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1 Introduction

Spectral methods for solving PDEs on unbounded domains can be essentially classified
into four approaches:

(i) Domain truncation: truncate unbounded domains to bounded domains and solve
the PDEs on bounded domains supplemented with artificial or transparent boundary
conditions (see, e.g., [17, 21, 22, 25, 44, 51]);

(ii) Approximation by classical orthogonal systems on unbounded domains, e.g., La-
guerre or Hermite polynomials/functions (see, e.g., [7, 14, 20, 30, 31, 36, 43, 47]);

(iii) Approximation by other, non-classical orthogonal systems (see, e.g., [14]), or by
mapped orthogonal systems, e.g., image of classical Jacobi polynomials though a suitable
mapping (see, e.g. [32, 34, 35, 54]);

(iv) Mapping: map unbounded domains to bounded domains and use standard spec-
tral methods to solve the mapped PDEs in the bounded domains (see, e.g., [9–12, 15, 24,
26]).

Boyd provided in [11] an excellent review on general properties and practical imple-
mentations for many of these approaches. In general, the domain truncation approach
is only a viable option for problems with rapidly (exponentially) decaying solutions or
when accurate non-reflecting or exact boundary conditions are available at the truncated
boundary. On the other hand, with proper choices of mappings and/or scaling param-
eters, the other three approaches can all be effectively applied to a variety of problems
with rapid or slow decaying (or even growing) solutions. Since there is a vast literature
on domain truncations, particularly for Helmholtz equations and Maxwell equations for
scattering problems and the analysis involved is very different from the other three ap-
proaches, the domain truncation approach will not be addressed in this paper.

We note that the last two approaches are mathematically equivalent (see Section 2.5.1
for more details) but their computational implementations are different. More precisely,
the last approach involves solving the mapped PDEs (which are often cumbersome to
deal with) using classical Jacobi polynomials while the third approach solves the original
PDE using the mapped Jacobi polynomials. The main advantage of the last approach
is that it can be implemented and analyzed using standard procedures and approxima-
tion results, but its main disadvantage is that the transformed equation is usually very
complicated which, in many cases, makes its implementation and analysis unusually
cumbersome. On the other hand, we work on the original PDE in the third approach and
approximate its solution by using a new family of orthogonal functions which are images
of classical Jacobi polynomials under a suitable mapping. The analysis of this approach
will require approximation results by the new family of orthogonal functions. The main
advantage is that once these approximation results are established, they can be directly
applied to a large class of problems. Thus, we shall mainly concentrate on the second
and third approaches, and provide a general framework for the analysis of these spectral
methods.

While spectral methods have been used for solving PDEs on unbounded domains
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for over thirty years, and there have been several isolated efforts in the early years on
the error analysis of these methods (see, e.g. [6, 7, 15, 20, 23, 42]), it is only in the last ten
years or so that the basic approximation properties of these orthogonal systems, and their
applications to PDEs, were systematically studied (cf. [13] for a brief account). However,
many of these analyses use different approaches and involve complicated Sobolev spaces,
making it hard for non-experts to extract useful information from these error estimates
and to carry out error analysis for their applications. The main purposes of this paper
are three folds: (i) to present a unified framework, for the analysis of mapped Jacobi,
Laguerre and Hermite spectral methods, which leads to more concise results (than those
appeared in the literature) and optimal approximation results in most situations; (ii) to
make a detailed comparison on the convergence rates of different methods for several
typical solutions; and (iii) to provide a brief (by no means complete) review on some
of the recent work for the analysis and application of spectral methods in unbounded
domains.

This paper is organized as follows. In the next section, we consider the mapped spec-
tral methods and present a unified framework to study their convergence properties.
In Section 3, we consider the approximation by the (generalized) Laguerre polynomi-
als/functions, and Section 4 is devoted to the approximation by the Hermite polynomi-
als/functions. These three sections are presented with a unified style and encompass
most of the important approximation results on these orthogonal systems developed in
the last few years. In Section 5, we provide some implementation details and compare the
performances of different methods with two typical examples. In Section 6, we discuss
various extensions and other issues related to the applications of these spectral methods.
We end this paper with a few concluding remarks.

We now introduce some notations. Let ω(x) be a certain weight function in Ω:=(a,b),
where a or b could be infinite. We shall use the weighted Sobolev spaces Hr

ω(Ω) (r =
0,1,2,···), whose inner products, norms and semi-norms are denoted by (·,·)r,ω, ‖·‖r,ω

and |·|r,ω , respectively. For real r >0, we define the space Hr
ω(Ω) by space interpolation.

In particular, the norm and inner product of L2
ω(Ω) = H0

ω(Ω) are denoted by ‖·‖ω and
(·,·)ω, respectively. The subscript ω will be omitted from the notations in case of ω≡ 1.
For notational convenience, we denote ∂k

x =dk/dxk, k≥1, and for any nonnegative integer
N, let PN be the set of all algebraic polynomials of degree ≤N. We denote by c a generic
positive constant independent of any function and N, and use the expression A . B to
mean that there exists a generic positive constant c such that A≤ cB.

2 Mapped Jacobi methods

A common and effective strategy in dealing with an unbounded domain is to use a suit-
able mapping that transforms an infinite domain to a finite domain. Then, images of clas-
sical orthogonal polynomials under the inverse mapping will form a set of orthogonal ba-
sis functions which can be used to approximate solutions of PDEs in the infinite domains.



198 J. Shen and L. Wang / Commun. Comput. Phys., 5 (2009), pp. 195-241

Early practitioners of this approach include Grosch & Orszag [24] and Boyd [8]. The
book by Boyd [11] contains an extensive review on many practical aspects of the mapped
spectral methods. In the last couple of years, a series of papers have been devoted to the
convergence analysis of the mapped spectral methods (see, e.g., [34, 35, 39, 54]).

We present below a general framework for the analysis and implementations of the
mapped spectral methods.

To study the properties of the mapped Jacobi approximations, we recall some basic

properties and results for the classical Jacobi polynomials J
α,β
n (y), y∈ I :=(−1,1), n≥0.

2.1 Some results on Jacobi approximations

Let ωα,β(y)=(1−y)α(1+y)β be the Jacobi weight function. For α,β>−1, the Jacobi poly-
nomials are mutually orthogonal in L2

ωα,β(I), i.e.,
∫

I
J

α,β
n (y)J

α,β
m (y)ωα,β(y)dy=γ

α,β
n δn,m, (2.1)

where δn,m is the Kronecker function, and

γ
α,β
n =

2α+β+1Γ(n+α+1)Γ(n+β+1)

(2n+α+β+1)Γ(n+1)Γ(n+α+β+1)
. (2.2)

They are eigenfunctions of the Sturm-Liouville problem:

∂y((1−y)α+1(1+y)β+1∂y J
α,β
n (y))+λ

α,β
n (1−y)α(1+y)β J

α,β
n (y)=0, (2.3)

with the eigenvalues:

λ
α,β
n =n(n+α+β+1), n≥0, α,β>−1. (2.4)

Now, we define the L2
ωα,β(I)−orthogonal projection: π̂

α,β
N : L2

ωα,β(I)→PN , such that

(π̂
α,β
N v−v,vN)ωα,β =0, ∀vN ∈PN . (2.5)

Define the weighted space

B̂m
α,β(I) :={v∈L2

ωα,β (I) : ∂k
yv∈L2

ωα+k,β+k(I), 0≤ k≤m}. (2.6)

The following result was proved in [19] (see also [3, 38]):

Lemma 2.1.

‖∂l
y(π̂

α,β
N v−v)‖ωα+l,β+l . Nl−m‖∂m

y v‖ωα+m,β+m , 0≤ l≤m, ∀v∈ B̂m
α,β(I). (2.7)

Let Iα,β
N be the Jacobi-Gauss or Jacobi-Gauss-Radau interpolation operator. The fol-

lowing interpolation approximation result can be found in [38].

Lemma 2.2. For any v∈ B̂m
α,β(I) with m≥1,

‖∂y(Iα,β
N v−v)‖ωα+1,β+1 +N‖Iα,β

N v−v‖ωα,β

.N1−m‖∂m
y v‖ωα+m,β+m . (2.8)
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2.2 Mappings

Let us consider a family of mappings of the form:

x= g(y;s), s>0, y∈ I :=(−1,1), x∈Λ :=(0,+∞)or (−∞,+∞), (2.9)

such that

dx

dy
= g′(y;s)>0, s>0, y∈ I,

g(−1;s)=0, g(1;s)=+∞, if Λ=(0,+∞),

g(±1;s)=±∞, if Λ=(−∞,+∞).

(2.10)

In this one-to-one transform, the parameter s is a positive scaling factor. Without loss
of generality, we further assume that the mapping is explicitly invertible, and denote its
inverse mapping by

y= g−1(x;s) :=h(x;s), x∈Λ, y∈ I, s>0. (2.11)

Several typical mappings that have been proposed and used in practice are of the
above type (see, e.g., [11] and the references therein):

• Mappings between x∈Λ=(−∞,+∞) and y∈ I =(−1,1) with s>0 :

– Algebraic mapping:

x=
sy√
1−y2

, y=
x√

x2+s2
. (2.12)

– Logarithmic mapping:

x= sarctanh(y)=
s

2
ln

1+y

1−y
, y= tanh(s−1x). (2.13)

– Exponential mapping:

x=sinh(sy), y=
1

s
ln

(
x+

√
x2+1

)
, y∈ (−1,1), x∈ (−Ls,Ls), (2.14)

where Ls =sinh(s).

• Mappings between x∈Λ=(0,+∞) and y∈ I =(−1,1) with s>0 :

– Algebraic mapping:

x=
s(1+y)

1−y
, y=

x−s

x+s
. (2.15)
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– Logarithmic mapping:

x= sarctanh
(y+1

2

)
=

s

2
ln

3+y

1−y
, y=1−2tanh(s−1x). (2.16)

– Exponential mapping:

x=sinh
( s

2
(1+y)

)
, y=

2

s
ln

(
x+

√
x2+1

)
−1, (2.17)

where y∈ (−1,1) and x∈ (0,Ls) with Ls =sinh(s).

The special feature which distinguishes these mappings is that, as |y|→±1, x varies
algebraically, logarithmically or exponentially for algebraic, logarithmic or exponential
mappings, respectively. The parameter s is a scaling/stretching factor which can be used
to fine tune the spacing of collocation points. We also notice that the image of the expo-
nential mappings (2.14) and (2.17) is a finite interval, so they combine both mapping and
domain truncation.

2.3 Mapped Jacobi approximations

Given a mapping x=g(y;s) satisfying (2.9)–(2.11) and a family of orthogonal polynomials
{pk(y)} with y ∈ I = (−1,1),

{
pk(h(x;s))

}
forms a new family of orthogonal functions

in Λ = (0,∞) or (−∞,∞). For example, the algebraic mappings (2.12) or (2.15) with the
Chebyshev or Legendre polynomials lead to orthogonal rational basis functions which
have been studied in [8, 9, 14, 34, 35, 40].

For the sake of generality, we consider the mapped Jacobi approximations. Let J
α,β
k (y)

(α,β >−1) be the k-th degree classical Jacobi polynomials whose properties are summa-
rized in the Appendix. We define the mapped Jacobi polynomials as

j
α,β
s,n (x) := J

α,β
n (y)= J

α,β
n (h(x;s)), x∈Λ, y∈ I. (2.18)

We infer from (2.1) that (2.18) defines a new family of orthogonal functions {j
α,β
s,n } in

L2

ω
α,β
s

(Λ), i.e.,
∫

Λ
j
α,β
s,n (x)j

α,β
s,m(x)ω

α,β
s (x)dx=γ

α,β
n δm,n, (2.19)

where the constant γ
α,β
n is given in (2.2), and the weight function

ω
α,β
s (x)=ωα,β(y)

dy

dx
=ωα,β(y)(g′(y;s))−1

>0, (2.20)

with y=h(x;s) and ωα,β(y)=(1−y)α(1+y)β.
We now present some approximation properties of these mapped Jacobi polynomials.

