ ℓH ≤ ℓh, the coarse space is given by

VH ≡V0
h ={vH ∈L2(Ω) : vH|T◦FT ∈MℓH (T̂) ∀ T∈TH}.

The coarse solver A0 :V0
h ×V0

h −→R is defined by

A0(u0,v0)= Ah(RT
0 u0,RT

0 v0) ∀ u0,v0∈V0
h ,

where RT
0 :V0

h −→Vh is the classical injection operator from V0
h to Vh.

Schwarz methods: variational and algebraic formulation. We are now ready to define
the Schwarz operators. For i=0,··· ,N, we set

P̃i :Vh−→V i
h Ai(P̃iu,vi)= Ah(u,RT

i vi) ∀ vi ∈V i
h, (4.3)

and define Pi = RT
i P̃i : Vh −→Vh. The additive and multiplicative Schwarz operators are

defined by

Pad =
N

∑
i=0

Pi, Pmu = I−(I−PN)(I−PN−1)···(I−P1)(I−P0),

respectively, where I :Vh−→Vh is the identity operator. We also define the error propaga-
tion operator EN =(I−PN)(I−PN−1)···(I−P0), and observe that Pmu = I−EN.

The Schwarz methods can be written as the product of suitable preconditioners, namely
Bad, or Bmu, and A. In fact, the matrix representation of the operators Pi is given by

Pi =RT
i A−1

i RiA, i=0,··· ,N.

Then,

Pad =
N

∑
i=0

Pi =
N

∑
i=0

RT
i A−1

i RiA=BadA, Pmu = I−(I−PN)···(I−P0)=BmuA .

The additive Schwarz operator Pad is self adjoint with respect to the Ah(·,·) inner prod-
uct, whereas, the multiplicative operator Pmu is non symmetric. Therefore, to solve the
resulting algebraic linear systems of equations, we use the conjugate gradient (CG) method
for the former, and the generalized minimal residual (GMRES) linear solver for the latter.

5 Convergence analysis

In this section we present the convergence analysis for the proposed two-level methods.
We follow the abstract convergence theory of Schwarz methods (see, e.g., [9, 13]).

Since the additive operator Pad is self-adjoint with respect to Ah(·,·), we can use the
Rayleigh quotient characterization of the extreme eigenvalues:

λmin(Pad)=min
u∈Vh
u 6=0

Ah(Padu,u)

Ah(u,u)
, λmax(Pad)=max

u∈Vh
u 6=0

Ah(Padu,u)

Ah(u,u)
.
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In Theorem 5.1 we provide a bound for the spectral condition number of Pad given by
κ(Pad)=λmax(Pad)/λmin(Pad). For the multiplicative operator Pmu, following the abstract
theory [9], we prove that a simple Richardson iteration applied to the preconditioned
linear system of equations converges. This result also guarantees that our preconditioner
can indeed be accelerated with the GMRES iterative solver (cf. [13], for example). We
remark that, the convergence result stated in Theorem 5.2 applies only to the BZ method
(see, however, Remark 5.2 and the numerical experiments in Section 6).

A common step in the analysis of the additive and multiplicative Schwarz methods
consists in verifying the following set of assumptions:

(A1) stable decomposition: there exists C0>0 such that every u∈Vh admits a decomposition

u=
N

∑
i=0

RT
i ui with ui∈Vi, i=0,··· ,N, s.t.

N

∑
i=0

Ai(ui,ui)≤C2
0 Ah(u,u) ;

(A2) local stability: there exists ω >0 such that

Ah(RT
i ui,R

T
i ui)≤ωAi(ui,ui) ∀ ui∈V i

h, i=1,··· ,N; (5.1)

(A3) strengthened Cauchy-Schwarz inequalities: there exist 0≤ ε ij ≤1, 1≤ i, j≤N, such that

∣∣∣Ah(RT
i ui,R

T
j uj)

∣∣∣≤ ε ij Ah(RT
i ui,R

T
i ui)

1/2 Ah(RT
j uj,R

T
j uj)

1/2 ∀ vi ∈V i
h, ∀ uj∈V

j
h.

We start proving that the above assumptions hold for the proposed Schwarz precondi-
tioners arising from both the BZ and BMMPR super penalty discretizations.

