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Abstract. We present a coupled thermal-fluid model for Bénard-Marangoni convec-
tion in a three-dimensional fluid layer. The governing equations are derived in detail
for two reasons: first, we do not assume a flat free surface as commonly done; and
second, we prepare for the use of flexible discretizations. The governing equations
are discretized using spectral elements in space and an operator splitting approach in
time. Since we are here primarily interested in steady state solutions, the focus is on
the spatial discretization. The overall computational approach is very attractive to use
for several reasons: (i) the solution can be expected to have a high degree of regularity,
and rapid convergence can be expected; (ii) the spectral element decomposition auto-
matically gives a convenient parameterization of the free surface that allows powerful
results from differential geometry to easily be exploited; (iii) free surface deforma-
tion can readily be included; (iv) both normal and tangential stresses are conveniently
accounted for through a single surface integral; (v) no differentiation of the surface
tension is necessary in order to include thermocapillary effects (due to integration-by-
parts twice); (vi) the geometry representation of the free surface need only be C° across
element boundaries even though curvature effects are included. Three-dimensional
simulation results are presented, including the free surface deflection due to buoyancy
and thermocapillary effects.
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1 Introduction

We consider here Bénard-Marangoni convection where a fluid layer is heated from below.
This problem has previously been studied extensively experimentally, theoretically, and
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computationally. One of the intriguing features with this problem is the formation of
hexagonal convection cells from random initial conditions; see [2,14,25]. This formation
can originate from different effects: it can be caused by small density variations due to
the fact that the density is a function of the temperature (i.e., from buoyancy forces), or it
can be due to variations in the surface tension due to the fact that the surface tension is a
function of the temperature (i.e., thermocapillary forces), or both effects can be present at
the same time.

However, the free surface deformation associated with these cells has previously only
been studied experimentally [2,6,14] or analyzed analytically using linear stability anal-
ysis [23]. It is known experimentally that the free surface will either be depressed or
elevated over each hexagonal cell, depending on whether surface-tension-gradient ef-
fects or buoyancy effects are dominating [14]. It should be remarked that Bénard himself
had an incorrect interpretation of which effect was dominating in his original experi-
ments [2]; Rayleigh’s [22] subsequent stability analysis also assumed buoyancy-driven
convection. Only several decades later were Bénard experiments correctly interpreted
through surface-tension-gradient effects [4,21,23].

To our knowledge, the deflection of the free surface has never before been investi-
gated using simulation tools; only a fixed and flat “free surface” has been used in earlier
numerical studies [19,24]. We assume that this is partially due to the fact that the free sur-
face deformation is small, but also partially because the imposition of the simultaneous
curvature and surface-gradient effects along curved boundaries is a non-trivial task.

Our goal with this study is to present a way to accurately simulate Bénard-Marangoni
convection, including the free surface deformation. Our work will focus on the prediction
of steady state solutions. The solutions (velocity, temperature, pressure, and geometry)
are expected to be of high regularity, and thus high order spatial discretizations should
be very attractive to use for this class of application.

The governing equations for this problem are the incompressible Navier-Stokes equa-
tions coupled to a convection-diffusion equation for the temperature. Because our goal
is to impose general free surface boundary conditions on potentially deformed surfaces,
we need to use the full stress formulation of the Navier-Stokes equations. This formula-
tion is not commonly used in earlier analysis due to the simplified assumptions about a
flat ”free surface.” In addition, similar to the approach presented in [12], we would like
to represent the free surface boundary conditions in general curvilinear coordinates; this
will prove very advantageous for the subsequent numerical treatment.

An outline of the paper is as follows. In Section 2 we present a derivation of the
full mathematical model for Bénard-Marangoni convection. We present the governing
equations in strong form, including all the boundary conditions, and allowing for all the
possible effects discussed above. Since such a complete model is not commonly used,
we present the derivation in some detail, including some important results from differ-
ential geometry. We also present the non-dimensionalization of the governing equations
and introduce the relevant non-dimensional numbers for this problem. In Section 3 we
present the weak formulation of the governing equations. In particular, we exploit the
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powerful results presented in [12] that allow for a very convenient way to impose the free
surface boundary conditions. In Section 4 we present the Arbitrary Lagrangian Eulerian
(ALE) formulation of the governing equations, and this formulation represents the start-
ing point for our discretization. In Section 5 we discuss a discretization approach based
on spectral elements in space [17] and an operator splitting approach in time. However,
the discussion is limited to particular aspects of the surface parameterization, and how to
conveniently impose both the normal and tangential stresses along the free surface. We
then present a numerical test problem in Section 6, followed by a number of simulation
results of three-dimensional Bénard-Marangoni convection in Section 7.