Let us define the finite dimensional approximation space

V
α,β
s,N =span{j

α,β
s,n (x) : n=0,1,··· ,N}, (2.21)
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and consider the orthogonal projection π
α,β
N,s : L2

ω
α,β
s

(Λ)→V
α,β
s,N such that

(
π

α,β
N,su−u,vN

)
ω

α,β
s

=0, ∀vN ∈V
α,β
s,N . (2.22)

Thanks to the orthogonality, we can write

(
π

α,β
N,su

)
(x)=

N

∑
n=0

û
α,β
s,n j

α,β
s,n (x), (2.23)

where

û
α,β
s,n =

1

γ
α,β
n

∫

Λ
u(x)j

α,β
s,n (x)ω

α,β
s (x)dx.

We now introduce a weighted space which is particularly suitable to describe the
L2−projection errors. Given a mapping satisfying (2.9)–(2.11), we set

as(x) :=
dx

dy
(>0), Us(y) :=u(x)=u(g(y;s)). (2.24)

The key to express the error estimates in a concise form is to introduce an operator

Dxu := as
du

dx
.

One verifies readily that

dUs

dy
= as

du

dx
= Dxu,

d2Us

dy2
= as

d

dx

(
as

du

dx

)
= D2

xu,

and an induction argument leads to

dkUs

dyk
= as

d

dx

(
as

d

dx

(
··· ···

(
as

du

dx

)
··· ···

)

︸ ︷︷ ︸
k−1 parentheses

:= Dk
xu. (2.25)

Let us define
B̃m

α,β(Λ)=
{

u : u is measurable in Λ and ‖u‖B̃m
α,β

<∞
}

equipped with the norm and semi-norm

‖u‖B̃m
α,β

=
( m

∑
k=0

‖Dk
xu‖2

ω
α+k,β+k
s

) 1
2
, |u|B̃m

α,β
=‖Dm

x u‖
ω

α+m,β+m
s

,

where the weight function ω
α+k,β+k
s is defined in (2.20). We have the following funda-

mental results for the mapped Jacobi approximations.
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Theorem 2.1. If u∈ B̃m
α,β(Λ), we have that for m≥0,

‖π
α,β
s,Nu−u‖

ω
α,β
s

. N−m‖Dm
x u‖

ω
α+m,β+m
s

, (2.26)

and for m≥1,

‖∂x(π
α,β
s,Nu−u)‖

ω̃
α,β
s

. N1−m‖Dm
x u‖

ω
α+m,β+m
s

, (2.27)

where

ω̃
α,β
s (x)=ωα+1,β+1(y)g′(y;s), y=h(x;s).

Proof. Let Us(y) = u(x) = u(h(y;s)) whose Jacobi expansion is Us(y) = ∑
∞
n=0Û

α,β
s,n J

α,β
n (y).

Then, by the definition (2.18), we have the relation between the coefficients of the Jacobi
and mapped Jacobi expansions:

û
α,β
s,n =

1

γ
α,β
n

(u, j
α,β
s,n )

ω
α,β
s

=
1

γ
α,β
n

(Us, J
α,β
n )ωα,β = Û

α,β
s,n . (2.28)

Let π̂
α,β
N be the L2

ωα,β−orthogonal projection operator associated with the Jacobi polyno-
mials (cf. (2.5)). By (2.1), (2.19) and Lemma 2.1,

‖π
α,β
s,Nu−u‖2

ω
α,β
s

=
∞

∑
n=N+1

(û
α,β
s,n )2γ

α,β
n =

∞

∑
n=N+1

(Û
α,β
s,n )2γ

α,β
n

=‖π̂
α,β
N Us−Us‖2

ωα,β . N−2m‖∂m
y Us‖2

ωα+m,β+m

. N−2m‖Dm
x u‖2

ω
α+m,β+m
s

. (2.29)

Next, we deduce from (2.18) and the orthogonality of {∂y J
α,β
n } that {∂x j

α,β
s,n } is L2

ω̃
α,β
s

−
orthogonal, and

‖∂x j
α,β
s,n ‖2

ω̃
α,β
s

=‖∂y J
α,β
n ‖2

ωα+1,β+1 =λ
α,β
n γ

α,β
n ,

where λ
α,β
n is the eigenvalue of the Jacobi Sturm-Liouville problem (cf. (2.4)). Therefore,

by (2.28) and Lemma 2.1,

‖∂x(π
α,β
s,Nu−u)‖2

ω̃
α,β
s

=
∞

∑
n=N+1

λ
α,β
n γ

α,β
n (û

α,β
s,n )2 =

∞

∑
n=N+1

λ
α,β
n γ

α,β
n (Û

α,β
s,n )2

=‖∂y(π
α,β
N Us−Us)‖2

ωα+1,β+1 . N2(1−m)‖∂m
y Us‖2

ωα+m,β+m

. N2(1−m)‖Dm
x u‖2

ω
α+m,β+m
s

. (2.30)

This ends the proof.
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Remark 2.1. It should be pointed out that under the above general settings, the approxi-
mation results on the higher-order projections, such as the H1

ω
α,β
s

(Λ)− orthogonal projec-

tion π
1,α,β
s,N : H1

ω
α,β
s

(Λ)→V
α,β
s,N , can be established by using the existing Jacobi approximation

results (see, e.g., [38]) and a similar argument as above.

In particular, applying the above results with α=β=0,−1/2 to the algebraic mappings
(2.12) and (2.15) leads to more concise and in some cases improved, Chebyshev and Leg-
endre rational approximation results which were developed separately in [34, 35, 39, 54].

The error estimates in the above theorem look very similar to the usual spectral error
estimates in a finite interval (cf. Lemma 2.1). First of all, it is clear from the above theorem
that the projection error converges faster than any algebraic rate if a function decays
exponentially fast at infinity. For a function with singularities inside the domain, the
above theorem and Lemma 2.1 lead to the same order of convergence, assuming that the
function decays sufficiently fast at infinity. However, for a given smooth function, they
may lead to very different convergence rates due to the difference in the norms used to
measure the regularity.

We now determine the convergence rates for three sets of functions with typical decay
properties:

Set 1. Exponential decay with oscillation at infinity

u(x)=sinkxe−x for x∈ (0,∞) or u(x)=sinkxe−x2
for x∈ (−∞,∞). (2.31)

Set 2. Algebraic decay without oscillation at infinity

u(x)=(1+x)−h for x∈ (0,∞) or u(x)=(1+x2)−h for x∈ (−∞,∞). (2.32)

Set 3. Algebraic decay with oscillation at infinity

u(x)=
sinkx

(1+x)h
for x∈ (0,∞) or u(x)=

sinkx

(1+x2)h
for x∈ (−∞,∞). (2.33)

Consider first the mapping (2.15). Then,

Dx =
( dy

dx

)−1 d

dx
=

(x+s)2

2s

d

dx
, ωk,l

s (x)=
( 2s

x+s

)k( 2x

x+s

)l 2s

(x+s)2
.

Hence, for u(x)=(1+x)−h, it can be easily checked that ‖Dm
x u‖

ω
α+m,β+m
s

<∞ if m<2h+α+1,

which implies that

‖u−π
α,β
N u‖

ω
α,β
s

. N−(2h+α+1) (u(x)=(1+x)−h). (2.34)
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On the other hand, for u(x) = sinkx ·(1+x)−h, it can also be easily checked that
‖Dm

x u‖
ω

α+m,β+m
s

<∞ if m<
2h+α+1

3 , which implies that

‖u−π
α,β
N u‖

ω
α,β
s

. N−(2h+α+1)/3
(

u(x)=
sinkx

(1+x)h

)
. (2.35)

Next, we consider the mapping (2.12) which leads to

Dx =
( dy

dx

)−1 d

dx
=

(x2+s2)3/2

s2

d

dx
,

ωk,l
s (x)=

(√x2+s2−x√
x2+s2

)k(√
x2+s2+x√

x2+s2

)l s2

(x2+s2)3/2
.

Hence, for u(x)= (1+x2)−h, we have ‖Dm
x u‖

ω
α+m,β+m
s

< ∞ if m <2h+α+1, which implies

that
‖u−π

α,β
N u‖

ω
α,β
s

. N−(2h+α+1) (u(x)=(1+x2)−h). (2.36)

On the other hand, for u(x)=sinkx ·(1+x2)−h, we have ‖Dm
x u‖

ω
α+m,β+m
s

<∞ if m<
2h+α+1

2 ,

which implies that

‖u−π
α,β
N u‖

ω
α,β
s

. N−(2h+α+1)/2
(

u(x)=
sinkx

(1+x2)h

)
. (2.37)

A few remarks are in order: (i) If h is a positive integer, then u(x) = (1+x)−h and
u(x)=(1+x2)−h are rational functions and they can be expressed exactly by a finite sum
of mapped rational functions; (ii) For other cases, only algebraic convergence rates are
achievable even though the functions are smooth; (iii) the convergence rate for solutions
with oscillation at infinities is much slower than that for solutions without oscillation
at infinities; and (iv) For solutions with exponential decay at infinity, the convergence
rate will be faster than any algebraic rate; numerical results in [34, 35, 54] (see also [11])

indicate that the convergence rate is sub-geometrical as e−c
√

N ; and (v) numerical results
performed in [34, 35, 39, 54] are consistent with the estimates in (2.34)-(2.37).

2.4 Mapped Jacobi interpolation approximations

We now consider the Gauss and Gauss-Radau quadrature formulas on unbounded do-
mains based on the mapped Jacobi polynomials. To fix the idea, we only consider the
Gauss quadrature, since the Gauss-Radau quadrature (which is useful in the semi-infinite

interval) can be treated in exactly the same fashion. Let
{

ξ
α,β
N,j,ω

α,β
N,j

}N

j=0
be the Jacobi-

Gauss nodes and weights, and there holds

∫ 1

−1
φ(y)ωα,β(y)dy=

N

∑
j=0

φ(ξ
α,β
N,j)ω

α,β
N,j, ∀φ∈P2N+1. (2.38)
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Applying a mapping (2.9) to the above leads to the mapped Jacobi-Gauss quadrature:

∫

Λ
u(x)ω

α,β
s (x)dx=

N

∑
j=0

u(ζ
α,β
s,N,j)ρ

α,β
s,N,j, ∀u∈V

α,β
s,2N+1, (2.39)

where

ζ
α,β
s,N,j := g(ξ

α,β
N,j;s), ρ

α,β
s,N,j :=ω

α,β
N,j, 0≤ j≤N (2.40)

are the mapped Jacobi-Gauss nodes and weights.

Accordingly, we can define the discrete inner product and discrete norm:

(u,v)
ω

α,β
s ,N

=
N

∑
j=0

u(ζ
α,β
s,N,j)v(ζ

α,β
s,N,j)ρ

α,β
s,N,j, ‖u‖

ω
α,β
s ,N

=(u,u)
1
2

ω
α,β
s ,N

, ∀u,v∈C(Λ).

