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Abstract. We perform numerical simulations of the sedimentation of rigid fibers sus-
pended in a viscous incompressible fluid at nonzero Reynolds numbers. The fiber
sedimentation system is modeled as a two-dimensional immersed boundary prob-
lem, which naturally accommodates the fluid-particle interactions and which allows
the simulation of a large number of suspending fibers. We study the dynamics of
sedimenting fibers under a variety of conditions, including differing fiber densities,
Reynolds numbers, domain boundary conditions, etc. Simulation results are compared
to experimental measurements and numerical results obtained in previous studies.
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1 Introduction

The sedimentation of solid particles can be found in many natural phenomena and in-
dustrial applications, e.g., the flow of pollutants in rivers and in the atmosphere, the
clarification of liquids, and the separation of particles of differing masses. Nonetheless,
despite the wide applicability of particle sedimentation, some of its fundamental prop-
erties remain to be understood. One of the challenges in understanding these properties
lies in the long-range hydrodynamic interactions among the particles.

Much effort has been directed to studying the sedimentation process of spherical par-
ticles. For instance, the mean sedimentation velocity and the velocity fluctuations of
the particles have been investigated experimentally [27] and theoretically [3,11] (and see
references therein). In contrast, the sedimentation of non-spherical particles is less well-
understood. Owing to the anisotropic nature of the particles, the suspension structure
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and fiber orientation have a significant impact on the sedimentation velocity. Also, un-
like spheres, isolated fibers may have motion in the direction perpendicular to gravity.

Previous fiber experiments have measured the settling speed and orientation of sed-
imenting marked fibers. Experiments by Herzhaft et al. [17] revealed a dilute regime of
inhomogeneous sedimentation in which the fibers tend to align in the direction of gravity
and to clump together in packets. Experiments by Turney et al. [33] and by Anselmet [1]
suggests that, in the semi-dilute regime, fiber settling is hindered at sufficiently high vol-
ume fractions.

Although not as extensively investigated as spherical particles, there have been sev-
eral numerical studies on fiber suspensions. Butler and Shaqfeh [9] and Fan et al. [13]
presented numerical simulation to fiber suspensions and compared their results to ex-
perimental data. Tornberg and co-workers developed a numerical method, based on a
non-local slender body approximation that yields a system of coupled integral equations,
to simulate rigid and flexible fiber suspensions at zero Reynolds number regime [31, 32].
Their simulation results show settling and clustering behaviors consistent with experi-
mental measurements previously reported. In addition, Kuusela et al. [20] performed nu-
merical calculations of the dynamics of sedimenting prolate spheroids at a low Reynolds
number 0.3.

A goal of this work is to study the behaviors of sedimenting fibers under differing
conditions, including differing Reynolds number flows, fiber densities, boundary con-
ditions, etc. To achieve that goal, we formulated a mathematical model of sedimenting
thin, rigid fibers as a two-dimensional (2D) immersed boundary problem. The immersed
boundary approach was first developed by Peskin [26] for solving the full incompress-
ible Navier-Stokes equations with moving boundaries. The immersed boundary method
was originally developed for studying blood flow through a beating heart [25], but has
since been applied to a wide variety of problems, including inner ear fluid dynamics [5],
bacterial swimming [12], sperm motility in the presence of boundaries [14], cilliary beat-
ing [7], flow through an arteriole [2], etc. In particular, Stockie [28] applied this method
to simulate the motion of a single pulp fiber in a linear shear flow. The immersed bound-
ary approach offers much flexibility: the Reynolds number can be set to be any arbitrary
value, the immersed boundaries as well as the fluid domain can theoretically be of ar-
bitrary shape, and there is little constraint on the domain boundary conditions. In the
current problem, the fibers are modeled as immersed boundaries that exert forces on the
surrounding fluid when subjected to gravity.

Using the immersed fiber model, we study, in terms of sedimentation velocity and
fiber distribution, the effects of fiber density, initial fiber distribution, Reynolds number,
and domain boundary conditions. In general, our simulation results are consistent with
experimental observations reported in literature.

The paper is organized as follows. In Section 2, an immersed boundary model is in-
troduced. In Section 3, numerical simulations are performed using the method described
in Section 2 for fibre suspensions in a fluid with a nonzero Reynolds number. Some dis-
cussions are presented in the final section.
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2 An immersed boundary model

In this section, we formulate a computational hydrodynamic model to simulate the sus-
pensions of rigid thin fibers in a viscous incompressible fluid. The model is based on the
immersed boundary formulation [26]. In an immersed boundary problem, the fluid is
computed on an Eulerian grid, whereas the immersed boundaries (i.e., the fibers in the
current case) are tracked using Lagrangian coordinates. The fluid and boundaries inter-
act as the boundaries exert forces on the fluid, and as the fluid pushes the boundaries. To
reduce the computational efforts, the current fiber model is formulated in two spatial di-
mensions (2D); nonetheless, the extension to three dimensions (3D) is straightforward.
The fibers are assumed to be infinitely thin and are represented by one-dimensional
curves.