2 Governing equations: Strong form

We consider Bénard-Marangoni convection problem in a three-dimensional container
including both buoyancy-driven flows (natural convection) as well as surface-tension-
driven flows (Marangoni flows); see Fig. 1.

| Ay
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Figure 1: Three-dimensional Bénard-Marangoni convection problem: a fluid layer of thickness d is heated
from below. Gravity is pointing downwards. The bottom surface represents a fixed wall kept at a constant
temperature Ty. The top surface represents a free surface which may be deformed.

This problem represents a coupled thermal fluid problem. The governing equations
are given by the conservation of mass, linear momentum and energy.

Buoyancy-driven flow is due to the fact that the density, p, is a function of the tem-
perature, T, something which gives rise to a volumetric body force in the presence of
temperature gradients. Surface-tension-driven flow is due to the fact that the surface ten-
sion, 7, is a function of the temperature, something which gives rise to surface forces (or
thermocapillary forces) along the free surface in the presence of temperature gradients.

We will assume the following linearizations:

p(T)=po(1-B(T—Ty)), (2.1)
Y(T)=v0(1-7(T—-Tp)). (2.2)

Here, pg and -y represent the reference values of the density and the surface tension at
the temperature Ty, while B and T are constants (typically positive). The temperature
T =Tp will be imposed on the bottom surface.

At the top surface, we assume that, in the absence of convection, the temperature is
held at a constant value T=T;. We also assume that the temperature T in the domain can
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be expressed as

AT
T(x1,x2,x3,t) =To—7x3+®(x1,xz,x3,t), (2.3)

where AT = To—T; >0 is the positive temperature difference between the bottom and
the top surface in the purely conductive regime, d is the distance between the top and
bottom surfaces, and © represents the deviation in the temperature from a purely linear
temperature profile. In the following, we assume that ® =0 at the bottom surface, while
aa—i) =0 at the top surface.

A couple of remarks are in order at this point. First, with the onset of convection, we
expect O to be nonzero at the surface; in particular, we expect the surface gradient of ®
to be nonzero. The implication of this is that the temperature T is no longer exactly equal
to T at the top surface as it is in the purely conductive regime. Second, experiments have
shown that the top surface becomes slightly deformed with the onset of convection. This
means that the normal derivative along the top surface does not exactly correspond to
the derivative with respect to x3. We will account for a potential surface deformation in
our mathematical model and in our simulations.

The governing equations for the fluid velocity, the pressure and the temperature can
be expressed as (the Boussinesq approximation):

au]' 0 in O 24
o nQ, (2.4)
ou; | du;\  90jj ‘ . .
7o (y +”]8—x]-> =5 PMgda,  in0,i=125, 25)
oT oT o*T .
poc ( a +“fa—x].> =N oxon, n Q. 20

Here, u; is the i-th component of the fluid velocity in an inertial reference frame, x;is the j-
th coordinate, g is gravity (a positive constant), c represents the specific heat capacity, k is
the thermal conductivity, and § is the Kronecker delta symbol. Summation over repeated
indices is assumed. The stress tensor 0;; for a viscous Newtonian fluid is given as
; OU;
Ui]-:—péi]--l—;t(g—z;-l-a—)é), i,j=1,2,3, 2.7)
where p is the pressure and y is the dynamic viscosity.

We remark that the fluid is modelled as an incompressible fluid, but with a buoy-
ancy term (volumetric body force) arising from small density variations following (2.1).
The fluid flow is also coupled to the temperature via the surface tension; see (2.2). The
temperature is coupled to the fluid flow via the convection term in (2.6).

The domain Q) represents the fluid layer. The top and bottom surfaces of this domain
will be denoted as d(); and 0}, respectively. The vertical side wall(s) will be denoted as
0Q);. This can be a single cylindrical wall as depicted in Fig. 1, however, we will later also
consider domains with polygonal cross-sections.
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2.1 Boundary conditions

We now discuss the boundary conditions. We assume that the bottom surface and the
vertical side walls are rigid. Hence, along (), and d(); we impose homogeneous Dirich-
let boundary conditions for the velocity,

u;=0, onoQ,UdN,, i=1,23.

Along the top surface d(); we impose free surface boundary conditions. Both for the
mathematical and numerical treatment of these boundary conditions it will prove highly
advantageous to express these conditions using surface-intrinsic coordinates. However,
before giving the expressions, we first introduce some necessary notation and definitions
from differential geometry [9, 15, 26].