The mapped Jacobi-Gauss interpolation operator Iα,β
s,N : C(Λ)→V

α,β
s,N , is defined by

Iα,β
s,Nu∈V

α,β
s,N such that (Iα,β

s,Nu)(ζ
α,β
s,N,j)=u(ζ

α,β
s,N,j), j=0,1,··· ,N. (2.41)

Let Iα,β
N be the Jacobi-Gauss (or Jacobi-Gauss-Radau) interpolation operator. By defini-

tion, we have

Iα,β
s,Nu(x)=(Iα,β

N Us)(y)=(Iα,β
N Us)(h(x;s)). (2.42)

Then, we can easily derive the following results by combining Lemma 2.2 and Theorem
2.1.

Theorem 2.2. If u∈ B̃m
α,β(Λ) with m≥1, then

‖∂x(Iα,β
s,Nu−u)‖

ω̃
α,β
s

+N‖Iα,β
s,Nu−u‖

ω
α,β
s

. N1−m‖Dm
x u‖

ω
α+m,β+m
s

. (2.43)

We now examine how the mapping parameter s affects the distribution of the nodes.

Assume that the nodes
{

ζ
α,β
s,N,j

}N

j=0
are arranged in ascending order. We first observe that

by the mean value theorem,

ζ
α,β
s,N,j+1−ζ

α,β
s,N,j = g′(ξ;s)(ξ

α,β
s,N,j+1−ξ

α,β
s,N,j), (2.44)

for certain ξ ∈ (ξ
α,β
s,N,j,ξ

α,β
s,N,j+1). Hence, the intensity of stretching essentially depends on

the derivative values of the mapping. For the mappings (2.13), (2.12), (2.16) and (2.15),
we have

dx

dy
= g′(y;s)=

s

1−y2
,

s

(1−y2)3/2
,

2s

(3+y)(1−y)
,

2s

(1−y)2
, (2.45)

respectively. Therefore, the grid is stretched more and more as s increases.
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Figure 1: (a) Hermite-Gauss points (“◦”) vs. mapped Legendre-Gauss points using the algebraic map (2.12)
with s=1 (“•”) for various n; (b) Mapped Legendre-Gauss points with n=16 and various scaling factor s; (c)
Laguerre-Gauss-Radau points (“◦”) vs. mapped Legendre-Gauss-Radau points using the algebraic map (2.15)
with s=1 (“⋆”) for various n; (d) Mapped Legendre-Gauss-Radau points with n=32 and various scaling factor
s (m is the number of points in the subinterval [0,1)).

In Fig. 1, we plot sample grid distributions for different scaling factors with various
numbers of nodes for the mapped Legendre Gauss (or Gauss-Radau) points (see the cap-
tion for details).

A comparison with Hermite-Gauss points is also presented in Fig. 1(a). We notice
that the mapped Legendre-Gauss points are more clustered near the origin and spread
further, while the Hermite-Gauss points are more evenly distributed. It should be ob-
served that the distribution of mapped Legendre-Gauss points is more favorable since a
much larger effective interval is covered. However, it can be shown that in both cases,
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the smallest distance between neighboring points is O(N−1), as opposed to O(N−2) for
Jacobi-Gauss type nodes in a finite interval.

A comparison of mapped Legendre and Laguerre Gauss-Radau nodes is shown in
Fig. 1(c). The mapped Legendre-Gauss-Radau points are much more clustered near
the origin, and one can check that the smallest distance between neighboring points is
O(N−2), as opposed to O(N−1) for the Laguerre Gauss-Radau nodes. Hence, the dis-
tribution of mapped Legendre-Gauss-Radau points is more favorable as far as resolu-
tion/accuracy is concerned but it will lead to a more restrictive CFL condition if explicit
schemes are used for time-dependent problems.

2.5 Numerical methods using mapped Jacobi polynomials

2.5.1 A generic example

Consider the model equation

γu−∂x(a(x)∂xu)= f , x∈Λ=(−∞,+∞), γ≥0, (2.46)

with suitable decay conditions at ±∞ which will depend on the weight function in the
weighted variational formulation.

For a given mapping x=g(y;s) with x∈Λ and y∈(−1,1), we recall that the mapped Ja-
cobi polynomials are mutually orthogonal in L2

ω
α,β
s

(Λ). Hence, the mapped Jacobi method

for (2.46) is to find uN ∈V
α,β
s,N such that

γ(uN ,vN)
ω

α,β
s

+
(
a(x)∂xuN ,∂x(vNω

α,β
s )

)
=(Iα,β

s,N f ,vN)
ω

α,β
s

, ∀vN ∈V
α,β
s,N . (2.47)

Let us now consider the second approach described in the introduction. Here, Eq. (2.46)
is first transformed into

γUs−
1

g′(y;s)
∂y

( a(g(y;s))

g′(y;s)
∂yUs

)
= Fs, (2.48)

where Us(y)=u(g(y;s)) and Fs(y)= f (g(y;s)).

Then, let ω̂
α,β
s (y)=ωα,β(y)g′(y;s), the Jacobi spectral method for (2.48) is to find ũN ∈

PN such that

γ(ũN,ṽN)ωα,β +
( a(g(y;s))

g′(y;s)
∂yũN,∂y(ṽNω̂

α,β
s )

)
=(Iα,β

N Fs,ṽN)ωα,β , ∀ṽN ∈PN . (2.49)

One can verify easily that ũN(y)=uN(g(y;s)). Hence, the two approaches are mathemat-
ically equivalent.

We remark that the formulation (2.49) is in general more difficult to analyze due to the
singular nature of g′(y;s), while the analysis for the formulation (2.47) becomes standard
once we establish the basic approximation properties of the mapped Jacobi polynomials.
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On the other hand, Eq. (2.48) can be easily implemented using the standard
Jacobi-collocation (or more specifically Chebyshev-collocation) method. Indeed,
let {hj,N(y)}1≤j≤N be the Lagrange polynomials associated with the Jacobi-Gauss
points {yj}1≤j≤N , the Jacobi-collocation approximation to (2.48) is to find Us,N(y) =

∑
N
j=1ujhj,N(y) such that

γUs,N(yj)−
(

1

g′(y;s)
∂y

( a(g(y;s))

g′(y;s)
∂yUs,N

))
(yj)= Fs(yj), 1≤ j≤N. (2.50)

Let us denote

u=(u1,··· ,uN)t, f=(Fs(y1),··· ,Fs(yN))t, Dij =h′j(yi), D=(Dij),

Λi =
a(g(yi ;s))

g′(yi;s)
, Λ=diag(Λi), Σi =

1

g′(yi;s)
, Σ=diag(Σi).

Then, (2.50) leads to the matrix system

(γI−ΣDΛD)u= f,

which can be easily solved by using a standard linear algebra routine. Note that in the
above procedure, we only need to compute the Jacobi-Gauss points {yj}1≤j≤N and the
associated differentiation matrix D whose entries can be found for instance in [19].

2.5.2 Error estimates for a model problem

We consider the Jacobi rational approximation to the model problem

γu(x)−∂2
xu(x)= f (x), x∈Λ=(0,∞),

u(0)=0,
(2.51)

with a suitable decay condition at infinity which is to be determined by the weak formu-
lation of (2.51).

For a given mapping, let ω=ω
α,β
s be the weight function associated with the mapped

Jacobi polynomials, and denote

H1
0,ω(Λ)={u∈H1

ω(Λ) : u(0)=0}.

We define a bilinear form

aω(v,φ)=γ(v,φ)ω +(∂xv,∂x(φω)), ∀u,v∈H1
0,ω(Λ).

Then, a weak formulation for (2.51) is to find u∈H1
0,ω(Λ) such that

aω(u,v)=( f ,v)ω , ∀v∈H1
0,ω(Λ), (2.52)

for f ∈
(

H1
0,ω(Λ)

)′
. Note that u∈H1

0,ω(Λ) implies a decay condition for u at infinity.
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Let us denote XN={u∈V
α,β
s,N :u(0)=0}. We can then define the Galerkin approximation

of (2.52) by the mapped Jacobi polynomials as follows: For f∈L2
ω(Λ)∩C(Λ̄), find uN∈XN

such that

aω(uN ,vN)=(Iα,β
s,N f ,vN)ω, ∀vN ∈XN . (2.53)

Unlike the standard spectral method in a finite domain, the well-posedness of (2.52)
and of (2.53) is not guaranteed for all cases with γ ≥ 0. A general result for the well-
posedness of an abstract equation of the form (2.52) is established in [49]. For the readers’
convenience, we recall this result below (cf. Lemma 2.3 in [49]):

Lemma 2.3. We assume that

d1 =max
x∈Λ̄

|ω−1(x)∂xω(x)|, d2 =max
x∈Λ̄

|ω−1(x)∂2
xω(x)|

are finite and that u2(x)ω′(x)|x∈∂Λ = 0 for u∈ H1
0,ω(Λ). Then, for any u,v∈ H1

ω(Λ), we have
that

aω(u,v)≤ (d1+1)|u|1,ω‖v‖1,ω +γ‖u‖ω‖v‖ω , (2.54)

and for any v∈H1
0,ω(Λ),

a
(ν)
ω (v,v)≥|v|21,ω +(γ−d2/2)‖v‖2

ω . (2.55)

Remark 2.2. The inequality (2.55) is derived under a general framework. For a specific
problem, the constant γ−d2/2 can often be replaced by a larger constant.

Thanks to the above lemma, it is then straightforward to prove the following general
result:

Theorem 2.3. Assume that the conditions of Lemma (2.3) are satisfied and γ−d2/2>0. Then the
problem (2.52) (resp. (2.53)) admits a unique solution. Furthermore, we have the error estimate:

‖u−uN‖1,ω . inf
vN∈XN

‖u−vN‖1,ω +‖ f −Iα,β
s,N f‖ω . (2.56)

Remark 2.3. With a change of variable x to x/c (c >0) for Eq. (2.46), the restriction on γ
can be relaxed to γ>0.

Hence, given a mapping and a pair of Jacobi parameters (α,β), we just need to com-
pute upper bounds for d1 and d2, verify that the conditions of Theorem 2.3 are satisfied,
and apply the approximation results in Theorems 2.1 and 2.2 to (2.56) to get the desired
error estimates.

Consider for example the mapped Legendre method for (2.52) with the mapping
(2.15). It can be shown that for this mapping, we have d1 ≤ 2 and d2 ≤ 6. Applying
Theorems 2.1 and 2.2 to (2.56) with (α,β)=(0,0) leads to the following results:
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Corollary 2.1. Let u and uN be the solutions of (2.52) and (2.53) with (α,β) = (0,0) and the
mapping (2.15) with s=1. Assume that u∈ B̃m

0,0(Λ), f ∈ B̃k
0,0(Λ) and γ>3. We have

‖u−uN‖1,ω0,0
1

. N1−m‖Dm
x u‖ωm,m

1
+N−k‖Dk

x f‖
ωk,k

1
. (2.57)

We note that a slightly improved condition on γ was derived in [35] using a refined
estimate for (2.55).

A similar procedure can be applied to the mapped Chebyshev method for (2.52) with
the mapping (2.15). Note however that in this case we have d1,d2 =∞. Nevertheless, one
can still show that aω(·,·) is continuous and coercive (cf. [34]). Applying Theorems 2.1
and 2.2 to (2.56) with (α,β)=(− 1

2 ,− 1
2) leads to the following results (cf. [34]):

Corollary 2.2. Let u and uN be the solutions of (2.52) and (2.53) with (α,β)=(− 1
2 ,− 1

2) and the

mapping (2.15) with s = 1. Assuming that u∈ B̃m
−1/2,−1/2(Λ) and f ∈ B̃k

−1/2,−1/2(Λ) and that

γ>
14
27 . We have

‖u−uN‖1,ω−1/2,−1/2
1

. N1−m‖Dm
x u‖

ωm−1/2,m−1/2
1

+N−k‖Dk
x f‖

ωk−1/2,k−1/2
1

. (2.58)

Remark 2.4. Error estimates which are essentially equivalent to (2.57) and (2.58) but in
different forms were derived in [34, 35].