Let us denote the spatial coordinates by (x,y), the temporal coordinate by t, the ve-
locity by u, and the pressure by p. We assume that the density of the fiber ρfiber is slightly
greater than the density of the fluid ρfluid, i.e.,

∆ρ≡ρfiber−ρfluid ≪ρfluid.

With this assumption, we make the Boussinesq approximation and assume that the aver-
age density of the fiber-fluid suspension can be approximated by that of the fluid. After
non-dimensionalization, the following incompressible Navier-Stokes equations are used
to describe the fluid motion,

ut+(u·∇)u=−∇p+
1

Re
∇2u+∑

m

Fm , (2.1)

∇·u=0, (2.2)

where Re is the Reynolds number. The subscript m indices the fibers, 1≤m≤M, where M
denotes the total number of fibers. The force term Fm arises from the gravitational force
acting on the mth fiber and from the elastic forces generated in the course of fluid-fiber
interaction.

The forces Fm in Eq. (2.1) are localized to the neighborhood of the immersed fibers;
the x- and y-components are given by

Fm,i(x,t)=
∫ L0

0
fm,i(s,t)δ(x−Xm(s,t))ds, (2.3)

where i = 1,2 denote the x- and y-components; L0 is the length of a fiber at its relaxed
state; Xm(s,t) gives the location of the mth fiber at time t, parameterized by the length s at
the relaxed state for 0≤s≤L0; fm,i(s,t) is the force strength at this point; and δ is the two-
dimensional delta function. The force strength fm is given by the sum of the gravitation
force fg, a pseudo anti-bending force fb, and a tension force fT :

fm(s,t)= fg +fb+fT . (2.4)
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In our model, the fibers sediment due to their higher density compared to the fluid. We
assume that the density difference, ∆ρ, is small and the gravitational force only acts on
fibers (a delta distribution):

fg =∆ρg, (2.5)

where g is the gravitational acceleration. The same approach was used by Hopkins and
Fauci [19].

The tension force is given by

fT =
∂

∂s
(Tm(s,t)ø(s,t)) , (2.6)

where the line tension Tm(s,t) is

Tm(s,t)=T0

(
∣

∣

∣

∣

∂Xm(s,t)

∂s

∣

∣

∣

∣

−1

)

. (2.7)

The tension coefficient T0 describes the elastic properties of the fiber and is assumed to be
a constant in this model. Because we aim to model rigid fibers in this study, the coefficient
T0 is set to a large value (T0 = 1000) to maintain the shape of the fibers. Mathematically,
the tension Tm(s,t) acts as a Lagrangian multiplier to ensure that the fibers remain inex-
tensible. The vector tangential to the fiber is given by ø(s,t), where

ø(s,t)=
∂Xm/∂s

|∂Xm/∂s|
. (2.8)

Thus, the force density can be computed directly from the location Xm of the fiber. Note
that at the relaxed state, ∂Xm/∂s=1 and the tension vanishes.

The pseudo anti-bending force fb represents the forces that the fibers exert on the fluid
to maintain their rigidity. The positions of the rigid fibers are computed by allowing the
two ends of the fibers to move at the velocity of the local fluid, i.e.,

dXm(s,t)

dt
=u(Xm(s,t), t), (2.9)

where s = 0 and L0. At time t, the mth fiber is represented by the straight line segment
that passes through Xm(0,t) and Xm(L0,t).

To approximate the pseudo anti-bending force, we use ”fictitious markers”, denoted
by X̃m, to track the positions of the fibers if they were flexible and were allowed to move
at the velocity of the local fluid, i.e.,

dX̃m(s,t)

dt
=u(X̃m(s,t), t), (2.10)

where 0≤ s≤ L0. Thus, the two sets of markers agree at the two endpoints, i.e.,

Xm(0,t)= X̃m(0,t), Xm(L0,t)= X̃m(L0,t).
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The pseudo anti-bending force is given by a restoring force, based on Hooke’s law,
that arises from the discrepancy that evolves between two sets of markers over a time
step ∆t. Specifically, at time t, we set

X̃m(s,t)=Xm(s,t) for 0≤ s≤ L0.

Then after ∆t, the two sets of markers no longer agree except at the endpoints, and the
pseudo anti-bending force is given by

fb,m(s,t+∆t)= k
(

Xm(s,t+∆t)−X̃m(s,t+∆t)
)

. (2.11)

To approximate rigid fibers, we set the spring constant k to a large value (k=1000). Com-
pared to the anti-bending force used in [32], which is given by the fourth-order arclength-
derivative of the fiber profile, and to the feedback control force used in [6,15,21], our ap-
proach may be less physical (nonetheless, our simulation results are in reasonable agree-
ment with experimental measurements), but it is also more stable and thus more suitable
for long-time simulations.