Figure 2: A plot depicting part of a deformed surface I' in three dimensions. We assume that there exist a
parameterization of this surface patch using two independent coordinates. In particular, we can describe the
surface patch through a one-to-one mapping of an undeformed square. From this surface parameterization, we
can define covariant base vectors g and g at any point on the surface. These vectors will span the tangent
plane, but will generally not be orthogonal or of unit length.

Consider the surface patch I' depicted in Fig. 2. We assume that a point x on I" has

coordinates given through the parameterization x;=ux; (r1,r?),i=1,2,3, with —1<r! 2 <1.

The following results from differential geometry will then prove useful:

80 = 887’;, x=12, 2.8)
8 8s=8up =12, =12, 2.9)
gug®=ak, (2.10)
g =g g, 2.11)

g=/det(gup)- (2.12)

Here, the vectors g, represent the covariant base vectors, while the vectors g* represent
the contravariant base vectors. Both sets of vectors span the tangent plane, and the two
sets are mutually orthogonal (g, -gf = Oup)-

The free surface boundary conditions along a surface patch I' can then be expressed
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as [15,16]
nojjn; =Yk, (2.13)

0
tl'U',‘jn]‘:t,‘ (gf‘%> (214)

Here, x is twice the mean curvature, n;, i = 1,2,3, is the outward unit normal on the
surface, and t;, i =1,2,3, represents any tangent vector on the surface. We remark that

the quantity ( g;"g%) represents the ith component of the surface gradient of the surface
tension, or equivalently, the tangential surface forces in the ith direction. Note that, with
no loss in generality, we have assumed an atmospheric pressure equal to zero in (2.13).

Since the surface tension depends on the co-ordinates indirectly via the temperature,
the tangential boundary conditions can also be expressed as

oT
tiaijnj:_ti <glp-‘a—“’}/01') . (2.15)
r
Note that the derivative % = —70T according to our linearization (2.2).

2.2 Treatment of the pressure

Before we express the governing equations in non-dimensional form, we discuss the
treatment of the pressure. In the momentum equations, we express the buoyancy term
on the right hand side as

AT
0080i3(1—B(T—To)) =pogdi +Pogi5i3ﬁ7x3 —0089i30.

The first two terms on the right hand side can again be expressed as

AT 9 1 AT
00893 +pog51-3ﬁ7x3 =9 (pogxa + Epogﬁ7 x%) Ji3.

Hence, these two terms can be “absorbed” into the pressure by defining a modified pres-
sure

1 AT
p*(x1,%2,%3,t) = p(x1,%2,x3,t) +pgx3 + Epogﬁ7x§.

The meaning of this is just that the modified pressure already includes the contribution
from the hydrostatic pressure (the term pgx3) and the contribution from the buoyancy
term associated with a linear temperature profile, 300gB4F x3. In summary, with the new
modified pressure, we can write

*

dp _dp
—a—JCiJrPongzs(l—ﬁ(T—To)) =9

In the following, we will assume that we do this modification of the pressure and will
just drop the superscript *.

+P0g5i3,5®/ 121/2/3
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2.3 Non-dimensionalization

We now proceed with non-dimensionalizing the governing equations. To this end, we
non-dimensionalize the spatial co-ordinates by setting

xi=x;/d, i=1,2,3,
and scaling time with the thermal diffusion time constant,
V=t/(d*/ar),

where the thermal diffusivity
xr=k/poc.

The scaling of length and time naturally gives a scaling for velocity as the ratiod/ (d* /ar)=
at/d. Hence, we non-dimensionalize the velocity as

ui=u;/(ar/d), i=1,2,3.
In addition, it will prove natural to non-dimensionalize the pressure as
p'=p/(par/d).
Finally, we scale the temperature using the temperature difference AT, i.e.,
T'=T/AT.

Dropping all the primes, the governing equations in () can then be expressed in non-
dimensional form as

% o 2.16)

ax]- ’ '

1 (du; ou; anj .