The same procedure can be used to derive error estimates on mapped Jacobi methods
for problems in the whole line (cf. [39, 54]).

3 Laguerre spectral methods

For problems in a semi-infinite interval, it is natural to use (generalized) Laguerre poly-
nomials/functions which form orthonormal basis in (weighted) Sobolev spaces.

3.1 Generalized Laguerre approximations

We first recall some basic properties of generalized Laguerre polynomials/functions.

3.1.1 Generalized Laguerre polynomials

Let Λ := (0,∞). The generalized Laguerre polynomials (GLPs), denoted by L(α)
n (x)(α >

−1), are the eigenfunctions of the Sturm-Liouville problem

x−αex∂x

(
xα+1e−x∂xL(α)

n (x)
)
+λnL(α)

n (x)=0, x∈Λ, (3.1)

with the eigenvalues λn = n. Compared with the Jacobi polynomials in a finite interval,
the linear growth of λn for the Laguerre polynomial indicates, on the one hand, a slower
convergence rate of the Laguerre expansion, but on the other hand, leads to better inverse
inequalities and consequently milder CFL conditions for time dependent problems.



J. Shen and L. Wang / Commun. Comput. Phys., 5 (2009), pp. 195-241 211

The GLPs are mutually orthogonal in L2
ωα

(Λ) with the weight function ωα(x)=xαe−x,
i.e., ∫ +∞

0
L(α)

n (x)L(α)
m (x)ωα(x)dx=γ

(α)
n δmn withγ

(α)
n =

Γ(n+α+1)

Γ(n+1)
. (3.2)

The three-term recurrence formula of the GLPs reads

(n+1)L(α)
n+1(x)=(2n+α+1−x)L(α)

n (x)−(n+α)L(α)
n−1(x),

L(α)
0 (x)=1, L(α)

1 (x)=α+1−x.
(3.3)

We infer from (3.1) and (3.2) that

∫ +∞

0
∂xL(α)

n (x)∂xL(α)
m (x)xωα(x)dx=λnγ

(α)
n δmn. (3.4)

An important property of the GLPs is the following derivative relation:

∂xL(α)
n (x)=−L(α+1)

n−1 (x)=−
n−1

∑
k=0

L(α)
k (x). (3.5)

The case α=0 leads to the classical Laguerre polynomials, which are used most frequently
in practice and will simply be denoted by Ln(x). As in the finite interval case, it is actually
easier to study the whole family of generalized Laguerre polynomials, rather than the
Laguerre polynomials alone.

3.1.2 Approximation results by generalized Laguerre polynomials

We begin by analyzing the approximation properties of the L2
ωα
−orthogonal projection

πN,α : L2
ωα

(Λ)→PN , defined by

(u−πN,αu,vN)ωα =0, ∀vN ∈PN . (3.6)

It is clear that the polynomial πN,αu is the best approximation u in L2
ωα

(Λ), and

πN,αu(x)=
N

∑
n=0

û
(α)
n L(α)

n (x),

with

û
(α)
n =

1

γ
(α)
n

∫ +∞

0
u(x)L(α)

n (x)ωα(x)dx, n≥0.

Similar to the Jacobi approximations, we define

Bm
α (Λ) :=

{
u : ∂k

xu∈L2
ωα+k

(Λ), 0≤ k≤m
}

, (3.7)
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equipped with the norm and semi-norm

‖u‖Bm
α
=

( m

∑
k=0

‖∂k
xu‖2

ωα+k

)1/2
, |u|Bm

α
=‖∂m

x u‖2
ωα+m

.

In particular, we omit the subscript α, when α = 0. In contrast to the usual weighted
Sobolev space Hm

ωα
(Λ), the weight function corresponding to derivative of different order

is different in Bm
α (Λ).

We observe from (3.5) that

∂k
xL(α)

n (x)=(−1)kL(α+k)
n−k (x), n≥ k, (3.8)

and so
{

∂k
xL(α)

n

}
are orthogonal with respect to the weight ωα+k, i.e.,

∫ +∞

0
∂k

xL(α)
l (x)∂k

xL(α)
n (x)ωα+k(x)dx=γ

(α+k)
n−k δln. (3.9)

By (3.2) and the Stirling formula,

Γ(x+1)∼
√

2πxx+1/2e−x, x≫1, (3.10)

we have

γ
(α+k)
n−k =

Γ(n+α+1)

Γ(n−k+1)
∼nα+k, for n≫1.

Summing (3.9) over 0≤ k≤m leads to

m

∑
k=0

(
∂k

xL(α)
l ,∂k

xL(α)
n

)
ωα+k

=0, if l 6=n and k>min{l,n}

which implies that
{
L(α)

n

}
are orthogonal in the space Bm

α (Λ).

The fundamental generalized Laguerre approximation result is stated below (see, e.g.,
[19]).

Theorem 3.1. For any u∈Bm
α (Λ) and m≥0,

‖∂l
x(πN,αu−u)‖ωα+l

. N(l−m)/2‖∂m
x u‖ωα+m , 0≤ l≤m. (3.11)

Proof. Obviously, we have that

∂l
x(πN,αu−u)=−

∞

∑
n=N+1

û
(α)
n ∂l

xL(α)
n (x).
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Hence, by the orthogonality and the Stirling formula (3.10),

‖∂l
x(πN,αu−u)‖2

ωα+l
=

∞

∑
n=N+1

γ
(α+l)
n−l |û(α)

n |2

≤max
n>N

{
γ

(α+l)
n−l /γ

(α+m)
n−m

} ∞

∑
n=N+1

γ
(α+m)
n−m |û(α)

n |2

. Nl−m‖∂m
x u‖2

ωα+m
.

This completes the proof.

Next, we consider the approximation results for the H1−type orthogonal projections.
For simplicity, we consider only the usual Laguerre case, i.e., α=0. Hereafter, let ω(x)=
e−x be the usual Laguerre weight function, and denote

H1
0,ω(Λ)=

{
u∈H1

ω(Λ) : u(0)=0
}

, P0
N =

{
φ∈PN : φ(0)=0

}
. (3.12)

Consider the orthogonal projection π1,0
N : H1

0,ω(Λ)→P0
N , defined by

(
(u−π1,0

N u)′,v′N
)

ω
=0, ∀vN ∈P0

N. (3.13)

Theorem 3.2. If u∈H1
0,ω(Λ) and ∂xu∈Bm−1

0 (Λ), then for m≥1,

‖π1,0
N u−u‖1,ω . N

1
2− m

2 ‖∂m
x u‖ωm−1

. (3.14)

Proof. Let

φ(x)=
∫ x

0
πN−1,0u′(y)dy.

Then u−φ∈H1
0,ω(Λ). Thanks to the imbedding inequality (see, e.g., [31])

‖u‖ω .‖∂xu‖ω,

and Theorem 3.1 with α=0, we find that

‖π1,0
N u−u‖1,ω ≤‖φ−u‖1,ω .‖∂x(φ−u)‖ω . N

1
2− m

2 ‖∂m
x u‖ωm−1

.

This ends the proof.

We note that in general Laguerre polynomials are not good candidates for approxima-
tions in infinite domains due to their wild behaviors at infinity. This fact is also reflected
in the error estimates in Theorems 3.1 and 3.2. Although these error estimates are also
of spectral type, but due to the exponential decay weight in the norm, they only imply
meaningful pointwise approximation for a short interval. Hence, the GLPs are only suit-
able for the approximation of functions with fast algebraic (or exponential) growth at
infinity. For problems with some decay properties at infinity, it is more appropriate to
use the so called generalized Laguerre functions (GLFs) which we shall consider below.
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3.1.3 Generalized Laguerre functions

The generalized Laguerre functions (GLFs) are defined by

L̂(α)
n (x) := e−x/2L(α)

n (x), α>−1, x∈Λ. (3.15)

It is clear that by (3.2), the GLFs are orthogonal with respect to the weight function ω̂α =
xα, i.e., ∫ +∞

0
L̂(α)

n (x)L̂(α)
m (x)ω̂α(x)dx=γ

(α)
n δmn, (3.16)

where the constant γ
(α)
n is given in (3.2). In particular, the usual Laguerre functions

L̂n(x)= e−x/2Ln(x), n≥0, x∈Λ, (3.17)

are orthonormal with respect to the uniform weight ω̂0≡1.
As in the last section, we introduce an operator

∂̂x =∂x+
1

2
which implies that ∂xL(α)

n (x)= ex/2∂̂xL̂(α)
n (x). (3.18)

It is straightforward to check that the GLFs satisfy the following properties:

• Three-term recurrence relation

(n+1)L̂(α)
n+1 =(2n+α+1−x)L̂(α)

n −(n+α)L̂(α)
n−1,

L̂(α)
0 = e−x/2, L̂(α)

1 =(α+1−x)e−x/2.
(3.19)

• The Sturm-Liouville equation:

x−αex/2∂x

(
xα+1e−x/2∂̂xL̂(α)

n (x)
)
+nL̂(α)

n (x)=0. (3.20)

• Orthogonality of the derivative:
∫

Λ
∂̂xL̂(α)

n (x)∂̂xL̂(α)
m (x)ω̂α+1(x)dx=λnγ

(α)
n δmn. (3.21)

• Some recurrence formulas:

∂̂xL̂(α)
n (x)=−L̂(α+1)

n−1 (x)=−
n−1

∑
k=0

L̂(α)
k (x), (3.22a)

L̂(α)
n (x)= ∂̂xL̂(α)

n (x)− ∂̂xL(α)
n+1(x), (3.22b)

x∂̂xL(α)
n (x)=nL̂(α)

n (x)−(n+α)L̂(α)
n−1(x). (3.22c)

We plot in Fig. 2 some sample graphs of GLPs and GLFs. In contrast to the GLPs, the
GLFs are well-behaved with the decay property (see Fig. 2 (d)):

|L̂(α)
n (x)|→0, as x→+∞. (3.23)

Therefore, the GLPs are suitable for approximation of functions which decay at infinity.
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Figure 2: (a) Graphs of the first six Laguerre polynomials Ln(x) with n=0,1,··· ,5 and x∈ [0,6]; (b) Growth of

|L80(x)| against the upper bound x−1/4ex/2 (dashed line); (c) Graphs of the generalized Laguerre polynomials

L(α)
4 (x) with α=0,1,2,3 and x∈ [0,10]; (d) Graphs of the first six Laguerre functions L̂n(x) with n =0,1,··· ,5

and x∈ [0,20].

3.1.4 Approximation results by generalized Laguerre functions

It is straightforward to extend the Laguerre polynomial approximations to the Laguerre
function approximations. Indeed, for any u ∈ L2

ω̂α
(Λ), we have uex/2 ∈ L2

ωα
(Λ). Let us

denote
P̂N :={v : v= e−x/2w with w∈PN}, (3.24)

and define the operator
π̂N,αu= e−x/2πN,α(uex/2)∈ P̂N . (3.25)

Clearly, by (3.6),

(π̂N,αu−u,vN)ω̂α =
(
πN,α(uex/2)−(uex/2),(vNex/2)

)
ωα

=0, ∀vN ∈ P̂N . (3.26)
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Hence, π̂N,α is the orthogonal projector from L2
ω̂α

(Λ) to P̂N , and therefore its approxima-
tion properties can be derived from that of πN,α.