(A1) Stable decomposition. The next result guarantees that a stable splitting can be found
for the family of subspaces and the corresponding bilinear forms of the super penalty DG
discretizations.

Proposition 5.1 (Stable decomposition). Let Ah(·,·) be the bilinear form of the BZ or the
BMMPR super penalty methods. For any u∈Vh, let

u=
N

∑
i=0

RT
i ui, ui∈V i

h, i=0,··· ,N,

where u0∈V0
h ≡VH is defined by

u0|D =
1

meas(D)

∫

D
u dx, D∈TH , (5.2)

and u1,··· ,uN are (uniquely) determined as u−RT
0 u0 = RT

1 u1+···+RT
NuN . Then,

N

∑
i=0

Ai(ui,ui)≤αC2
0 Ah(u,u), with C2

0 =O

(
H

h2ℓh+1

)
.
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Proof. Given u∈Vh, let u0∈V0
h be defined as in (5.2). Setting, for simplicity, ũ0 =RT

0 u0, we

decompose u−ũ0 as ∑
N
i=1 RT

i ui. Then,

N

∑
i=0

Ai(ui,ui)= Ah(u−ũ0,u−ũ0)+A0(u0,u0)−Ih(u−ũ0,u−ũ0), (5.3)

where, for the BZ method, Ih(·,·) is given by

Ih(u,v)= ∑
F∈Γ

α h−2ℓh−1
F

∫

F

(
uini ·vjnj+ujnj ·vini

)
ds,

and, for the BMMPR method, Ih(·,·) is defined as

Ih(u,v)= ∑
F∈Γ

α h2ℓh
F

[∫

Ω
rF([[u]])·rF([[v]]) ds−

∫

Ωi

ri
F([[ui]])·r

i
F([[vi]]) ds

−
∫

Ωj

r
j
F([[uj]])·r

j
F([[vj ]]) ds

]
.

We start by providing a bound for the bilinear form Ih(·,·). For the BZ method, the
Cauchy-Schwarz inequality and the arithmetic-geometric mean inequality yield

|Ih(u,u)|≤ ∑
F∈Γ

α h
−2ℓh−1
F

(
‖ui‖

2
0,F+‖uj‖

2
0,F

)
.

Since the partitions are assumed to be nested, each subdomain Ωi is the union of some
elements D∈TH and so, by setting Γij = {F∈ Γ : F⊂ ∂Ωi∩∂Ωj} and denoting by E the
faces of the elements D∈TH, we have

∑
Γij∈Γ

∑
F∈Γij

h−2ℓh−1
F ‖ui‖

2
0,F . ∑

D∈TH

∑
E⊂∂D

h−2ℓh−1‖u‖2
0,E, (5.4)

where we have used the shape regularity and quasi-uniformity of the mesh Th. Therefore,
we get

|Ih(u,u)| . ∑
D∈TH

∑
E⊂∂D

α h−2ℓh−1‖u‖2
0,E.

Analogously, for the BMMPR method, by using (3.1), recalling that on each F∈Γ,

‖[[ui]]‖0,F =‖ui‖0,F, ‖[[u]]‖2
0,F =‖[[RT

i ui+RT
j uj]]‖

2
0,F,

we obtain

|Ih(u,u)| . ∑
F∈Γ

α h
−2ℓh−1
F

(
‖[[RT

i ui+RT
j uj]]‖

2
0,F +‖ui‖

2
0,F +‖uj‖

2
0,F

)

. ∑
F∈Γ

α h−2ℓh−1
F

(
‖ui‖

2
0,F+‖uj‖

2
0,F

)
. ∑

D∈TH

∑
E⊂∂D

α h−2ℓh−1‖u‖2
0,E,
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where we have also used that

‖[[RT
i ui]]‖

2
0,F =‖uini‖

2
0,F =‖ui‖

2
0,F on each F∈Γ,

and the inequality (5.4). Therefore, for both the DG discretizations, by using the trace
inequality (3.3) and the Friedrichs-Poincaré inequality (3.2), we find

|Ih(u−ũ0,u−ũ0)| . α h−(2ℓh+1) ∑
D∈TH

‖u−ũ0‖
2
0,∂D . α

H

h2ℓh+1
Ah(u,u).