JE— R —_— = — R ; = . 7

Pr ( ot +1/l] ax]> ax] + a®513/ 1 1,2,3, (2 1 )
2

0 ,0_9° . (2.18)

ot ]ax]' ax]ax]

Here, all the dependent and independent variables should be interpreted as being non-
dimensional quantities according to the scalings discussed above. In addition, we have

introduced the Prandtl number,
v
Pr=—
xr

where v =/ pg is the kinematic viscosity, and the Rayleigh number,

a_gﬁATd3
oapv

R
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We also need to non-dimensionalize the boundary conditions. To this end, we need
to use the same scalings as for the governing equations. For the normal direction along
the free surface d(); we get

n;oijn; =ykK, (219)

where < is a non-dimensional surface tension given by

7(@)= é-ﬁ—Ma(l—@), (2.20)

and « is the non-dimensional curvature. Note that v in (2.20) depends on the non-
dimensional temperature ©, the Capillary number, Ca, defined as

par
Ca = —,
Yod

and the Marangoni number, Ma, defined as

_ 70TATd
par

Ma

For the tangent direction along the free surface, we get

d
tiO'i]'Yl]':Ma <tigféw(1—®)>. (221)

The components of the non-dimensional stress tensor are given as

du; Ou; .
0ij = —pdij+ <a—x;+a—x:> j=123,

where p and u;, i =1,2,3 represent the non-dimensional pressure and nondimensional
velocity, respectively.
The remaining boundary conditions are:

90

5= 0, on 0();, (2.22)
?i_i) =0 and u;=0, i=1,2,3, on 0Q);, (2.23)
®=0 and u;=0, i=1,23, on 9(). (2.24)

Finally, we need to specify initial conditions for the temperature and the velocity.
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3 Governing equations: Weak form

We now present the weak formulation of the non-dimensionalized problem (2.16)-(2.18),
subject to the boundary conditions (2.19), (2.21), and (2.22)-(2.24).
We first introduce the function spaces X, Y, and Z defined as

X ={o(t) e H{(Q(t)), v(t) =0 on €Y U, },

)
Y={q(t) e L*(Q(1))},
Z={v(t) e H'(Q(t)), v(t) =0 on 00 }.

The governing equations for fluid flow can then be expressed as: find u(t)eX,i=1,2,3
and p(t) €Y such that

1 ou; ou;
ﬁ/()( ot TOMigy, )dQ
_/ ( E)Ulgl]—i—v,Ra@(S,g) dOQ+1,(v;), Vo;(t) € X, (3.1)
Bu]
/ 150400, ¥a(b)e, (3.2)

while the governing equation for heat transfer can be expressed as: find ©(t) € Z such

that
/U( o Ty >dﬂ—/0<t)(‘a—xja—x]+w3)d0 Vo(t)eZ.  (33)

Note that we have here explicitly indicated that the (non-dimensional) domain 2 can be
a function of time. In (3.1),

Iv(v,‘) :/E)Q (t)vl'U',‘jTl]'dS (34)

v

is the surface integral resulting from integration by parts of the volume term | o vz % S0dO.
Using the boundary conditions (2.19) and (2.21) we can express this integral as

0
L, (v;) :/807(t)vi (’y(@)xni—i—Ma (gf‘ﬁ(l—é)))) ds (3.5)

The curvature-normal product kn; can again be replaced with a very powerful expression
presented in [12] and derived in detail in [3],

19(g87)
o (3.6)

Kn; =
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where g is the square root of the determinant of the metric tensor; see (2.12). Inserting
(3.6) into (3.5) and using (2.20) we get

_ (2 10(ggf) .
zy(vi)_/awt)v,[<6+Ma(1—®)>§ - +Ma(giw(1—®)>]d5. (3.7)

Using integration by parts on the integral in (3.7) and simplifying the expressions, we
readily arrive at the following simple expression for the surface integral I, (v;),

00;
L (v; :—/ 0) % oags. 3.8
(== [ re)5 65

We now make several remarks regarding the final form (3.8). First, we have here assumed
that we do not get any contribution from the boundary of the free surface (i.e., the surface
of the free surface) when we perform the second integration by parts. This assumption
is satisfied when the free surface is attached to a wall (v; =0), for periodic boundary con-
ditions (which we will also consider below), and for free surfaces with no boundaries at
all (e.g., for bubbles). Second, the simple form (3.8) is the same as presented in [12], and
we will here exploit this form in order to simulate three-dimensional Bénard-Marangoni
flows. To our knowledge, this is the first time this variational form has been exploited for
such problems, and where also free surface deformations are allowed. Third, this simple
expression includes the contribution from both normal and tangential stresses; the inte-
grand has a form similar to a surface Laplacian and allows for a variable surface tension.
Note that no differentiation of the surface tension is required. Another advantage of this
form comes from the fact that the regularity requirement on the geometry representation
has been lowered through integration-by-parts; only the first derivative of x; is necessary
even though this expression also incorporates curvature effects.