Once all the above forces are generated, the motion of the fluid can be computed, and
the two endpoint markers are advanced to the next time, tn+1, using the no-slip condition
(2.9). A line segment connecting these two endpoint markers gives the new position of
the fiber. The fictitious markers are re-distributed equally along the fiber to start next
cycle of computation.

In addition, our fluid solver, i.e., the numerical discretization of the Navier-Stokes
equations, is based on the widely used projection formulation [4, 8, 10] which generally
involves two steps. To advance the solution from tn to tn+1, we first calculate an interme-
diate velocity u∗,

u∗−un

∆t
+(un ·∇)un =−∇pn +

1

2Re

(

∇2u∗+∇2un
)

+∑
m

Fn
m . (2.12)

Then to impose incompressibility, the intermediate velocity u∗ is projected onto the space
of divergence-free fields to yield the new velocity at the time level n+1,

∇2φ=
1

∆t
∇·u∗, (2.13)

un+1 =u∗−∆t∇φ, (2.14)

∇pn+1 =∇pn+∇φ, (2.15)

where an auxiliary function, φ, is introduced to count for the pressure increment.
We can now summarize our numerical procedure as follows. Let Xm,q represent the

position of the qth marker in the mth fiber, where q = 1,2,··· ,Q; let also un
i,j denote the

velocity at the grid point (xi,yj) at time tn; and let Un
m,q denote the velocity at the qth

marker of the mth fiber at time tn. At each time step, given Xn
m,q, un

i,j and Un
m,q, we advance

the solution to the next time step n+1 by the following procedure:
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1. Compute the forces Fn
m,i,j at each grid node so that the Navier-Stokes equations

can be solved on the grid. This requires spreading the boundary forces to the grid:

Fn
m,i,j =∑

q

fn
m,qDh

(

xij−Xn
m,q

)

∆l . (2.16)

The approximate delta function, denoted Dh, is the product of two one-dimensional
discrete delta functions,

Dh(x,y)=δh(x)δh(y),

where h is the grid spacing. A common choice of δh is given by [10] [26]

δh(x)=

{

1
4h

[

1+cos
(

πx
2h

)]

, |x|≤2h,
0, |x|>2h.

(2.17)

2. Update the velocity field un+1
i,j by the projection method (2.12)-(2.15), using the

calculated forces Fn
m. For periodic spatial dimension(s), the Fast Fourier Transform

(FFT) is performed. For spatial dimension(s) with non-periodic boundary condi-
tions, central finite differences are used to discretize the spatial derivatives.

3. Interpolate the new velocity from the grid into the boundary points, and move
the two endpoint markers in each fiber to their new positions using the kinematic
condition:

Un+1
m,q =∑

i,j

un+1
ij Dh

(

xi,j−Xn
m,q

)

h2 , q=1,Q; (2.18)

Xn+1
m,q =Xn

m,q+∆tUn+1
m,q , q=1,Q. (2.19)

The fictitious markers are then re-distributed equally along each fiber:

X̃n+1
m,q =Xn+1

m,1 +
q−1

Q−1

(

Xn+1
m,Q−Xn+1

m,1

)

, q=1,2,··· ,Q. (2.20)

Once the velocity field and interface profiles are updated, the above procedure is
repeated for the next cycle of computation. This algorithm is found to be sufficiently
robust and efficient to handle a large number of suspending fibers, and to allow for long-
time simulations.

3 Numerical results

Numerical simulations are performed using the method described in the previous section
for fiber suspensions in a fluid with a nonzero Reynolds number. A rectangular domain
in the xy-plane is considered; periodicity is assumed in the vertical direction and, con-
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sequently, the Fast Fourier Transform can be applied in y. With the vertical periodicity
assumption, fibers which reach the bottom boundary will reenter at the top and interact
with other fibers again. The horizontal boundary conditions are specified below. Gravity
is assumed to act in the negative y-direction so that fibers are sedimenting downwards.
The fluid is at rest initially, i.e., no base flow is added.

3.1 Fiber distribution

We first study the effects of fiber density on sedimentation behaviors. We consider a
rectangular box of the size [0,1]×[0,10]. We assume homogeneous Dirichlet boundary
conditions in the x-direction, i.e., solid walls are assumed at x = 0 and x = 1. We first
consider a small Reynolds number, Re = 0.1. Simulations are performed for differing
numbers of fibers, M =50, 100, 200 and 400. The individual fiber length is set to L =0.1,
and the grid size is set to h=0.01. We use Q=11 marker in each fiber; thus, ∆l =h=0.01.
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Figure 1: Plots of the suspension of 50 fibers at (a) t = 0 and (b) t = 100. The Reynolds number Re = 0.1.
Fibers are randomly distributed at t = 0. At t = 100, fibers have formed clusters and aggregated towards the
center line x=0.5.