Let ∂̂x =∂x+1/2. We define

B̂m
α (Λ) :=

{
u : ∂̂k

xu∈L2
ω̂α+k

(Λ), 0≤ k≤m
}

, (3.27)

equipped with the norm and semi-norm

‖u‖B̂m
α
=

( m

∑
k=0

‖∂̂k
xu‖2

ω̂α+k

)1/2
, |u|B̂m

α
=‖∂̂m

x u‖2
ω̂α+m

.

Then, we have the following result for π̂N,α.

Theorem 3.3. For any α>−1 and u∈ B̂m
α (Λ),

‖∂̂l
x(π̂N,αu−u)‖ω̂α+l

. N(l−m)/2‖∂̂m
x u‖ω̂α+m . (3.28)

Proof. Let v=uex/2. One verifies easily from (3.18) that

∂l
x(πN,αv−v)=∂l

x(ex/2(π̂N,αu−u))= ex/2∂̂l
x(π̂N,αu−u),

and likewise, ∂m
x v=ex/2 ∂̂m

x u. Hence, the desired result is a direct consequence of (3.11).

Remark 3.1. When comparing the error estimate in the above theorem with the corre-
sponding result for classical Jacobi approximation (see Lemma 2.1), we notice that the
convergence rate of the Laguerre approximation is only half of the classical Jacobi ap-
proximation. This is a direct consequence of the linear growth of the eigenvalues in
the Laguerre Sturm-Liouville problem, as opposed to the quadratic growth in the Jacobi
Sturm-Liouville problem.

The comparison with the mapped Jacobi approximation (cf. Theorem 2.1) is more
delicate.

Consider u(x)=(1+x)−h and u(x)=sinkx·(1+x)−h. It can be easily checked that for
both functions ‖∂̂m

x u‖ω̂α+m <∞ if m<2h−α−1 which implies that

‖u−π̂N,αu‖ω̂α . N−(2h−α−1)/2. (3.29)

Comparing with the error estimates by mapped Jacobi polynomials in (2.34) and (2.35),
we observe that the mapped Jacobi approximation leads to better convergence rate for
functions without oscillation at infinity such as u(x)=(1+x)−h, but the Laguerre approx-
imation is better for functions with oscillation at infinity such as u(x)=sinkx ·(1+x)−h.

Next, we define an orthogonal projector in H1
0(Λ) through the operator π1,0

N . Since for
any u∈H1

0(Λ), we have uex/2∈H1
0,ω(Λ). Let us denote

P̂0
N :={v∈ P̂N : u(0)=0}, (3.30)

and define the operator

π̂1,0
N u= e−x/2π1,0

N (uex/2)∈ P̂0
N .

The following results characterize the properties of π1,0
N (cf. [48]).
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Theorem 3.4.

((u−π̂1,0
N u)′,v′N)+

1

4
(u−π̂1,0

N u,vN)=0, ∀u∈H1
0(Λ), vN ∈ P̂0

N ; (3.31)

and for m≥1,

‖π̂1,0
N u−u‖1 . N

1
2− m

2 ‖∂̂m
x u‖ω̂m−1

, ∀u∈H1
0(Λ) with ∂̂xu∈ B̂m−1

0 (Λ). (3.32)

Proof. Using the definition of π1,0
N , and integration by parts, we find that for any vN =

wNe−x/2 with wN ∈P0
N ,

((u−π̂1,0
N u)′,v′N)

=
(
[(uex/2)−π1,0

N (uex/2)]′− 1

2
[(uex/2)−π1,0

N (uex/2)],w′
N− 1

2
wN

)

ω

=−1

2

∫ ∞

0
[(uex/2)−π1,0

N (uex/2)wN]′e−xdx+
1

4
((uex/2)−π1,0

N (uex/2),wN)ω

=−1

4
((uex/2)−π1,0

N (uex/2),vN)ω

=−1

4
(u−π̂1,0

N u,vN),

which implies the identity (3.31).

Now let v=uex/2. It is clear that

∂x(π̂1,0
N u−u)=−1

2
e−x/2(π1,0

N v−v)+e−x/2∂x(π1,0
N v−v).

Hence, using Lemma 3.2 and the fact that ∂m
x v= ex/2∂̂m

x u, leads to

‖∂x(π̂1,0
N u−u)‖.‖π1,0

N v−v‖ω +‖∂x(π1,0
N v−v)‖ω

. N
1
2− m

2 ‖x
m−1

2 ∂m
x v‖ω . N

1
2− m

2 ‖x
m−1

2 ∂̂m
x u‖.

Similarly, we have

‖π̂1,0
N u−u‖. N

1
2− m

2 ‖∂̂m
x u‖ω̂m−1

.

This completes the proof.

3.2 Laguerre-Gauss type quadratures and interpolation by Laguerre
polynomials/functions

We recall first the (generalized) Laguerre-Gauss type quadratures (cf. [19, 52]).
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Theorem 3.5. Let {x
(α)
j ,ω

(α)
j }N

j=0 be the nodes and weights associated with the Laguerre-Gauss

or Laguerre-Gauss-Radau quadrature. Then,

∫ +∞

0
p(x)xαe−xdx=

N

∑
j=0

p(x
(α)
j )ω

(α)
j , ∀p∈P2N+δ, (3.33)

where δ=1,0 for Laguerre-Gauss and Laguerre-Gauss-Radau quadrature, respectively.

• For the Laguerre-Gauss quadrature:

{x
(α)
j }N

j=0 are the zeros of L(α)
N+1(x);

ω
(α)
j =−Γ(N+α+1)

(N+1)!

1

L(α)
N (x

(α)
j )∂xL(α)

N+1(x
(α)
j )

=
Γ(N+α+1)

(N+α+1)(N+1)!

x
(α)
j

[
L(α)

N (x
(α)
j )

]2
, 0≤ j≤N.

(3.34)

• For the Laguerre-Gauss-Radau quadrature:

x
(α)
0 =0, {x

(α)
j }N

j=1 are the zeros of ∂xL(α)
N+1(x);

ω
(α)
0 =

(α+1)Γ2(α+1)Γ(N+1)

Γ(N+α+2)
,

ω
(α)
j =

Γ(N+α+1)

N!(N+α+1)

1

[∂xL(α)
N (x

(α)
j )]2

=
Γ(N+α+1)

N!(N+α+1)

1

[L(α)
N (x

(α)
j )]2

, 1≤ j≤N.

(3.35)

In practice, the above quadrature is rarely used due to the exponential weight. In-
stead, the following quadratures with respect to the weight function ω̂α should be used.

Theorem 3.6. Let
{

x
(α)
j ,ω

(α)
j

}
be the set of Laguerre-Gauss or Laguerre-Gauss-Radau quadra-

ture nodes and weights given in Theorem 3.5. Denote

ω̂
(α)
j = e

x
(α)
j ω

(α)
j , 0≤ j≤N. (3.36)

Then we have

∫ +∞

0
p(x)q(x)xαdx=

N

∑
j=0

p(x
(α)
j )q(x

(α)
j )ω̂

(α)
j , ∀p·q∈ P̂2N+δ,

where δ=1,0 for the Laguerre-Gauss case and Laguerre-Gauss-Radau case, respectively.



J. Shen and L. Wang / Commun. Comput. Phys., 5 (2009), pp. 195-241 219

Remark 3.2. Thanks to the three-term recursive relation satisfied by the GLPs, the nodes
for the Laguerre-Gauss and Laguerre-Gauss-Radau quadratures can be easily computed
as eigenvalues of the symmetric tridiagonal matrix

AN+1 =




a0 −
√

b1

−
√

b1 a1 −
√

b2

. . .
. . .

. . .

−
√

bN−1 aN−1 −
√

bN

−
√

bN aN




, (3.37)

whose entries are determined by (3.3):

aj =2j+α+1, 0≤ j≤N, bj = j(j+α), 1≤ j≤N. (3.38)

However, care should be taken when computing the weights {ω̂
(α)
j }. The process of com-

puting first {ω
(α)
j } and then using (3.36) is highly ill-conditioned and should be avoided.

Instead, thanks to (3.15) and (3.36), we derive easily that for the Laguerre-Gauss case, we
have

ω̂
(α)
j =

Γ(N+α+1)

(N+α+1)(N+1)!

x
(α)
j

[
L̂(α)

N (x
(α)
j )

]2
; (3.39)

and for the Laguerre-Gauss-Radau case (with x
(α)
0 =0), we have

ω̂
(α)
0 =ω

(α)
0 ; ω̂

(α)
j =

Γ(N+α+1)

N!(N+α+1)

1

[L̂(α)
N (x

(α)
j )]2

, j≥1. (3.40)

We now examine the distributions of the quadratures nodes with respect to N and the

parameter α. We first recall two formulas in Szego [52]. Assuming that the zeros {x
(α)
j }N

j=0

of L(α)
N+1(x) are arranged in ascending order, we have the following properties

x
(α)
0 >

c

N+1
, x

(α)
N =4(N+1)+2α+2−c(4N+4)1/3 , (3.41a)

x
(α)
j ∼ (j+1)2

N+1
, 0≤ j≤N, (3.41b)

where c is a positive constant independent of N. Hence, the largest zero grows like 4N,
while the smallest zero behaves like O(N−1). Such properties can be visualized from
Fig. 3(a)-(c). Indeed, we observe from Fig. 3(a) and (b) that the nodes are clustered near
the endpoint x=0, with a density

min
j
|xj+1−xj|∼N−1
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Figure 3: (a) Distribution of Laguerre-Gauss-Radau nodes
{

xj

}N

j=0
with N=8,16,24,32 with α=0; (b) Growth of

{
|xj+1−xj|

}40

j=0
; (c) Growth of the largest node xN against the asymptotic estimate: 4(N+1)+2−(4(N+1))1/3

(cf. (3.41a)) with various N; (d) Distribution of zeros of L(α)
8 (x) with various α.

as opposed to the O(N−2) behavior in the mapped Jacobi case. Fig. 3(c) shows that the
largest node xN grows at the rate 4(N+1)+2−(4(N+1))1/3 as N increases. Another

interesting property which can be visualized from Fig. 3(d) is that for fixed N and j, x
(α)
j

increases as α increases, i.e., we have

∂x
(α)
j

∂α
>0, for 0≤ j≤N. (3.42)

Let
{

x
(α)
j

}N

j=0
be the Laguerre-Gauss or Gauss-Radau interpolation nodes defined in

Theorem 3.5, and denote by I
(α)
N the interpolation operator from C(Λ̄) onto PN based on

the set
{

x
(α)
j

}N

j=0
. We have the following result (cf. [27]):

Theorem 3.7. Assuming u∈C(Λ̄), u∈Bm
α (Λ) and ∂xu∈Bm−1

α (Λ) with m≥1, then

‖I
(α)
N u−u‖ωα . N(1−m)/2

(
‖∂m

x u‖ωα+m−1
+(lnN)1/2‖∂m

x u‖ωα+m

)
.
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Remark 3.3. Compared with Theorem 3.1 (with l =0), the estimate for the interpolation
is suboptimal (with order O(N(1−m)/2lnN)). The above result is proved in [27] and im-
proves previous results in [42, 43, 58]. In [42] (see also [6]), the following estimate was
derived for the case α=0,

‖I
(0)
N u−u‖ω0 . N(1−m)/2‖u‖m,ωτ , (3.43)

where the weight function ωτ(x) = e−(1−τ)x with 0 < τ < 1. Mastroianni and Occorsio
[43] studied the generalized Laguerre-Gauss interpolation (see Formula (3.8) of [43]) and
showed that

‖xγe−x/2(I
(α)
N u−u)‖L∞ . N−m/2 lnN‖xm/2+γe−x/2∂m

x u‖L∞ , (3.44)

for m≥1, α>−1 and some γ≥0 satisfying

2γ− 5

2
≤α≤2γ− 1

2
.