4 ALE formulation

Let us now briefly recall the main ingredients in deriving the Arbitrary Lagangian Eule-
rian formulation [13] from (3.1)-(3.3). First, we introduce a domain velocity with compo-
nents w;, i=1,2,3, in order to describe the time-dependent evolution of the domain Q(t)
both in the interior and on the boundary;, i.e.,

dxz-

—=w;, =123

dt
Second, we can exploit Reynolds transport theorem [1] in order to move the differenti-
ation with respect to time outside the volume integral; this will prove very useful for
the subsequent numerical treatment since () is, in general, time-dependent. Finally, we
exploit Euler’s expansion formula [1] to arrive at the following ALE-formulation of fluid
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problem (3.1)-(3.2): find u;(t) € X, i=1,2,3 and p(t) €Y such that

1 d/ vu;dQ = / ( U,]+U,Ra®5,3>d0—|—1 (v;)

Prdt
1 ou; ow
_P_r/(2(t)<vi[uj_wj]a; vitlig >d0 Voi(t) € X, (4.1)
au]
/ g=LdO=0, Vg(t)eY. (4.2)
ax]

The ALE-formulation of the heat transfer problem (3.3) reads: find ©(t) € Z such that

d 0v 00
2/ veda= / e 40
dt/omv om( Jx; 0x; +W3>

00 aw]‘
— — 1dQ tH)eZ. 4.
/Q(t) (v [uj—wj]=— ax, —v ax, > , Vo(t) € 4.3)
We remark that the last integrals in (4.1) and (4.3) represent all the convective contribu-
tions.

In addition, we must also impose a kinematic condition along the free surface 9Q);(t):

win; =u;n;. (44)

This condition says that the normal velocity of the free surface must coincide with the
normal fluid velocity along the free surface (“fronttracking”). No particular condition
is required for the tangential domain velocity, and this flexibility can be exploited when
considering the subsequent numerical treatment. There is also significant flexibility in
terms of the extension of the domain velocity from the boundary to the interior; see [10].
Finally, we need to impose initial conditions for the temperature and the velocity.

5 Discretization

Our starting point for the numerical discretization is the ALE formulation presented
above. The domain Q)(#) is first decomposed into K spectral elements, QF, k=1,---,K;
see [17]. Each element OF is considered as a unique mapping ®* of the reference domam
Q= (-1,1)%in the following, the reference variables are denoted as r*, x =1,2,3.

Following this spatial discretization procedure, the fluid velocity, the temperature,
the mesh velocity, and the geometry are all approximated as Nth order polynomials in
each spatial direction in each element (all expressed in terms of the reference variables r*,
«=1,2,3), while the pressure is approximated as polynomials of degree N —2 within each
element. The discrete problem derived through a Galerkin procedure then represents a
stable discretization and results in a spatial discretization error which depends on the
regularity of the solution and the data; see [17].
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Figure 3: Spectral element grid for the simulation of Bénard-Marangoni convection in a three-dimensional
"cylinder”; the cross-section is here a six-sided polygon. The domain is decomposed into a single layer of K=12
spectral elements, each of order N. The free surface (top surface) is here comprised of twelve element faces,
with each face representing a surface patch I' as discussed earlier; see Fig. 2.

The spectral element method has previously been used to simulate three-dimensional,
viscous, free surface flows [5,12], however, the more general case involving Bénard-
Marangoni flows with deformable free surfaces has not been considered before using
any computational method. In the rest of this section we thus focus on the geometry
representation and on how this is used to incorporate the general free surface boundary
conditions discussed earlier.

Consider for a moment the geometry representation within element QF. We express
the physical coordinates using a nodal, tensor-product basis,

N N N
N2 =Y Y Y 6 i 0 (P (), i=128, (51)
1=0m=0n=0

where (xf’N )imn are the basis coefficients (nodal values), and /,(r) €Py(—1,1) is the one-
dimensional Lagrangian interpolant through the Gauss-Lobatto Legendre points ¢,, g =
0,---,N, and with

Cp(Cq) =pg-

A common procedure to determine the nodal values (xf’N )imn is to first determine the
surface values from known data, and then compute the interior values via a Gordon-Hall
mapping procedure [8,11]. It should be clear from (5.1) that, since the geometry is also
approximated as Nth order polynomials, we are using an isoparametric representation.
The free surface boundary conditions are imposed through the surface integral given
in (3.8). Let us briefly discuss the details of how this is done for the discrete problem.
First, we remark that the free surface will comprise a number of element faces. For ex-
ample, in Fig. 3, the free surface (top surface) is comprised of 12 element faces. Let us
assume that the free surface representation corresponding to element O is given by (5.1)
for r>=1. In this case, the surface patch depicted in Fig. 2 is simply given by xf’N (r,121).
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Hence, we automatically have a parameterization of each surface patch. Applying (2.8)
to this surface parameterization, we can easily construct the covariant base vectors g,
through simple differentiation. At this point, the metric tensors, contravariant base vec-
tors etc. can easily be computed from (2.9)-(2.12).