Fig. 1 shows the distribution of 50 fibers at t = 0 and t = 100. (We note that in all
the figures showing fiber distribution in this paper, the vertically oriented fibers appear
much shorter than horizontal ones due to the large y : x aspect ratio. These fibers indeed
have the same length.) The fibers are initially randomly distributed. At t = 100, fibers
have aggregated and formed fiber-rich areas (i.e., clusters). In particular, the fibers tend
to aggregate along the vertical center line of the box, x = 0.5. Figs. 2 and 3 show the
distributions of 100 and 400 fibers, respectively, with the same initial setup. We observe
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Figure 2: Plots of the suspension of 100 fibers at (a) t = 0 and (b) t = 100. The Reynolds number Re = 0.1.
Fibers are randomly distributed at t=0. At t=100, fibers show more pronounced aggregation than the M=50
case (see Fig. 1-(b)).
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Figure 3: Plots of the suspension of 400 fibers at (a) t = 0 and (b) t = 100. The Reynolds number Re = 0.1.
Fibers are randomly distributed at t = 0. At t = 100, fiber clustering and centerline aggregation is significantly
more pronounced than the cases with M =50 and M =100, shown in Figs. 1-(b) and 2-(b), respectively.



J. Wang and A. Layton / Commun. Comput. Phys., 5 (2009), pp. 61-83 69

more pronounced aggregation behaviors as the number of fibers increases. These results
suggest that at higher fiber density, the reduced average initial fiber separation increases
inter-fiber hydrodynamic interactions, which tend to produce more pronounced cluster-
ing.

To quantify the degree of aggregation, we calculate the average distance between the
fibers and the center line of the box, x=0.5, as a function of time. The average distance is
defined by

1

M

M

∑
m=1

|Cm−0.5|,

where M is the total number of fibers, and where Cm is the x-coordinate of the middle
point of the mth fiber, i.e., Cm = (Xm,1+Xm,Q)/2. The results are shown in Fig. 4 for
M=50, 100, 200 and 400. The striking pattern of these curves is that the average distance
for a fixed value of M generally decreases as time progresses. This result is consistent
with the fiber clustering observed in experiments by Holm et al. [18].
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Figure 4: Average distance between the fiber midpoints and the center line of the box. Results are shown
for M = 50, 100, 200 and 400. The Reynolds number Re = 0.1. A general decrease in the average distance is
observed, indicating a fiber aggregation towards the center line.

Initially, in the above numerical simulations the fibers are randomly oriented; as time
progresses, they tend to align themselves along the direction of gravity. In Fig. 5, we
measure the mean orientation in the vertical direction for the suspending fibers. The
mean orientation is calculated by averaging over all fibers the absolute value of the y-
component of the unit direction vector. The calculation is performed for M=50, 100, 200
and 400, respectively. The results show that the mean orientation first increases, then ap-
proaches a steady state, with the value of that steady-state orientation slightly different
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Figure 5: Mean orientation in the vertical direction for M=50,100,200 and 400. The Reynolds number Re=0.1.
Given an initial randomly-distributed orientation, the fibers increasingly align along the vertical direction until
a steady state is reached.

for different fiber density. The increase in the mean vertical orientation leads to increased
sedimentation speed, which will be discussed in the next section. Similar observations
were made in a numerical study by Tornberg and Gustavsson [31] for fiber suspensions
in Stokes flows, and in experimental studies by Herzhaft et al. [16, 17] under Stokes flow
conditions. In [31], the authors performed numerical calculations for up to 100 fibers.
Their measurements for the mean orientation with M = 100 yield a steady-state value
≈ 0.7, which exhibits a reasonable agreement (within a 10% discrepancy) with our re-
sults. The slight difference can be attributed to the fact that our numerical simulations
are performed with a small but nonzero Reynolds number. In [16] and [17], Herzhaft et
al. experimentally studied the fiber orientation with a large set of fibers (M = 919) by
directly measuring the projected angles in radians. They found that the mean projected
angle fluctuated approximately between 1.0 rad. and 1.2 rad., before reaching a steady-
state value ≈ 1.1 rad. Note that sin(1.1 rad.) ≈ 0.89; thus, the experimental results by
Herzhaft et al. are consistent with ours to a reasonable degree.

