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Abstract. This paper describes an iterative solution technique for partial differential
equations involving the grad(div) operator, based on a domain decomposition. Iter-
ations are performed to solve the solution on the interface. We identify the transmis-
sion relationships through the interface. We relate the approach to a Steklov-Poincaré
operator, and we illustrate the performance of technique through some numerical ex-
periments.
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1 Introduction

The purpose of this paper is to take benefit of recent advances in the use of spectral
methods for the stable approximation of the grad(div) operator in tensorised Cartesian
domains to solve a large class of problems involving this operator in more sophisticated
domains that can be viewed as unions of tensorised Cartesian domains [2]. More pre-
cisely, we want to solve the symmetric linear elliptic boundary value problem : for a given
data f, find u solution to

−∇(∇·u)+α2u = f, in Ω, (1.1)

u·n = 0, on∂Ω, (1.2)

∗Corresponding author. Email addresses: ahusborde@enscpb.fr (E. Ahusborde), azaiez@enscpb.fr (M.
Azaı̈ez), Michel.Deville@epfl.ch (M. O. Deville), emund@ulb.ac.be (E. H. Mund)

http://www.global-sci.com/ 391 c©2009 Global-Science Press



392 E. Ahusborde et al. / Commun. Comput. Phys., 5 (2009), pp. 391-397

by a domain decomposition technique using an iterative algorithm between sub-domains
in the spirit of the well-known Dirichlet-Neumann algorithm introduced for the Lapla-
cian operator by Quarteroni (see [5] and the references therein). Here, and in the rest of
the paper, Ω⊂R

2 is a bounded open domain with Lipschitzian border and n denotes the
outer unit normal along the boundary. The constant α is given arbitrarily.

The first question we address in Section 2 is the identification of transmission condi-
tions for the vector operator, on the ‘skeleton’ of the decomposition, that is on the inter-
face between adjacent sub-domains. This is followed in Section 2.1 by the formulation of
an iterative substructuring algorithm. In Sections 2.2 and 2.3 we relate the ensuing prob-
lem on the skeleton to a Steklov-Poincaré operator and we give some numerical results.
Finally Section 3 concludes the paper.

2 A domain decomposition for the grad(div) operator

We assume that the domain Ω is partitioned into a set of non-overlapping and conform-
ing sub-domains Ωi, i=1··· , I (see [3]) and for simplicity we assume I=2. Let Γ:=Ω1∩Ω2

denote the interface between the two sub-domains considered in our analysis and shown
on Fig. 1. Γ will be called the skeleton of the decomposition in the sequel of the paper.
We shall also assume that Γ is a Lipschitz one-dimensional manifold.

We call ui the restriction to sub-domain Ωi, i = 1,2, of the solution u to the problem
(1.1)-(1.2), and by ni the outward oriented normal vector on ∂Ωi∩Γ. For convenience we
will set n=n1.

Γ

Ω

Ω2

1

n

Figure 1: Non-overlapping partition of the domain Ω into two sub-domains.

One can easily prove that the problem (1.1)-(1.2) can be reformulated into the equiv-
alent multi-domain set of local coupled problems (see [5]):

−∇(∇·u1)+α2u1 = f, in Ω1, (2.1)

−∇(∇·u2)+α2u2 = f, in Ω2, (2.2)

u1 ·n = 0, on∂Ω1∩∂Ω, (2.3)

u2 ·n = 0, on∂Ω2∩∂Ω, (2.4)

u1 ·n=u2 ·n, onΓ, (2.5)

divu1 =divu2, onΓ. (2.6)
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Eqs. (2.5) and (2.6) are the transmission conditions for u1 and u2 on Γ. These conditions
are for the grad(div) operator the corresponding transmission conditions of the Dirichlet-
Neumann conditions for the Laplacian operator (see [5]). Notice that (2.6) must be taken
in weak sense.

Note that the convergence proof should be similar to that already performed for finite
element discretization (see [5], Sections 5.5 and 4.1.2).