In the discrete problem the surface integral (3.8) is first broken up into a sum of
smaller integrals, each integral going over one single element face (or surface patch).
Each such integral is again expressed in terms of the reference variables (e.g., r' and r?),
and a standard Gauss-Lobatto Legendre quadrature rule is used. Note that the differen-
tial dS in (3.8) should be expressed as

dS=gdrldr

before Gauss quadrature is employed.

For the temporal discretization we have extended the convection-Stokes splitting ap-
proach presented in [18] (the OIF-method) to time-dependent geometries. This has al-
lowed us to obtain first, second or third order convergence in time for selected problems;
see the following section for a numerical test problem. We remark that the work pre-
sented in this paper is part of a larger research effort on high-order methods for problems
in time-dependent domains, and the technical details of the temporal treatment will be
reported elsewhere. The applications we focus on in this paper represent steady state
solutions, however, each discrete approximation is obtained by integrating the unsteady
equations until a steady state has been reached.

6 Numerical test problem

We first verify our discretization approach by solving the three-dimensional Navier-
Stokes equations in a cylindrical domain as depicted in Fig. 4. The domain boundary
is here fixed at all times, however, we specify an artificial time-periodic mesh velocity in
the interior. The mesh velocity is a function of both space and time, and is zero on the
domain boundary; see Fig. 5. In fact, the mesh velocity is chosen to be C* within each
spectral element, but only C° across the element boundaries. We also specify a forcing
function in the momentum equations by requiring that the following analytic solution
satisfies the incompressible Navier-Stokes equations (here expressed in cylindrical coor-
dinates):

u,(r,0,z,t) = %sinz(rtr)sin(O) sin(27tz)sin(t), (6.1)
ug(r,0,z,t) = —%sinz(nr)cos(G)sin(27rz)sin(t), (6.2)
u(r,0,z,t) = m%sin(nr) (chos(mf) + %sin(nr)) sin(0)(cos(27tz) —1)sin(t),  (6.3)

p(,6,z,t) =sin?(7tr)sin(7tz)sin(t). (6.4)
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Figure 4: Computational domain used in the convergence study of the ALE scheme. The cylindrical domain is
decomposed into two layers of spectral elements, each layer comprising five spectral

elements.
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Figure 5: The external boundary of the cylindrical domain in Fig. 4 is fixed. However, we specify a mesh velocity

in the interior of the cylinder which is a function of both space and time (periodic in time). The plot shows the
grid-configuration at a few time levels of the mid-plane of the cylinder during one single period. The exact flow
solution in the cylindrical domain is given by (6.1)-(6.4).
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Figure 6: The left plot depicts the discretization error (energy norm) as a function of the time step, At, for
a first, second, and third order temporal splitting scheme; the spatial error is here subdominant the temporal
error. The right plot depicts the discretization error as a function of the polynomial degree, N, used in each
spectral element; the temporal error is here subdominant the spatial error for N < 15.

The convergence results in Fig. 6 show the expected behavior: first, second, and third
order convergence in time, and exponential convergence in space for problems with an-
alytic solutions and data. A complete discussion of the splitting scheme, together with
additional numerical results, will be presented in a forthcoming article.

7 Simulation of three-dimensional Bénard-Marangoni flows

We now present simulation results which exploit many benefits of the proposed compu-
tational approach. In particular, we consider Bénard-Marangoni convection in a horizon-
tal fluid layer heated from below and with a free surface on the top. The terms “top” and
“bottom” here refer to the case when gravitational forces are present (e.g., on Earth with
gravity pointing downwards); however, we also consider zero-gravity conditions.