To further validate our numerical results, a convergence study in terms of the grid
size, h, is provided for the average fiber-centerline distance and mean orientation. We
use h = 0.04, 0.02, 0.01 and 0.005, and perform the calculation from t = 0 to t = 10 with
each choice of h for M = 50 (representing low fiber density) and M = 400 (representing
high fiber density), respectively. Since no exact solutions are available for the current
problem, we use the standard Richardson extrapolation to check the order of accuracy.
Let D(h) and Φ(h) denote the numerical solutions with the grid size h for the average
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Table 1: Convergence study in h, the grid size, for 50 fibers. D(h) and Φ(h) denote the numerical solutions for
the average fiber-centerline distance and mean orientation, respectively. The values of r(·,h) indicate first-order
convergence.

h D(h) r(D,h) Φ(h) r(Φ,h)
0.04 0.1961 1.22 0.8109 1.39

0.02 0.1954 1.58 0.8130 1.00

0.01 0.1951 – 0.8138 –

0.005 0.1950 – 0.8142 –

Table 2: Convergence study in h, the grid size, for 400 fibers. D(h) and Φ(h) denote the numerical solutions
for the average fiber-centerline distance and mean orientation, respectively. The values of r(·,h) again indicate
first-order convergence.

h D(h) r(D,h) Φ(h) r(Φ,h)
0.04 0.1995 0.87 0.7814 1.08

0.02 0.1973 0.78 0.7831 1.23

0.01 0.1961 – 0.7839 –

0.005 0.1954 – 0.7842 –

fiber-centerline distance and mean orientation, respectively. We define

e(D,h)= |D(h)−D(h/2)| , r(D,h)= log2 [e(D,h)/e(D,h/2)] ,

e(Φ,h)= |Φ(h)−Φ(h/2)| , r(Φ,h)= log2 [e(Φ,h)/e(Φ,h/2)] ,

where e(·,h) gives the difference between two consecutive numerical runs with grid sizes
h and h/2, and r(·,h) indicates the order of convergence with respect to h. The results are
given in Table 1 for M=50 and Table 2 for M=400.

We observe typically first-order convergence in h from these tests. This is a generic
feature of the immersed boundary method due to the use of discrete delta functions,
which smooth out sharp interfaces to an ”effective thickness” in the order of the grid size,
h. We also note that the value of D(h), which measures the fiber aggregation towards the
center line, decreases in both tests when the grid is refined, showing higher degrees of
fiber aggregation. This is due to the fact that smaller value of h leads to a decrease in the
fiber effective thickness, thus results in a higher degree of aggregation among fibers.

All the results reported so far were obtained for initially randomly distributed fiber
suspensions. In the next set of simulation, we consider a different initial configuration.
Instead of a random distribution, we align these fibers together on the top of the box, as
shown in Fig. 6-(a) for a suspension of 50 fibers. At t=100, the fibers have separated in the
sense that fibers can be found at various vertical levels. Nonetheless, we observe more
pronounced fiber clusters compared to the case of random initial distribution. Similar
behaviors were observed for different fiber densities. These results suggest that in flows
with small Reynolds numbers, the suspending fibers tend to form clusters, regardless of
the initial configuration. Indeed, if initially the fibers are already aggregated to some ex-
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Figure 6: Plots of the suspension of 50 fibers at (a) t=0 and (b) t=100. The Reynolds number Re=0.1. Fibers
are aligned on the top of the box at t = 0. At t = 100, fibers have formed clusters that are more pronounced
than those in Fig. 1-(b).

tent, then the fiber-fluid interaction will strengthen that aggregation, thereby magnifying
the heterogeneous structure.

3.2 Sedimentation velocity

In studies of particle suspensions, one is frequently interested in the average sedimenta-
tion velocity and its dependency on various factors. Thus, in the next set of simulations,
we measure the average sedimentation velocity as time progresses for differing fiber den-
sities. Results are shown in Fig. 7 for 50, 100, 200 and 400 fibers. The Reynolds number
is 0.1 and the initial distribution is random in all these cases. As the number of fibers in-
creases, the average sedimentation velocity also increases due to higher level of fiber ag-
gregation as well as larger gravitational forces exerted on fibers which are subsequently
transferred onto the fluid. Owing to the anisotropic nature of fibers, the dynamics of
suspending fibers differs qualitatively from that of spheres in the strong dependency on
particle orientation. In particular, individual fibers can have motion perpendicular to
gravity. As noted previously, fibers increasingly align themselves along the gravitational
(vertical) direction as time progresses. As their orientation becomes more vertical, the
average vertical velocity increases correspondingly. As is clear from Fig. 7, for a fixed
number of fibers, the average sedimentation velocity first grows with time, then reaches
a steady state. This pattern is consistent with the measurement of the mean vertical ori-
entation, shown in Fig. 5. Similar results were reported in [9, 16, 17, 31], for example,
for three-dimensional Stokes flows. In all these studies, one observes that the average
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Figure 7: Average sedimentation velocity in the vertical direction for M = 50, 100, 200 and 400. Results show
that the sedimentation velocity (1) increases over time, approaching a steady state, and (2) increases with fiber
density.
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Figure 8: Vertical velocity fluctuation for M=50,100,200 and 400. Results show that vertical velocity fluctuation
increases as fiber density increases.

sedimentation velocity increases over time and approaches a steady state. In [9, 31], it
is also found that the average sedimentation velocity increases with higher fiber density.
Although it is not possible to quantitatively compare our two-dimensional results of the
sedimentation velocities with those published three-dimensional measurements, Fig. 7
does show clear trends which are consistent with those three-dimensional results.