2.1 Iterative substructuring method

There are several ways to uncouple Eqs. (2.1)-(2.6). The one we choose consists in the
introduction of a sequence of subproblems in Ω1 and Ω2 for which conditions (2.5) and
(2.6) provide the missing condition on Γ. This can be performed in the following iterative
way: Starting from a given λ0 on the skeleton, for k≥0 we solve

−∇(∇·uk+1
1 )+α2uk+1

1 = f, in Ω1,

uk+1
1 ·n = 0, on∂Ω1∩∂Ω,

uk+1
1 ·n=λk, onΓ.

(2.7)

This is followed by:

−∇(∇·uk+1
2 )+α2uk+1

2 = f, in Ω2,

uk+1
2 ·n = 0, on∂Ω2∩∂Ω,

divuk+1
2 =divuk+1

1 onΓ,

(2.8)

and we update

λk+1 = uk+1
2 ·n onΓ. (2.9)

In order to accelerate convergence of the iterative process the transmission condition (2.9)
will be replaced by a relaxed version

λk+1 = ωuk+1
2 ·n+(1−ω)λk onΓ, (2.10)

adopted for our numerical investigation [4,5]. The choice of some optimal value of ω will
be discussed in Section 2.3.

Convergence of the numerical process obtains when, after completion of the step (2.8),
|uk+1

2 ·n−uk+1
1 ·n|≤ǫ, with ǫ a given error level.

Now, we shall show that the transmission conditions (2.5) and (2.6) lead to a problem
on the skeleton involving the Steklov-Poincaré operator (see [1]). The unknown of this
interface problem is the trace of the normal component of the vector solution to (1.1)-(1.2).
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2.2 Steklov-Poincaré interface equation

Let λ denote again the unknown value of the trace of u·n along Γ. We consider the two
following problems : Find wi, (i=1,2) solution to

−∇(∇·wi)+α2wi = f, in Ωi,

wi ·n = 0, on∂Ωi∩∂Ω,

wi ·n=λ, onΓ.

(2.11)

We can state that

wi =u0
i +u∗

i ,

where we have defined u0
i and u∗

i to be solutions to

−∇(∇·u0
i )+α2u0

i = 0, in Ωi,

u0
i ·n = 0, on∂Ωi∩∂Ω,

u0
i ·n = λ, onΓ,

(2.12)

and

−∇(∇·u∗
i )+α2u∗

i = f, in Ωi,

u∗
i ·n = 0, on∂Ωi∩∂Ω,

u∗
i ·n = 0, onΓ.

(2.13)

For i=1,2, u0
i is the extension of λ from Γ into Ωi. It will be denoted hereafter as Hiλ. We

will also denote u∗
i by Gif to recall that the quantities u∗

i relate to the RHS of (2.13) in the
two sub-domains.

If we proceed formally and compare (1.1)-(1.2) with (2.11), it follows that

wi = ui, for i=1,2 if and only if divw1 =divw2 on Γ. (2.14)

Using this relationship one can show that λ is the trace of the normal component of the
solution if and only if it satisfies the Steklov-Poincaré interface equation

S˘ = χ on Γ, (2.15)

where
χ := divG1f−divG2f,

and S is the Steklov-Poincaré operator formally defined as

S˘ := S1˘−S2˘ = divH1λ−divH2λ.

Notice that the Steklov-Poincaré operator S has been built starting from the transmis-
sion condition (2.5). A dual version of this algorithm would start from the transmission
condition (2.6).

As demonstrated for the Laplacian operator (see [5]), the iterative algorithm (2.7)-(2.8)
with the transmission condition (2.9) is nothing else than the S1-preconditioned Richard-
son iterative algorithm applied to (2.15).
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2.3 Numerical results

Up to this point we didn’t specify the discretization technique used to solve the local
problems in the domain decomposition approach. Any stable numerical technique could
be applied like FEM, SEM, etc. Since, in a series of studies on the spectral properties of the
-grad(div) operator, we exhibited the stability properties of the staggered grid Legendre
spectral element XN := PN⊗PN−1×PN−1⊗PN on the reference square Ω̂ :=]−1,+1[2, it
seemed quite natural to use this approximation tool to implement the method (see for
details [2]). Here PN denotes the set of polynomials of degree less or equal to N. This
spectral element is used here to solve the local problems on the two sub-domains Ωi

mapped onto Ω̂.