An issue which has been studied extensively, both experimentally and theoretically,
is the small deformation of the free surface in the presence of hexagonal cells. Depending
on whether buoyancy effects or surface tension gradient effects are dominating, the free
surface is either elevated or depressed at the centers of the cells. Previous computational
studies of Bénard-Marangoni convection have been done, however, all these studies as-
sume a fixed and undeformed “free” surface. In the present study, we include all the
physical effects, combining both normal and tangential stresses along the free surface via
the surface integral I,. We are therefore able to compute the associated surface deflection
over each hexagonal cell.

We now report some of the results obtained by our computational approach. The first
results are for the case with an infinite Prandtl number and zero Rayleigh number. In
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Figure 7: Spectral element grid for the simulation of Bénard-Marangoni convection in a three-dimensional box.
The domain is decomposed into a single layer of K=6 spectral elements, each of order N. The free surface
(top surface) is here comprised of six element faces.

steady state, this corresponds to the limit of solving the steady Stokes equations in zero
gravity conditions. The computational domain is a three-dimensional box, with periodic
boundary conditions specified along the ”vertical” sides. This particular case has been
studied computationally in [24] and [19], but then with a fixed and flat “free” surface.

The spectral element discretization used to solve this problem is depicted in Fig. 7.
Specifically, the physical domain is given by Q= (0,1;) % (0,1,) x (0,d), with

L_d4r L
d- /3K d k'

and with k=1.9929. The specific periodicity lengths are compatible with the formation of
a single hexagonal cell as predicted by linear stability theory [7,14,21]. These periodicity
lengths are also used in [24] and [19].

At this point we comment on the periodic boundary conditions that we impose along
the ”vertical” sides (periodicity in the x; and x; directions). Periodic boundary conditions
were also used in [24], while [19] imposed symmetry boundary conditions. Both [24]
and [19] used the velocity formulation of the Navier-Stokes equations, which is appro-
priate for this problem as long as a flat and fixed “free” surface is assumed. However,
it is interesting to note that symmetry boundary conditions cannot be used in our case
since we are using the full stress formulation of the Navier-Stokes equations; symmetry
boundary conditions (i.e., zero tangential stress) along the “vertical” sides will not be
compatible with the free surface boundary conditions for this problem.

Along the free surface, the normal mesh velocity is set equal to the normal fluid ve-
locity in accordance with the kinematic condition (4.4). Homogeneous Dirichlet bound-
ary conditions are chosen for the tangential components, and the interior mesh veloc-
ity is computed through a simple element-based Gordon-Hall mapping; see [11]. These
choices can certainly be justified for this type of applications where we expect the free
surface deformation to be small. Note that, at steady state, the normal fluid velocity is
zero along the free surface, and the mesh velocity is zero in the entire domain. Also note
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Figure 8: Numerical results for the three-dimensional Bénard-Marangoni convection problem. The left plot
shows the velocity vectors, while the right plot depicts the temperature distribution over the free surface at

steady state (top view) for the case with Ma=90, Ra=0, Pr=o00, and Ca=3-10"%
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that, at steady state, the temporal splitting scheme will have steady state errors, similar
to the original OIF-scheme for fixed geometries; see [18].

The initial condition for the velocity is zero, while the temperature (or, more precisely,
the deviation from a purely conductive temperature profile) is set to be a random field at
time £ =0. Specifically, we set

O(x1,x2,x3,6=0) =0 -Rand(x1,x2) - x3(2—x3),

with ®y=0.1, and Rand(x3,x2) a random variable in the [0,1] range.

We first present numerical results for Ma=90. The results in Fig. 8 depict the velocity
vectors and temperature distribution over the free surface at steady state (top view); we
clearly see the presence of hexagonal cells. The center of each cell is hot, while the exterior
region of each cell is cold. In Fig. 9 we also show the deformation of the free surface
over a single cell; the depressed free surface at the center of the cell is consistent with
the fact that there are no buoyancy effects. Fig. 10 illustrates the same results seen from
above (using a different shading to represent surface elevation); we clearly see that the
results are independent of the particular surface discretization, indicating the advantages
of expressing the surface integral I, in (3.8) using surface intrinsic coordinates. Finally, in
Fig. 11, we report the maximum surface deflection as a function of the Capillary number;
the results are consistent with earlier theoretical results based on linear stability analysis;
see [23].
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Figure 9: Non-dimensional free surface elevation over a single periodic structure using two different spectral
element grids: one grid with straight sides (left) and one grid with deformed sides (right) inside the periodic

structure. Here, Ma=90, Ra=0, Pr=o00, and Ca=3-10"%.
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Figure 10: Similar results as in Fig. 9, but now showing the top view. A particular shading is here used to
illustrate the free surface elevation. Note that the simulation results do not depend on whether we use a very
regular spectral element grid (left plot) or an artificially deformed grid (right plot).