Long-range hydrodynamic interactions among fibers cause the sedimentation veloc-



74 J. Wang and A. Layton / Commun. Comput. Phys., 5 (2009), pp. 61-83

0 100 200 300 400 500
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Number of Fibers

A
ve

ra
ge

 V
ol

oc
ity

 F
lu

ct
ua

tio
n

Figure 9: Time-averaged vertical velocity fluctuation as a function of the number of fibers. The results for
50, 100, 200 and 400 fibers are marked with squares. The four data points lie on an approximate straight line,
which suggests that average vertical velocity fluctuation increases linearly with fiber density.
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Figure 10: Relative velocity fluctuation for M=50, 100, 200 and 400. The measurements are not systematically
distinguishable between the four sets of numerical experiments, a result that suggests that relative velocity
fluctuation is independent of fiber density.

ity of individual fibers to fluctuate about the mean. The velocity fluctuation for the entire
set of fibers is given by the standard deviation of the sedimentation velocities over all
fibers. We compute the velocity fluctuation as time progresses for 50, 100, 200 and 400
fibers. The results, shown in Fig. 8, suggest that the velocity fluctuation increases with
increasing fiber density owing to the higher degree of fiber-fiber interactions. To further
understand the relation between fiber density and velocity fluctuation, we take the aver-
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Figure 11: The suspensions of 50 fibers at t=100 with the Reynolds number Re=10: (a) the fibers are randomly
distributed at t=0 and (b) the fibers are aligned on the top of the box at t=0. The degree of aggregation at
t=100 is significantly less than the Re=0.1 case.
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Figure 12: The suspensions of 100 fibers at t = 100 with the Reynolds number Re = 10: (a) the fibers are
randomly distributed at t = 0 and (b) the fibers are aligned on the top of the box at t = 0. The degree of
aggregation at t=100 is significantly less than the Re=0.1 case.

age of the velocity fluctuation over the time interval [0,100], and plot the average velocity
fluctuation as a function of the number of fibers. The results approximate a straight line
(see Fig. 9). This suggests that the average velocity fluctuation increases linearly with the
number of fibers, which agrees with the results in [9]. Finally, if we consider the relative



76 J. Wang and A. Layton / Commun. Comput. Phys., 5 (2009), pp. 61-83

velocity fluctuation, i.e., the ratio of the velocity fluctuation and the average sedimen-
tation velocity, then we obtain almost the same profile for all the four choices of fiber
numbers when t≥20, as shown in Fig. 10. This observation suggests that the long-term
behavior of the relative velocity fluctuation is independent of the fiber density.

3.3 Effects of Reynolds numbers

Previous simulations are limited to the low Reynolds number regime (Re=0.1). To assess
the effects of the Reynolds number on the sedimentation process of fiber suspensions,
we conduct additional simulations using a larger Reynolds number (Re=10), which cor-
responds to a less viscous fluid. Two initial fiber configurations are considered: one in
which the fibers are randomly distributed (see Fig. 1-(a)), and the other in which the
fibers are top-aligned (see Fig. 6-(a)). Results are shown in Figs. 11 and 12 for 50 and 100
fibers, respectively. Unlike in the low Reynolds number case, we observe little evidence
of aggregation at t=100. In particular, in the case where the fibers are initially clustered
at the top (Figs. 11-(b) and 12-(b)), the fibers become approximately randomly distributed
throughout the domain at t=100, showing evidence of dispersion.

To quantify the degree of aggregation (or the lack thereof) in the above simulations,
we measure the average distance between the fibers and the center line of the box, and
we measure the mean vertical orientation of the fibers. The results are shown in Figs. 13
and 14. In contrast to the corresponding results obtained for the low Reynolds num-
ber regimes (Figs. 4 and 5, respectively), both average fiber-centerline distance and the
mean vertical orientation oscillate around their respective mean values, indicating that
the fibers neither aggregate toward the center line of the box, nor do they align with the
direction of gravity.