In [58], the usual Laguerre interpolation was analyzed in the weighted Sobolev space,
and the main result is

‖I
(0)
N u−u‖ω0 . N(1−m)/2+ε‖u‖m,ωm , m≥1, 0< ε≤ 1

2
. (3.45)

This result was improved in [27] with lnN in place of Nε.

We now define the interpolation operator Î
(α)
N from C(Λ̄) onto P̂N based on the set of

points
{

x
(α)
j

}N

j=0
, i.e.,

(
Î
(α)
N u)(x

(α)
j )=u(x

(α)
j ), 0≤ j≤N.

By observing that (
Î
(α)
N u)(x)= e−x/2 I

(α)
N (uex/2)∈ P̂N ,

we derive immediately from Theorem 3.7 the following result.

Theorem 3.8. Let ∂̂x =∂x+ 1
2 . Assuming u∈C(Λ̄), u∈ B̂m

α (Λ) and ∂̂xu∈ B̂m−1
α (Λ) with m≥1,

we have
‖ Î

(α)
N u−u‖ω̂α . N(1−m)/2

(
‖∂̂m

x u‖ω̂α+m−1
+(lnN)1/2‖∂̂m

x u‖ω̂α+m

)
.

3.3 Numerical methods using Laguerre functions

We consider again the model problem (2.51). An advantage of using Laguerre functions
is that they are mutually orthogonal in the usual (non-weighted) L2 space so we can work
with the usual (i.e., non-weighted) variational formulation.

Let us denote
H1

0(Λ)=
{

u∈H1(Λ) : u(0)=0
}

. (3.46)
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Then, a weak formulation for (2.51) is to find u∈H1
0(Λ) such that

a(u,v) :=γ(u,v)+(u′,v′)=( f ,v), ∀v∈H1
0 (Λ), (3.47)

for f ∈
(

H1
0(Λ)

)′
. We note that u∈H1

0(Λ) indicates a decay condition: limx→+∞u(x)=0.

The Laguerre-spectral approximation to (3.47) is to find uN ∈ P̂0
N such that

a(uN ,vN)=( ÎN f ,vN), ∀vN ∈ P̂0
N , (3.48)

where P̂0
N is defined in (3.30) and ÎN = Î

(α)
N with α=0.

It is clear that for γ>0, the problem admits a unique solution, since

a(u,u)= |u|21+γ‖u‖2≥min(1,γ)‖u‖2
1, for all u∈H1

0(Λ).

Theorem 3.9. Let γ > 0, u∈ H1
0(Λ), ∂̂xu∈ B̂m−1

0 (Λ), f ∈C(Λ̄)∩ B̂k
0(Λ) and ∂̂x f ∈ B̂k−1

0 (Λ)
with k,m≥1. Then,

‖u−uN‖1 . N
1
2− m

2 ‖∂̂m
x u‖ω̂m−1

+N(1−k)/2
(
‖∂̂k

x f‖ω̂k−1
+(lnN)1/2‖∂̂k

x f‖ω̂k

)
. (3.49)

Proof. Let eN =uN−π̂1,0
N u and ẽN =u−π̂1,0

N u. Hence, by (3.47)–(3.48),

a(uN−u,vN)=( ÎN f − f ,vN), ∀vN ∈ P̂0
N ,

which implies that

a(eN ,vN)= a(ẽN ,vN)+( ÎN f − f ,vN), ∀vN ∈ P̂0
N .

Taking vN = eN in the above, we find

‖eN‖1 .‖ẽN‖1+‖ ÎN f − f‖0.

We can then conclude by using Theorems 3.4 and 3.7 and the triangular inequality.

Remark 3.4. In [47], numerical results are reported for the scheme (3.48) using the func-
tions in (2.31)-(2.33) as exact solutions. Geometric convergence rates (i.e., exp(−cN))
for (2.31) and sub-geometric convergence of order exp(−c

√
N) for (2.32) are observed

(cf. Fig. 3.2 in [47]), while a convergence rate consistent with the estimate in (3.49) and
(3.29) is observed for (2.33). The sub-geometric convergence for (2.32) was puzzling since
the error estimate in (3.29) only predicts a rate of order about N−h. In order to explain
this surprising disagreement, we performed additional tests with different h and with N
much larger than what was used in [47]. The numerical results are reported in Fig. 4.
On the left, we plot the results with h=3 and 4.5 for N up to 128, and we observe again
the sub-geometric convergence rate as reported in [47]. However, when we increased N
further, the convergence rates eventually became algebraic. This indicates that the sub-
geometric convergence reported in [47] was still in the pre-asymptotic range. To illus-
trate this behavior, we plot the results with h=1.5 and 2 (so the asymptotic range can be
reached faster) for N up to 256 on the right of Fig. 4. It is clear that after a pre-asymptotic
range, the convergence rates settle down to the algebraic rates consistent with (3.49) and
(3.29).
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Figure 4: Convergence rates of the scheme (3.48).

4 Hermite spectral methods

For problems in the whole line, a natural choice is to use Hermite polynomials/functions.

4.1 Approximations by Hermite polynomials/functions

We first recall some basic properties of Hermite polynomials/functions.

4.1.1 Hermite polynomials

The Hermite polynomials, denoted by Hn(x), are the eigenfunctions of the Sturm-
Liouville problem:

ex2(
e−x2

H′
n(x)

)′
+λnHn(x)=0, ∀x∈R :=(−∞, ∞), (4.1)

with the eigenvalue λn =2n grows linearly with respect to n.

The Hermite polynomials are orthogonal with respect to the weight ω(x)= e−x2
, i.e.,

∫ +∞

−∞
Hm(x)Hn(x)e−x2

dx=γnδmn, γn =
√

π2nn!. (4.2)

Note that the constant γn grows exponentially as n increases, so it is necessary to normal-
ize this factor in actual computations.

The three-term recurrence formula reads

Hn+1(x)=2xHn(x)−2nHn−1(x), n≥1. (4.3)

As a direct consequence of (4.1) and (4.2), we have the orthogonality:
∫ ∞

−∞
H′

n(x)H′
m(x)e−x2

dx=λnγnδmn. (4.4)
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The Hermite polynomials satisfy the recurrence relations:

H′
n(x)=2nHn−1(x), n≥1, (4.5a)

H′
n(x)=2xHn(x)−Hn+1(x), n≥0. (4.5b)

4.1.2 Approximations by Hermite polynomials

Consider the L2
ω−orthogonal projection πN : L2

ω(R)→PN , defined by

(u−πNu,vN)ω =0, ∀vN ∈PN .

Similar to Theorem 3.1, we have the following result.

Theorem 4.1. For any u∈Hm
ω (R) with m≥0,

‖∂k
x(πNu−u)‖ω . N(k−m)/2‖∂m

x u‖ω, 0≤ l≤m. (4.6)

Proof. For any u∈L2
ω(R), we write the Hermite expansion

u(x)=
∞

∑
n=0

ũnHn(x) with ũn =
1√

π2nn!

∫ ∞

−∞
u(x)Hn(x)e−x2

dx.

We derive from (4.5a) that

∂k
x Hn(x)=2kn(n−1)···(n−k+1)Hn−k(x) :=σk

n Hn−k(x), n≥ k. (4.7)

Therefore, for k≤m≤N,

‖∂k
x(πNu−u)‖2

ω =
∥∥∥

∞

∑
n=N+1

ũn∂k
x Hn(x)

∥∥∥
2

ω

=
∞

∑
n=N+1

ũ2
n(σk

n)2γn−k =
∞

∑
n=N+1

ũ2
n

(σk
n)2γn−k

(σm
n )2γn−m

(σm
n )2γn−m

. Nk−m
∞

∑
n=N+1

ũ2
n(σm

n )2γn−m = Nk−m‖∂m
x u‖2

ω.

This completes the proof.

4.1.3 Hermite functions

As the (generalized) Laguerre polynomials, the Hermite polynomials are generally not
suitable in practice due to their wild asymptotic behavior at infinities (cf. [52]):

Hn(x)∼ Γ(n+1)

Γ(n/2+1)
ex2/2cos

(√
2n+1x− nπ

2

)

∼nn/2ex2/2cos
(√

2n+1x− nπ

2

)
.

(4.8)
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Figure 5: (a) The first five Hermite polynomials Hn(x) with n = 0,··· ,4; (b) The first five Hermite functions

H̃n(x) with n=0,··· ,4.

Hence, we shall consider the so called Hermite functions.

The normalized Hermite function of degree n is defined by

H̃n(x)=
1√
2nn!

e−x2/2Hn(x), n≥0, x∈R. (4.9)

Clearly, {H̃n} is an orthogonal system in L2(R), i.e.,

∫ +∞

−∞
H̃n(x)H̃m(x)dx=

√
πδmn. (4.10)

In contrast to the Hermite polynomials, the Hermite functions are well behaved with the
decay property:

|H̃n(x)|→0, as |x|→∞,

and the asymptotic formula with large n is

H̃n(x)∼n− 1
4 cos

(√
2n+1x− nπ

2

)
. (4.11)

Some sample graphs of the Hermite polynomials and the normalized Hermite functions
are presented in Fig. 5.

The three-term recurrence relation (4.3) implies

H̃n+1(x)= x

√
2

n+1
H̃n(x)−

√
n

n+1
H̃n−1(x), n≥1,

H̃0(x)= e−x2/2, H̃1(x)=
√

2xe−x2/2.

(4.12)



226 J. Shen and L. Wang / Commun. Comput. Phys., 5 (2009), pp. 195-241

Using (4.5a) and the above formula leads to

H̃′
n(x)=

√
2nH̃n−1(x)−xH̃n(x)

=

√
n

2
H̃n−1(x)−

√
n+1

2
H̃n+1(x).

(4.13)

4.1.4 Approximations by Hermite functions

Let us define P̃N = {v : v = e−x2/2w, w∈ PN}. Since uex2/2 ∈ L2
ω(R) for any u∈ L2(R), we

define π̃N : L2(R)→ P̃N by

π̃Nu := e−x2/2πN(uex2/2)∈ P̃N . (4.14)

Therefore,

(u−π̃Nu,vN)=
(
uex2/2−π̃N(uex2/2),vNex2/2

)
ω

=0, ∀vN ∈ P̃N , (4.15)

which implies that π̃N is in fact the orthogonal projection in L2(R). We introduce the
derivative operator

∂̃x =∂x+x so that ∂xHn(x)= ex2/2∂̃xH̃n(x). (4.16)

Then, it is straightforward to derive the following result from Theorem 4.1.

Theorem 4.2. For any ∂̃m
x u∈L2(R) with m≥0,

‖∂̃l
x(π̃Nu−u)‖. N(l−m)/2‖∂̃m

x u‖, 0≤ l≤m. (4.17)

A particularly interesting result for the Hermite case is the following theorem which
shows that π̃N is simultaneously the optimal projector from Hl(R)→ P̃N for l =0,1,2.

Theorem 4.3. For any ∂̃m
x u∈L2(R) with m≥0,

‖∂l
x(π̃Nu−u)‖. N(l−m)/2‖∂̃m

x u‖, l =0,1,2, l≤m. (4.18)

Proof. The case l =0 comes directly from Corollary 4.2 with l =0.
In case of l =1, note that

∂x(π̃Nu−u)= e−x2/2∂x

(
πN(ex2/2u)−(ex2/2u)

)

−xe−x2/2
(

πN(ex2/2u)−(ex2/2u)
)

.