We have also computed the kinetic energy

1

E,= / (3 +ud+ud)dV
0

for different values of the Marangoni number and at steady state. For these results we
have assumed a fixed free surface in order to be able to compare with earlier presented
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Figure 11: Numerical results for the three-dimensional Bénard-Marangoni convection problem: maximum surface

deflection as a function of the Capillary number for the case with Ma=90, Ra=0, and Pr=cc. Periodic boundary
conditions are specified along the "vertical” sides.
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Figure 12: A plot of the energy measure Ell/z at steady state for different values of the Marangoni number.
The domain is the three-dimensional box depicted in Fig. 7.

results. In Fig. 12 we plot EL/? as a function of Ma in the range between 78 and 80. Note
that we start with the largest Marangoni numbers and reduce Ma until we do not observe
any hexagonal cells. From this plot we see that this happens when the Marangoni number
Ma =79.2. This should be compared with a critical Marangoni number Ma, =79.6 based
on linear stability analysis [20]. Our simulation results are in good agreement with the
results presented in [24] where the subcritical regime extends down to Ma=79.0.
Finally, we show the steady state results for a case where both buoyancy effects and
surface gradient effects are present; the particular values of the non-dimensional num-
bers correspond to the properties of silicon oil. The domain has the shape of a hexagon
(top view). The boundary conditions for the fluid problem are solid walls on the bottom
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Figure 13: Three-dimensional simulation results for the Bénard-Marangoni convection problem in a hexagonal
domain for the case Ma=105, Ra=48, Pr=890, and Ca=3-10"* (corresponding to silicon oil): temperature
contours (top view).

(@)

1.0011

1.0005f

0.9995

0.9991

(b) i

Figure 14: Three-dimensional simulation results for the Bénard-Marangoni convection problem in a hexagonal
domain for the case Ma =105, Ra=48, Pr=890, and Ca=3-10"*% (corresponding to silicon oil); see Fig. 13:
(a) a surface plot of the non-dimensional free surface deflection; (b) side view, including axes. Note that the
surface deformation is largest in the center of the domain where the effect of the domain boundary is smallest.
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and along the vertical sides, and free surface conditions on the top surface. The boundary
conditions for the thermal problem are homogeneous Dirichlet condition on the bottom
surface and adiabatic conditions along the remaining sides. The initial condition for the
velocity is zero, while the temperature (or, more precisely, the deviation from a purely
conductive temperature profile) is again set to be a random field at time ¢+ =0. Fig. 13
depicts the temperature contours at steady state, while Fig. 14 depicts the corresponding
free surface deflection. The formation of seven cells is in qualitative agreement with the
numerical and experimental results presented in [19] using a flat "free” surface. How-
ever, we are here also able to predict the detailed free surface deflection.

8 Conclusions

We have presented a coupled thermal-fluid model for Bénard-Marangoni convection in
a three-dimensional fluid layer. The governing equations have been derived in a fair
amount of detail due to the fact that we have not assumed a flat free surface. In ad-
dition, we have presented the free surface boundary conditions (normal and tangential
stresses) in general curvilinear coordinates, and thus prepared for the use of flexible dis-
cretizations. Based on the weak form of the governing equations, we have presented a
high order spatial discretization approach using spectral elements. An operator splitting
approach has been used for the temporal treatment. Since we primarily have been inter-
ested in steady state solutions, the focus has been on the spatial discretization. The overall
computational approach is very attractive to use for several reasons: (i) the solution can
be expected to have a high degree of regularity and rapid convergence can be expected;
(ii) the spectral element decomposition automatically gives a convenient parameteriza-
tion of the free surface that allows powerful results from differential geometry to easily
be exploited; (iii) free surface deformation can easily be included; (iv) both normal and
tangential stresses are conveniently accounted for through a single surface integral; (v)
no differentiation of the surface tension is necessary to include thermocapillary effects
(due to integration-by-parts twice); (vi) the geometry representation of the free surface
need only be C° even though curvature effects are included. The proposed approach has
been used to simulate Marangoni flows at zero-gravity conditions and at infinite Prandtl
number. Finally, we have presented simulation results of Bénard-Marangoni convection
in silicon oil. All the results we have obtained are in good agreement with previously re-
ported computational results. However, we are here also able to predict the free surface
deflection due to buoyancy and thermocapillary effects; these results are in qualitative
agreement with previous experimental and analytical results.
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