To better understand the different effects of high and low Reynolds numbers on the
sedimentation dynamics, we perform a simple simulation of the sedimentation of only
two fibers for Re=0.1 and 10, and study the detailed hydrodynamic motion. By looking
into the velocity field in the fluid, which is easy to visualize with two fibers, we gain
essential information on the different behaviors of fiber-fluid interactions.

Fig. 15 depicts the sedimentation at Re =0.1. Initially the two fibers are aligned near
the top of the domain, as shown in Fig. 15-(a). At t=5, they are already getting closer to
each other (see Fig. 15-(b) ). The velocity field in this case indicates that the two fibers will
become even closer, since the upper fiber is more vertical, thus moving downwards at a
higher speed, than the lower fiber. This is justified by the result at t=20 (see Fig. 15-(c)),
where the two fibers are now separated by only half of the initial distance. Moreover, at
t=40 (not shown), the distance between these two fibers is only one quarter of their initial
distance. These results demonstrate that at a low Reynolds number, fibers approach each
other due to the local velocity field.

In contrast, at Re = 10, the two sedimenting fibers behave differently; they depart
from each other over time, as shown in Fig. 16. We start from the same initial profile as
in Fig. 15-(a). At t =5, the distance between the two fibers is already more than triple of
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Figure 13: Average distance between the fibers and the center line of the box with the Reynolds number Re=10:
(a) 50 fibers and (b) 100 fibers. Results show no evidence of fiber aggregation towards the center line.
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Figure 14: Mean vertical orientation of the fibers with the Reynolds number Re=10: (a) 50 fibers and (b) 100
fibers. Results show no evidence of increasing vertical fiber alignment.

their initial distance (see Fig. 16-(b)). Based on the velocity field, one can observe that the
fluid flow tends to pull the two fibers even further away from each other. Indeed, the
result at t=20 (shown in 16-(c)) confirms this pattern.

3.4 Boundary effects

It is well known that domain boundary conditions have a significant impact on the dy-
namics of the enclosed fluid. In previous simulations, boundary conditions were set to be
periodic along the y-direction, and homogeneous Dirichlet along the x-direction. In the
next set of simulations, we investigate the effects of the horizontal boundary conditions
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Figure 15: Sedimentation of two fibers at Re=0.1. The solid lines represent fibers, while the arrows represent
the velocity field in the fluid: (a) t=0, (b) t=5 and (c) t=20. Results show that the two fibers are approaching
each other over time.
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Figure 16: Sedimentation of two fibers at Re =10. The solid lines represent fibers, while the arrows represent
the velocity field in the fluid: (a) t=0, (b) t=5 and (c) t=20. Results show that the two fibers are pulled away
from each other over time.

on the fiber suspension. To that end, we conduct simulations assuming that the boundary
conditions are biperiodic (in both x- and y-directions), and we perform the Fast Fourier
Transform in both spatial directions. In Fig. 17, we show the distributions of 50 fibers
with periodic horizontal boundaries at t=100, again for two choices of initial configura-
tions: one with random distribution and the other with regular alignment. The Reynolds
number is set to Re =0.1 in both cases. Compared with Figs. 1, 6 and 11, we see that the
fibers with periodic boundaries in the x-direction do aggregate, but not as much as those
with solid boundaries. The reason is that with periodic boundaries, fibers have more
freedom to move in the direction perpendicular to gravity, thus they are less inclined to
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Figure 17: The suspensions of 50 fibers at t=100 with periodic boundary conditions in the x-direction: (a) the
fibers are randomly distributed at t = 0 and (b) the fibers are aligned on the top of the box at t = 0. In both
cases, the degree of aggregation is less than the corresponding case with solid boundaries in the x-direction.
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Figure 18: Comparison of (a) average sedimentation velocity and (b) mean vertical orientation between fiber
suspension with solid boundaries and that with periodic boundaries. The number of fibers is 50 and they are
randomly distributed initially.

cluster in a certain area. As a result of this reduced degree of clustering, fibers with pe-
riodic boundaries have a smaller average sedimentation velocity than those with solid
boundaries. We also observe that the mean vertical orientation of fibers with periodic
boundaries is smaller than that in the solid-wall case. These comparisons are presented
in Fig. 18 with 50 fibers. Similar results were obtained when varying the number of fibers
(not shown).
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Figure 19: The suspensions of 50 fibers at t=100 with different domain size or fiber length: (a) the domain is
[0,0.5]×[0,10] and the fiber length is 0.1, (b) the domain is [0,1]×[0,10] and the fiber length is 0.2, and (c)
the domain is [0,1]×[0,10] and the fiber length is 0.01. When volume fraction is increased either by reducing
the domain size (a) or increasing the fiber length (b), the clustering effect is enhanced; and vice versa (c).