Hence, by using the inequality (cf. [30])

‖xv‖ω ≤‖v‖1,ω , (4.19)

and Theorem 4.1,

‖∂x(π̃Nu−u)‖≤|πN(ex2/2u)−(ex2/2u)|1,ω +‖x(πN(ex2/2u)−(ex2/2u))‖ω

.‖πN(ex2/2u)−(ex2/2u)‖1,ω ≤N1/2−m/2‖∂m
x (ex2/2u)‖ω.

The case l =2 can be proved in the same fashion.
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Remark 4.1. As in the Laguerre case, the eigenvalues of the Sturm-Liouville problem
associated with the Hermite polynomials also grows linearly, so the convergence rate of
the Hermite approximation is similar to that of the Laguerre approximation.

To compare with the mapped Jacobi approximation (cf. Theorem 2.1), we consider
u(x) = (1+x2)−h and u(x) = sinkx ·(1+x2)−h. It can be checked that for both functions
‖∂̃m

x u‖<∞ if m<
4h−1

2 which implies that

‖u−π̃Nu‖. N−(h−1/4). (4.20)

Comparing with the error estimates by mapped Jacobi polynomials in (2.36) and (2.37),
we observe that the mapped Jacobi approximation leads to better convergence rates for
both functions.

4.2 Hermit Gauss quadrature and interpolation by Hermite polynomials/
functions

We start with the classical Hermite-Gauss quadrature with respect to the measure e−x2
dx

(cf. [16]).

Theorem 4.4. Let
{

xj,ωj

}N

j=0
be the Hermite-Gauss nodes and weights. Then,

{
xj

}N

j=0
are the

zeros of the Hermite polynomial HN+1(x),

ωj =

√
π2N N!

(N+1)H2
N(xj)

, 0≤ j≤N, (4.21)

and we have
∫ ∞

−∞
p(x)e−x2

dx=
N

∑
j=0

p(xj)ωj, ∀p∈P2N+1. (4.22)

In practice, it is more convenient to use a quadrature rule relative to the measure dx
and Hermite functions.

Theorem 4.5. Let {xj,ωj}N
j=0 be the Hermite-Gauss nodes and weights (cf. Theorem 4.4). We

set

ω̃j = e
x2

j ωj =

√
π

(N+1)H̃2
N(xj)

, 0≤ j≤N. (4.23)

Then, we have
∫ ∞

−∞
p(x)q(x)dx=

N

∑
j=0

p(xj)q(xj)ω̃j, ∀p·q∈ P̃2N+1. (4.24)
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Remark 4.2. As in the Laguerre case, the Hermite-Gauss nodes can be easily computed
from the eigenvalues of a symmetric tridiagonal matrix

AN+1 =




a0

√
b1

√
b1 a1

√
b2

. . .
. . .

. . .
√

bN−1 aN−1

√
bN

√
bN aN




, (4.25)

whose entries are determined by (4.3):

aj =0, 0≤ j≤N; bj =
j

2
, 1≤ j≤N. (4.26)

The weights {ω̃j}N
j=0 can also be computed in a stable fashion by using (4.12) and (4.23).

In Fig. 6, we plot sample Hermite-Gauss nodes and the growth of the largest nodes
with respect to N.

We now examine the interpolation errors. We start with the interpolation operator
associated with the Hermite polynomials IN : C(R) → PN such that (INu)(xj) = u(xj),
0≤ j≤N. By combing Theorem 4.1 and the results in [1, 29], we can prove the following
result which is just a more concise form of Theorem 2.1 in [1, 29].

Theorem 4.6. For u∈Hm
ω (R) with m≥1, we have

‖∂l
x(INu−u)‖ω . N

1
6 + l−m

2 ‖∂m
x u‖ω, 0≤ l≤m.
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We point out that [29] derived an order N
1
3 + l−m

2 , which was improved to N
1
6 + l−m

2 by [1].

Next we define the interpolation operator associated with the Hermite function: ĨN :
C(R)→ P̃N such that ( ĨNu)(xj)=u(xj), 0≤ j≤N.

By using the fact that ( ĨNu)=e−x2/2 IN(uex2/2), we derive immediately from Theorem
4.6 the following result which is just a more concise form of Theorem 3.1 in [1, 36].

Theorem 4.7. For u∈C(R) with ∂̃m
x u∈L2(R) (m≥1), we have

‖∂̃l
x( ĨNu−u)‖. N

1
6 + l−m

2 ‖∂̃m
x u‖, 0≤ l≤m.

Remark 4.3. The above interpolation results are not optimal in the sense that a factor of
N−1/6 is lost when compared with the best approximation error. It is an open question
whether the factor N1/6 can be removed from these estimates.

4.3 Numerical methods using Hermite functions

As an example of applications, we consider the following model problem:

−uxx+γu= f , u(x)→0, as |x|→∞. (4.27)

A weak formulation for (4.27) is to find u∈H1(R) such that

(∂xu,∂xv)+γ(u,v)=( f ,v), ∀v∈H1(R), (4.28)

for given f ∈
(

H1(R)
)′

, and the Hermite-Galerkin method for (4.28) is to find u∈ P̃N such
that

(∂xuN ,∂xvN)+γ(uN,vN)=( ĨN f ,vN), ∀vN ∈ P̃N . (4.29)

The following error estimate is a straightforward consequence of Theorems 4.3 and 4.7.

Theorem 4.8. If u∈H1(R) with ∂̃m
x u∈L2(R), and f ∈C(R) with ∂̃k

x f ∈L2(R) (k,m≥1), we
have

‖uN−u‖1 . N
1−m

2 ‖∂̃m
x u‖+N

1
3− k

2 ‖∂̃k
x f‖. (4.30)

We now present numerical results using the scheme (4.29) with the exact solutions in
(2.31)-(2.33) as exact solutions. On the left of Fig. 7, we observe a geometric convergence
for (2.31). For (2.32), we observe essentially the same behavior as in the Laguerre case
(cf. the right of Fig. 4), i.e., there is a pre-asymptotic range where one observes a sub-
geometric convergence, but after the pre-asymptotic range, the convergence rates become
algebraic as predicted in (4.20) and (4.30) (cf. the right of Fig. 7).
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Figure 7: Convergence rates of the scheme (4.29).

5 Implementations, numerical results and discussions

5.1 Some implementation details

We start by saying that, given an approximation space XN and a set of collocation points
{xj}N

j=0, a collocation approach can be easily implemented. Indeed, let {hj(x)}N
j=0 ⊆XN

be the Lagrange functions based on {xj}N
j=0, i.e., hj(xi) = δij. Then, as demonstrated in

Section 2.5, we only need to know the derivative matrix D=(Dij) where Dij =h′j(xi). Ex-

plicit formulas for classical orthogonal polynomials (Jacobi, Laguerre and Hermite) can
be found in [19], and MATLAB codes for generating the derivative matrix is also avail-
able (cf. [56]). From these formulas, one can easily derive the corresponding formulas for
mapped Jacobi polynomials, Laguerre and Hermite functions.

However, it is often more efficient and stable to use a Galerkin approach, particu-
larly for problems with constant or polynomial coefficients and with large numbers of
unknowns (cf. [46, 47]). We now briefly discuss how the Galerkin method presented in
previous sections can be efficiently implemented.

Let XN be the approximation space and ω be the weight function. The spectral-
Galerkin method for the second-order model problems (2.51) or (4.27) can all be casted in
the following form: Find uN ∈XN such that

γ(uN,vN)ω+(∂xuN,∂x(vNω))=(IN f ,vN)ω, ∀vN ∈XN , (5.1)

where IN is the corresponding interpolation operator.
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Let {φj}N−1
j=0 be a set of basis functions for XN . We denote

uN =
N−1

∑
k=0

ûkφk(x), u=
(
û0,û1,··· ,ûN−1

)T
,

fi =(IN f ,φi)ω, f=
(

f0, f1,··· , fN−1

)T
,

sik =(φ′
k, (φiω)′), S=

(
sik

)
0≤i,k≤N−1

,

mik =(φk, φi)ω, M=
(
mik

)
0≤i,k≤N−1

.

Thus, the system (5.1) is reduced to the following matrix form

(
γM+S

)
u= f. (5.2)

We now present suitable basis functions and compute the associated stiffness and
mass matrices S and M for several typical cases.

• Mapped Legendre approximation for (2.51): We consider the mapping (2.15) with
s = 1. This is a special case of the general setting analyzed in Section 2.5. As suggested
in [46], it is advantageous to construct basis functions using compact combinations of
orthogonal functions. In this case, we set

φk(x)= j0,0
s,k (x)+ j0,0

s,k+1(x)

with s=1, which satisfies φk(0)=0. Then, we have ω(x)=2(x+1)−2, and

mik =
∫ ∞

0
φk(x)φi(x)ωdx=

∫ 1

−1
(Lk(y)+Lk+1(y))(Li(y)+Li+1(y))dy,

sik =
∫ ∞

0
φ′

k(x)(φi(x)ω)′dx=−
∫ ∞

0
φ′′

k (x)φi(x)ωdx

=− 1

4s

∫ 1

−1
(1−y)2∂y

(
(1−y)2∂y(Lk(y)+Lk+1(y))

)
(Li(y)+Li+1(y))dy,

where {Lk} are Legendre polynomials of degree k. By using the properties of Legendre
polynomials, it is then easy to see that M is a symmetric tridiagonal matrix and S is a
non-symmetric seven diagonal matrix. Hence, the system (5.2) can be efficiently solved.

We note however that a disadvantage of the mapped Legendre method is that it leads
to a non-symmetric system even though the original problem (2.51) is symmetric.

• Laguerre approximation (2.51): We consider the approximation of (2.51) by using
Laguerre functions (with the index α=0). The error analysis for this method is performed
in Section 3.3. We set

φk(x)= L̂(0)
k (x)+L̂(0)

k+1(x)

which satisfies φk(0)=0. By using the properties of Laguerre functions, it is easy to check
that both the stiffness and mass matrices are symmetric and tridiagonal (cf. [47]).
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Figure 8: Convergence rates with exact solution: u(x)=sin2x exp(−x) (left) and u(x)=1/(1+x)5/2 (right).

• Hermite approximation for (4.27): We consider the approximation of (4.27) by using
the Hermite functions. The error analysis for this method is performed in Section 4.3.
Since no boundary condition is involved, we can simply set

φk(x)= H̃k(x).

Then by using the properties of Hermite functions (4.10) and (4.13), we see that the mass
matrix M is diagonal and the stiffness matrix is symmetric tridiagonal.

5.2 Numerical results and discussions

The convergence behaviors of the mapped Jacobi, Laguerre and Hermite spectral meth-
ods have been discussed in detail using the three sets of functions (2.31)-(2.33) as exam-
ples.

In order to provide a quantitative assessment, we now present some direct compar-
isons of mapped Legendre method (using mapping (2.15) or (2.12) with s = 1) against
Laguerre or Hermite method.

In the following computations, we fix γ = 2 in Eq. (2.51) or (4.27). The parameters
in the three sets of exact solutions are set as follows: k = 2 in (2.31), h = 2.5 in (2.32) and
k=2, h=3.5 in (2.33). The numerical results are plotted in Figs. 8-10 in which “Max-ML”,
“Max-Lag” and “Max-Hmt” denote respectively error in maximum norm for mapped
Legendre, Laguerre and Hermite methods (similar for the L2 notations).

Several remarks are in order: (i) For exact solutions in (2.31), Laguerre and Hermite
methods converge faster; (ii) for exact solutions in (2.32), the mapped Legendre method
performs much better; (iii) for exact solutions in (2.33), the Laguerre method is slightly
better than the mapped Legendre method, while the Hermite method is still worse than
the mapped Legendre method. We note however that the performance of Laguerre and
Hermite methods can be significantly improved using a proper scaling (cf. [47, 53] and
the discussion below).
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(right).