We now estimate the term A0(u0,u0) (see (5.3)). Notice that, since u0 is piecewise constant
on TH, all the terms in Ah(ũ0,ũ0) vanish except for the stability term Sh(ũ0,ũ0). Further-
more, in view of the equivalence (3.1), it is enough to bound the term appearing from the
BZ method. Proceeding as in [2, Lemma 4.3], we obtain

Ah(ũ0,ũ0) . α

(
1+

H

h2ℓh+1

)
Ah(u,u).

Finally, the first term on the right-hand side in (5.3), Ah(u−ũ0,u−ũ0), can be bounded by
using the Cauchy-Schwarz inequality and the above estimate

Ah(u−ũ0,u−ũ0)≤ 2 (Ah(u,u)+Ah(ũ0,ũ0)) . α

(
1+

H

h2ℓh+1

)
Ah(u,u).

Summarizing, we get
N

∑
i=0

Ai(ui,ui) . α
H

h2ℓh+1
Ah(u,u),

and so the proof is complete.

(A2) Local stability. As mentioned in Remark 4.1, for the BZ method, the local solvers are
exact, hence inequality (5.1) is actually an identity with ω=1. For the BMMPR method, we
next show the following result which provides a one-sided measure of the approximation
properties of the local bilinear forms.

Lemma 5.1 (Local stability). Let Ah(·,·) be the bilinear form of the BMMPR method, and let
Ai(·,·), i=1,··· ,N, be the corresponding local bilinear forms. Then, there exists ω >0 such that

Ah(RT
i ui,R

T
i ui)≤ωAi(ui,ui) ∀ ui ∈V i

h, i=1,··· ,N. (5.5)

Proof. The proof easily follows by writing Ah(RT
i ui,R

T
i ui) = Ai(ui,ui)+Gi,1(ui,ui)+

Gi,2(ui,ui) with

Gi,1(ui,ui)= ∑
F∈Γi

∫

F
α h−2ℓh

F {{rF([[RT
i ui]])}}·niui ds,

Gi,2(ui,ui)= ∑
F∈Γi

∫

F
α h−2ℓh

F ri
F(uini)·niui ds.
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Equivalence (3.1) leads to

|Gi,1(ui,ui)|= ∑
F∈Γi

αh−2ℓh
F ‖rF([[RT

i ui]])‖
2
0,Ω

≤C2 ∑
F∈Γi

αh
−2ℓh−1
F ‖uini‖

2
0,F ≤C2C−1

1 Ai(ui,ui).

For the term Gi,2, reasoning in the same way and taking into account that each F∈Γi is a
boundary face for the local bilinear form, we obtain

|Gi,2(ui,ui)|= ∑
F∈Γi

αh−2ℓh
F ‖ri

F(uini)‖
2
0,Ωi

≤C2 ∑
F∈Γi

αh−2ℓh−1
F ‖uini‖

2
0,F ≤C2C−1

1 Ai(ui,ui).

The above bounds and standard triangle inequality give (5.5), with ω =1+2C2C−1
1 .

Remark 5.1. From Lemma 5.1 it follows that, in general, we cannot guarantee ω <2.

(A3) Strengthened Cauchy-Schwarz inequalities. From our definition of the local solvers
and local subspaces, it is straightforward to see that ε ii=1 for i=1,··· ,N. For i 6= j, we note
that Ah(RT

i ui,R
T
j uj) 6=0 only if ∂Ωi∩∂Ωj 6=∅, so ε ij =1 in those cases, and ε ij =0 otherwise.

Then, by setting E ={ε ij}1≤i,j≤N , the spectral radius of E , ρ(E ), can be bounded by

ρ(E)≤max
i

∑
j

|ε ij|≤1+Nc,

where Nc is the maximum number of adjacent subdomains that a given subdomain might
have.

We have now all ingredients to show the main results of this section.

Theorem 5.1. Let Pad be the additive Schwarz operator corresponding to the BZ or the BMMPR
super penalty DG methods. Then, its condition number κ(Pad) satisfies

κ(Pad) . α(1+ω[1+Nc])
H

h2ℓh+1
, (5.6)

where ω is the local stability constant in (A2) and Nc denotes the maximum number of adjacent
subdomains a given subdomain can have.

Proof. Proposition 5.1 implies that λmin(Pad) is bounded from below by C−2
0 =α−1H−1h2ℓh+1.