To test the efficiency of the iterative algorithm outlined above, we solved problem
(1.1)-(1.2) on two different domains with data and boundary conditions such that the
analytical solution is given by:

ux(x,y)= 2sin(x)cos(y),

uy(x,y)= cos(x)sin(y).

In both test cases the coefficient α in Eq. (1.1) was set equal to 1. The numerical ex-
periments have been conducted with an error criterion ǫ = 10−12. Several values of the
relaxation factor were tested that indicated an optimal value equal to 0.5, used in all sub-
sequent computations.

A first numerical test was made on the rectangle Ω :=]−1,+3[×]−1,+1[, subdivided
into two square sub-domains. The exact solution u=(ux,uy) is approximated by uN∈XN .
The (L2(Ω))2–norm ||u−uN || error behavior with respect to N is plotted on Fig. 2 with a
linear-logarithmic scale. As long as we approximate analytical solutions by high degree
polynomials, we expect an exponential error convergence to zero. The curve on Fig. 2
confirms this expectation.

Table 1 gives the number of iterations needed to reach convergence in the iterative
process between sub-domains, as a function of the polynomial degree N. We remark
that the iteration number is almost independent on the polynomial degree. This seems
to imply that the S1 preconditioner of the Steklov-Poincaré operator is nearly optimal,
having a convergence radius independent of N. As seen later on the property is closely
linked to the topology of the domain decomposition.

Table 1: Number of iterations between sub-domains v.s. the polynomial degree N.

N 4 8 12 16 20

Number of iterations 9 8 8 7 7

In our second numerical experiment, the domain Ω is L-shaped.

Fig. 3 exhibits the L-shaped domain partitioned into 3 sub-domains with some Gauss-
Lobatto-Legendre (GLL) grid corresponding to N =20.
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Figure 2: L2 error norm ||u−uN||(L2(Ω))2 as a func-

tion of the polynomial degree on the rectangle do-
main.
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Figure 3: L-shaped domain: Anatomy of the decom-
position.
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Figure 4: L2 error norm ||u−uN||(L2(Ω))2 as a func-

tion of the polynomial degree N on the L-shaped
domain.
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Figure 5: Isovalues of the approximation ux N with
N =20.

Fig. 4 displays the (L2(Ω))2-norm ||u−uN || error behavior with respect to N. Again
the convergence is exponential as expected, the error reaching round-off for polynomial
degrees larger or equal to 12.

Fig. 5 displays the isovalues of the approximation uxN with N = 20. One notes the
continuity of this velocity component through the interfaces between the sub-domains.

Finally, Table 2 displays the number of iterations between the three sub-domains to
reach the convergence, as a function of N. We remark that in this case the number of iter-
ations is slightly dependent on the polynomial degree N. By slightly we mean something
of the order O(Nτ) with 0 < τ < 1. Note that this conclusion is not linked to the choice
of ǫ. Relating this behavior to the Steklov-Poincaré preconditioner we conclude that the
operator S1 is optimal for domain decompositions in ‘slices’ but not for decompositions
with skeleton cross points as demonstrated for the Laplace operator.



E. Ahusborde et al. / Commun. Comput. Phys., 5 (2009), pp. 391-397 397

Table 2: Number of iterations between sub-domains v.s. the polynomial degree N.

N 4 8 12 16 20

Number of iterations 30 34 36 38 42

3 Conclusion

In this paper we generalized a classical domain decomposition approach to the vector
equations involving the grad(div) operator. In particular we have identified the transmis-
sion conditions for the normal velocity component and for the divergence of the velocity
along the decomposition skeleton. We presented an iterative substructuring algorithm
based on these transmission conditions and we restated the problem as an interface prob-
lem involving a Steklov-Poincaré operator. Numerical results obtained using an efficient
stable approximation closely related to the grad(div) operator illustrate the efficiency of
the iterative approach for the domain decomposition.

As a final comment let us stress the fact that the work done so far is only a preliminary
step towards a more sophisticated fully spectral element approach.
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