6 Miscellaneous issues and extensions

We discuss in this section some miscellaneous issues and extensions related to he spectral
methods in unbounded domains.

6.1 Modified Legendre-rational approximations

We notice that the mapped Jacobi polynomials, including the mapped Legendre poly-
nomials, are mutually orthogonal in a weighted Sobolev space. Thus, their applications
involve weighted formulations which are, on the one hand, difficult to analyze and im-
plement, and on the other hand, not suitable for certain problems which are only well-
posed in non-weighted Sobolev spaces. Therefore, it is sometimes useful to construct
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(non-weighted) orthogonal systems from mapped Jacobi polynomials. Let us consider
one such example now. We define the modified Legendre rational functions of degree l
by

Rl(x)=

√
2

x+1
Ll

(
x−1

x+1

)
, l =0,1,2,··· .

By (2.1), Rl(x) are the eigenfunctions of the singular Sturm-Liouville problem

(x+1)∂x(x(∂x((x+1)v(x)))+λv(x)=0, x∈Λ, (6.1)

with the corresponding eigenvalues λl = l(l+1), l =0,1,2,··· . Due to (2.2) and (2.3), they
satisfy the recurrence relations

Rl+1(x)=
2l+1

l+1

x−1

x+1
Rl(x)− l

l+1
Rl−1(x), l >1, (6.2)

2(2l+1)Rl(x)=(x+1)2(∂xRl+1(x)−∂xRl−1(x))

+(x+1)(Rl+1(x)−Rl−1(x)). (6.3)

Furthermore,
lim
x→∞

(x+1)Rl(x)=
√

2, lim
x→∞

x∂x((x+1)Rl(x))=0. (6.4)

By the orthogonality of the Legendre polynomials,

∫

Λ
Rl(x)Rm(x)dx=

(
l+

1

2

)−1

δl,m. (6.5)

We refer to [32] and to [45] for the analysis and applications of the modified Legendre-
rational spectral approximations on the half line and on the whole line, respectively. We
also note that based on the same motivation and using a similar approach, a modified
Chebyshev rational method, for which fast transforms are possible thanks to FFT, is de-
veloped in [28].

6.2 Irrational mappings

For many applications, e.g., in fluid dynamics and in financial mathematics, the solutions
may tend to a constant or even grow with a specified rate at infinity. For such problems,
variational formulations in Sobolev spaces with uniform weight or a given non-matching
weight are usually not well posed. Therefore, it becomes necessary to construct orthogo-
nal systems which match the asymptotic behaviors of the underlying problem. First effort
of such kind is carried out in [11] where a rational Chebyshev method with polynomial
growth basis functions is developed. A more general approach is presented in [33] where
they considered the following orthogonal system:

I
(γ,δ)
l (r) :=

1

rγ
J
(α,0)
l (1− 2

rδ
). (6.6)



J. Shen and L. Wang / Commun. Comput. Phys., 5 (2009), pp. 195-241 235

In the above, J
(α,0)
l (r) is the Jacobi polynomial of degree l with index (α,0). The parameter

γ is chosen to match, as closely as possible, the asymptotic behavior of the function to be
approximated; the parameter δ>0 is a mapping parameter which will affect the accuracy
of the approximation in a way which will be made clear in Section 5; α is determined

in such a way that {I
(γ,δ)
k (r)} form an orthogonal system in L2

ωσ
(Λ), where σ is another

parameter, Λ=(1,∞) and ωσ = rσ. This latter condition requires that

α=
1

δ
(2γ−δ−σ−1).

Hence, α is not a free parameter. Therefore, the proposed family of orthogonal systems

{I
(γ,δ)
k (r)} is very general and includes in particular many special cases already studied

in the literature. The great flexibility afforded by the free parameters γ,δ (and σ) allows
us to design suitable approximations for a large class of partial differential equations.

6.3 Scaling

For a problem whose solution decays at infinity, there is an effective interval outside of
which the solution is negligible, and collocation points which fall outside of this inter-
val are essentially wasted. On the other hand, if the solution is still far from negligible
at the collocation point(s) with largest magnitude, one can not expect a very good ap-
proximation. Hence, the performance of spectral methods in unbounded domains can
be significantly enhanced by choosing a proper scaling parameter such that the extreme
collocation points are at or close to the endpoints of the effective interval.

For mapped Jacobi methods, this parameter is the mapping parameter s, see Section
2.1 and in particular Fig. 1. For Laguerre and Hermite spectral methods, one usually
needs to determine a suitable scaling parameter β and then make a coordinate transform
y= βx (cf. [47, 53]).

To illustrate the idea, let us consider (2.51) and an accuracy threshold ε. We estimate a

M such that |u(x)|≤ ε for x> M. Then, we set the scaling factor βN =x
(N)
N /M where x

(N)
N

is the largest Laguerre Gauss-Lobatto point. Now instead of solving Eq. (2.51), we solve
the following scaled equation with the new variable y= βN x:

−β2
Nvyy+γv= g(y); v(0)=0, lim

y→+∞
v(y)=0, (6.7)

where v(y)=u(βN x) and g(y)= f (βN x). Thus, the effective collocation points xj =yj/βN(
with {yj}N

j=0 being the Laguerre Gauss-Lobatto points
)

are all located in [0,M].

An an illustrative example, we consider (2.51) with the exact solution u(x) =
sin(10x)/(1+x)5. In Fig. 11, we plot the exact solution and the approximations with-
out scaling using 128 points and with a scaling factor=15 using 32 points.

Notice from Fig. 11 that if no scaling is used, the approximation with N = 128 still
exhibits an observable error, while the approximation with a scaling factor of 15 using
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Figure 11: Exact solution against numerical solutions by (3.48) with N =128 (without scaling), and by solving
(6.7) with N =32 and the scaling factor βN =15.

only 32 modes is virtually indistinguishable with the exact solution. This simple example
demonstrates that a proper scaling will greatly enhance the resolution capabilities of the
Laguerre functions. In [41], a Hermite spectral method with time-dependent scaling is
proposed for parabolic problems.

6.4 Other one-dimensional applications

While we have only presented analysis and implementation details for second-order
model equations, the basic approximation results presented here can be used for many
other applications. We refer to Boyd [11] for a review on the work before year 2000
which includes in particular many applications in oceanography. We now list some of
the more recent work. In [18], a combined Hermite-finite difference method is proposed
for a Fokker-Planck equation with one spatial and one phase dimension; in [36], the au-
thors applied the Hermite spectral method for solving the Dirac equation on the whole
line; in [32], a modified Legendre rational method is presented for the KdV equation in
a semi-infinite interval; the same problem is also studied in [50] where a single domain
Laguerre and two-domain Legendre-Laguerre method are introduced and analyzed.

6.5 Multidimensional problems

Although only one-dimensional problems are discussed in the previous sections, these
one-dimensional orthogonal systems can be easily used for multidimensional problems
through the usual tensor product approach. Although it is possible to use mapped Leg-
endre methods for multidimensional problems, the analysis and implementation become
complicated due the non-uniform weights involved in the variational formulation. As a
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consequence, most of the work for multidimensional problems use either Laguerre or
Hermite functions combined with Legendre polynomials or Fourier series.

6.5.1 Channel geometries

For problems which are set in an infinite (resp. semi-infinite) channel, it is natural to
consider using Hermite (resp. Laguerre) functions in the infinite direction and Jacobi
polynomials in the finite direction. For example, in [58], the authors studied a Laguerre-
Legendre approximation to the 2-D Navier-Stokes equations in the streamline diffusion-
vorticity formulation in a semi-infinite channel, while in [2] the authors studied ap-
proximation of the 2-D Stokes equations in primitive variables by a Laguerre-Legendre
method. More precisely, a complete numerical analysis with an explicit estimate on inf-
sup condition, and a detailed numerical algorithm as well as numerical results are pre-
sented in [2].

6.5.2 Exterior domains

For problems which are set in exterior domains, it is convenient, for a 2-D domain exte-
rior to a circle, to use polar coordinates and a Laguerre-Fourier approximation (cf. [37]);
and for a 3-D domain exterior to a sphere, to use spherical coordinates and a Laguerre-
spherical harmonic approximation (cf. [57]). In these cases, the analysis is a bit more
complicated due to the coordinate transforms but can still be carried out using essen-
tially the approximation results presented in this paper.

6.5.3 Special applications of Laguerre and Hermite functions

Since Laguerre and Hermite functions are respectively eigenfunctions of Laguerre and
Hermite Sturm-Liouville problems which play important roles in physics and mechan-
ics, they can be especially useful for problems which involve the Sturm-Liouville op-
erators associated with the Laguerre or Hermite functions. For example, the Laguerre
and Hermite functions are particularly effective for solving Schrödinger type equations,
in particular Gross-Pitaevskii equation for Bose-Einstein condensates, since the properly
scaled Laguerre (or generalized-Laguerre) and Hermite functions are eigenfunctions of
its linear operator with special potential functions (cf. [4, 5], see also [55]).

7 Concluding remarks

In this paper we presented a unified framework for analyzing the spectral methods in
unbounded domains using mapped Jacobi, Laguerre and Hermite functions. Using these
error estimates, we made a detailed comparison of the convergence rates of these spectral
methods for solutions with typical decay behaviors. The following general observations
can be made related to the convergence rates:

• For smooth functions which decay exponentially fast at infinity, all methods con-
verge exponentially.
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• For functions with singularities inside the domain, e.g., u(j)∈L2
loc(Λ) for j=0,1,··· ,k

but u(k+1) /∈ L2
loc(Λ), the mapped Jacobi methods lead to an optimal convergence rate of

k (assuming u decays sufficiently fast at infinity) while Laguerre and Hermite methods
only converge with a rate of k

2 .

• The mapped Jacobi methods are much more effective for functions without oscilla-
tion at infinity. More precisely,

– the mapped Jacobi methods converge faster (resp. slower) than the Laguerre
method for functions without (resp. with) oscillation at infinity;

– the mapped Jacobi methods converge faster than the Hermite spectral methods for
functions with or without oscillations at infinity.

Some observations related to implementations are:

• The use of Laguerre and Hermite polynomials are not advisable due to their wild
behaviors at infinity. Instead, Laguerre and Hermite functions should be used.

• The mapped Jacobi rational functions are orthogonal in weighted Sobolev spaces
so they lead to non-symmetric systems even for self-adjoint problems. The mapped Ja-
cobi methods can be easily implemented in a collocation form although it leads to full
matrices.

• The Laguerre (with α =0) and Hermite functions are orthogonal in the usual (non-
weighted) Sobolev spaces and lead to symmetric systems for self-adjoint problems and
with easily computable sparse systems for problems with constant or polynomial coeffi-
cients.

• A suitable choice of the mapping parameters for the mapped Jacobi method and the
scaling parameters for the Laguerre or Hermite methods can greatly enhance the numer-
ical results. The choice of the scaling parameters is particularly important for Laguerre
and Hermite methods.

In summary, orthogonal systems consisting of mapped Jacobi, Laguerre and Hermite
functions are all suitable tools for solving problems in unbounded domains and their ap-
proximation properties are now well understood. Mapped Jacobi methods are usually
more effective, in particular for problems without oscillations at infinity, but Laguerre
and Hermite methods can be made competitive with a proper choice of scaling param-
eters, and can be particularly effective for many special problems where Laguerre and
Hermite functions are the eigenfunctions of the principle linear operator. Applications of
these methods to challenging physical problems are still scarce and mostly welcome.
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