In fact, the definition (4.3) of P̃i and Cauchy-Schwarz inequality yield

Ah(u,u)=
N

∑
i=0

Ah(u,RT
i ui)=

N

∑
i=0

Ai(P̃iu,ui)≤

(
N

∑
i=0

Ai(P̃iu,P̃iu)

)1/2(
N

∑
i=0

Ai(ui,ui)

)1/2

≤ C0

(
N

∑
i=0

Ah(u,RT
i P̃iu)

)1/2

Ah(u,u)1/2 =C0 Ah(u,Padu)1/2 Ah(u,u)1/2.
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The local stability property and the strengthened Cauchy-Schwarz inequalities imply that
λmax(Pad) is bounded from above by ωρ(E)+1. In fact,

Ah(P0u,u)≤Ah(P0u,P0u)1/2Ah(u,u)1/2≤Ah(u,P0u)1/2Ah(u,u)1/2,

Ah(
N

∑
i=1

Piu,u)≤ωρ(E)Ah(u,u),

from which the desired upper bound for λmax(Pad) follows by definition. The proof is
complete by recalling that ρ(E)≤ 1+Nc where Nc is the maximum number of adjacent
subdomains that a given subdomain can have.

The multiplicative operator is non-symmetric, and in Theorem 5.2, we show that the
energy norm of the error propagation operator EN is strictly less than one. Hence, the
spectral radius of EN is strictly less than one, and a simple Richardson iteration applied
to the preconditioned system converges.

Theorem 5.2. Let Ah(·,·) be the bilinear form of the BZ super penalty DG method, and let Pmu

be its multiplicative Schwarz operator. Then,

‖EN‖
2
A = sup

u∈Vh
u 6=0

Ah(ENu,ENu)

Ah(u,u)
≤ 1−

1

Cα(1+2(Nc +1)2)

h2ℓh+1

H
<1.

For the sake of conciseness we omit the proof. We note however that, once the prop-
erties (A1), (A2) and (A3) are shown, the proof follows by proceeding as in [3].

Remark 5.2. The classical Schwarz theory for multiplicative methods relies upon the hy-
pothesis that the local stability constant ω<2. In view of Remark 5.1 (see also Lemma 5.1),
for the BMMPR method our convergence analysis can not be applied to theoretically ex-
plain the optimal performance numerically observed.

Remark 5.3. Theorem 5.1 guarantees that the additive Schwarz preconditioner can be
successfully accelerated with the CG iterative solver. Analogously, thanks to Theorem 5.2
the multiplicative Schwarz method can indeed be accelerated with the GMRES linear
solver (see [9] for details).

6 Numerical results

We take d=2, Ω=(0,1)×(0,1), and we choose f so that the exact solution of the Poisson
problem with non-homogeneous boundary conditions is given by u(x,y)= exp(xy). We
consider subdomain partitions made of N = 4,16 squares. The initial coarse and fine re-
finements consist of 24 and 28 squares, respectively, with corresponding initial mesh sizes
given by H0 =1/22 and h0 =1/24. For n=1,2,3, we consider n successive global uniform
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Table 1: BZ method (α=1), ℓh = ℓH =1.

κ(BadA), N =4

H ↓ h→ h0 h0/2 h0/4 h0/8

H0 7.4360e+01 6.5867e+02 5.4275e+03 4.3961e+04
H0/2 - 2.9770e+02 2.6825e+03 2.2254e+04
H0/4 - - 1.1944e+03 1.0771e+04
H0/8 - - - 4.7526e+03

κ(A) 1.7321e+03 2.6835e+04 4.2604e+05 6.8037e+06

κ(BadA), N =16

H ↓ h→ h0 h0/2 h0/4 h0/8

H0 8.1843e+01 7.4657e+02 6.1084e+03 4.8324e+04
H0/2 - 2.9355e+02 2.6374e+03 2.1707e+04
H0/4 - - 1.1828e+03 1.0770e+04
H0/8 - - - 4.7833e+03

κ(A) 1.7321e+03 2.6835e+04 4.2604e+05 6.8037e+06

refinements of these initial grids. For the sake of brevity we only report results obtained
on Cartesian grids; analogous experiments were run on structured and unstructured tri-
angular refinements, and the same orders have been observed. The preconditioned linear
systems of equations have been solved with the CG and GMRES iterative solvers for the
additive and multiplicative methods, respectively. The (relative) tolerance is set to 10−12.

We first address the scalability of the additive Schwarz method, i.e., the independence
of the convergence rate of the number of subdomains. In Table 1, for the BZ method
(α = 1), we compare the condition number estimates obtained with N = 4,16, and ℓh =
ℓH =1. The dashes mean that the coarse partition is not strictly included in the fine one,
and in those cases it is meaningless to build the preconditioner. The condition number
estimates for the non preconditioned systems are shown in the last row. As stated in
Theorem 5.1, our preconditioner seems to be insensitive on the number of subdomains,
and, as expected, a convergence rate of order O(H/h3) is clearly observed.

In Table 2, with N =16 and ℓh = ℓH =2, we show the condition number estimates and
the CG iteration counts (between parenthesis) of the additive Schwarz method for the BZ
discretization (α = 1). The cross in the last row of Table 2 means that we were not able
to solve the non preconditioned system due to excessive computational requirements.
Observe that, in agreement with Theorem 5.1, the condition number grows as O(H/h5).

Next, we show the GMRES iteration counts computed by using the multiplicative
preconditioner (N=16, α=1 and ℓH =ℓH =1). For the BZ method (Table 3, left) the result
reported confirm the convergence result given in Theorem 5.2. For the BMMPR method
(Table 3, right) our numerical results indicate that the multiplicative preconditioner can
be indeed efficiently accelerated with the GMRES iterative solver. A theoretical justifica-
tion of this behavior is still an open question.
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Table 2: BZ method (α=1), N =16, ℓh = ℓH =2.

κ(BadA) and CG iteration counts

H ↓ h→ h0 h0/2 h0/4 h0/8

H0 1.2018e+04 (88) 3.8554e+05 (176) 1.1731e+07 (259) 4.7145e+07 (339)
H0/2 - 1.9072e+05 (110) 5.9690e+06 (193) 7.2780e+07 (264)
H0/4 - - 2.8401e+06 (133) 5.9919e+07 (198)
H0/8 - - - 3.4564e+07 (119)

κ(A) 5.6358e+05 (739) 3.5640e+07 (1922) 2.2742e+09 (4409) x

Table 3: BZ and BMMPR methods (α=1), BmuA, GMRES iteration counts, N =16, ℓh = ℓH =1.

BZ method BMMPR method

H ↓ h→ h0 h0/2 h0/4 h0/8 h0 h0/2 h0/4 h0/8

H0 23 39 56 63 11 44 55 55
H0/2 - 21 31 38 - 23 32 25
H0/4 - - 17 22 - - 16 17
H0/8 - - - 11 - - - 10

# iter(A) 129 363 848 1841 129 363 848 1841

Table 4: BZ method, N =16, ℓh = ℓH =1.

κ(BadA), α=2

H ↓ h→ h0 h0/2 h0/4 h0/8

H0 1.6051e+02 1.4882e+03 1.2346e+04 9.6452e+04
H0/2 - 5.8421e+02 5.2702e+03 4.3160e+04
H0/4 - - 2.3627e+03 2.1537e+0
H0/8 - - - 9.5636e+03

κ(A) 3.4334e+03 5.3555e+04 8.5163e+05 1.3606e+07

κ(BadA), α=10

H ↓ h→ h0 h0/2 h0/4 h0/8

H0 7.8989e+02 7.3904e+03 5.9308e+04 4.7884e+05
H0/2 - 2.8889e+03 2.6060e+04 2.1566e+05
H0/4 - - 1.1730e+04 1.0735e+05
H0/8 - - - 4.6917e+04

κ(A) 1.7045e+04 2.6731e+05 4.2564e+06 6.8022e+07

Finally, always with N = 16, we compare the condition number estimates of the ad-
ditive Schwarz operator obtained for the BZ method with ℓh = ℓH = 1, and by choosing
α = 2 (Table 4, top) and α = 10 (Table 4, bottom). From the results in Table 4 (see also
Table 1 (bottom)) it is clear that, as predicted in Theorem 5.1, the condition number of the
preconditioned system linearly depends on the value of the penalty parameter.
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