3.5 Domain size and fiber length

In Sections 3.1 and 3.2 we investigated the effects of fiber density on the sedimentation
process, and we varied fiber density by varying the number of fibers in a fixed domain
size. However, increasing the number of fibers also has the effect of increasing the gravi-
tational force exerted by the immersed fibers on the underlying fluid, the effect of which
is unclear. Thus, in the next set of simulations, we fix the number of fibers (and thus the
total gravitational force) and vary the fiber density by varying the domain size. We obtain
results for a domain size that is half of the base-case, [0,0.5]×[0,10] and for 50 fibers; the
fiber distribution at t=100 is shown in Fig. 19-(a). With the domain size reduced to half,
the fiber density is doubled, with the total gravitational force unchanged. Compared to
the base-case results (Fig. 1), a larger degree of aggregation is observed, consistent with
our previous conclusion that a higher fiber density increases fiber clustering.

For a fixed domain size and a fixed fiber density, the volume fraction taken up by
the fibers may be varied by varying the individual fiber length. To assess the impact of
fiber length on the dynamical behavior, we conduct simulation for fiber length L = 0.2
and 0.01. (The base-case fiber length is L = 0.1.) For the longer-fiber case (L = 0.2), the
volume fraction of fibers is double that of base case. The higher volume fraction increases
the hydrodynamic interactions among the fibers, and fiber aggregation becomes more
pronounced (see Fig. 19-(b)). In contrast, with the fiber length reduced to 1/10 of base-
case length, the dynamics of the fiber suspension approach that of spherical particles. In
particular, compared to base case, the movement of fibers along the horizontal direction
is much reduced, and the fibers show little tendency to aggregate. Indeed, at t = 100,
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these almost-spherical fibers are found throughout the entire box. They do not aggregate
towards the center line of the box, and no cluster have formed (see Fig. 19-(c)).

4 Discussion

In this study, the sedimentation of fiber suspensions is formulated as an immersed bound-
ary problem. The salient feature of the immersed boundary approach is the ability to ex-
plore a wide range of parameters, including fiber density, initial configuration, Reynolds
number, domain boundary condition, domain size, and fiber length, all of which con-
tribute to the complex dynamics in the sedimentation process. The numerical algorithm
is capable of computing a large number of suspending fibers, and allows long-time sim-
ulations so that steady-state sedimentation behaviors can be observed. Our numerical
results in low Reynolds number regime agree with the experimental and numerical mea-
surements of fiber suspensions in Stokes flows, i.e., the limit of zero Reynolds number.
In particular, the behaviors of fiber clustering are confirmed in our numerical study, and
it is observed that higher fiber densities generate higher degree aggregations. In con-
trast, we have found that in the high Reynolds number regime, the suspending fibers
exhibit dispersion instead of aggregation. We have also carefully measured the average
sedimentation properties to further understand the dynamics under differing conditions.

Using a method based on non-local slender body approximation, Tornberg and co-
workers simulated sedimentation of rigid and flexible fiber suspensions in Stokes flows
[31,32]. The settling and clustering dynamics revealed in their studies are consistent with
our results for low Reynolds numbers. The models by Tornberg and co-workers are in
three spatial dimensions, and thus are, in some sense, more realistic than the present
model. One difference between fiber suspensions in two- and three-dimensional do-
mains is that the latter enjoy more freedom in their movements: in a two-dimensional
model, fibers that overlap in the horizontal dimension cannot overtake each other. Our
model can be generalized to three dimensions, at the expense of a substantial increase in
computational cost. Despite its limitations, our model allows simulations with arbitrary
Reynolds numbers and domain shapes — flexibility that may be difficult to achieve in a
Stokes flow model such as [31, 32].

In addition to higher spatial dimensions, the current model can be extended in a num-
ber of other interesting directions. One example is the simulation of self-propelled elon-
gated particles. Instead of being pulled by gravity, the fibers can move in a general di-
rection with small fluctuations, as in bacteria swimming down a concentration gradient.
Another example is the simulation of charged particles, which interact by attracting or
repelling each other.
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82 J. Wang and A. Layton / Commun. Comput. Phys., 5 (2009), pp. 61-83

[2] K.M. Arthurs, L.C. Moore, C.S. Peskin, E.B. Pitman and H.E. Layton, Modeling arteriolar
flow and mass transport using the immersed boundary method, J. Comput. Phys. 147 (1998)
402-440.

[3] G.K. Batchelor, Sedimentation in a dilute dispersion of spheres, J. Fluid Mech. 123 (1972)
245-268.

[4] J.B. Bell, P. Colly and H.M. Gall, A second order projection method for the incompressible
Navier-Stokes equations, J. Comput. Phys. 85 (1989) 257-283.

[5] R.P. Beyer, A computational model of the cochlea using the immersed boundary methods, J.
Comp. Phys. 98 (1992) 145-162.

[6] R.P. Beyer and R.J. LeVeque, Analysis of a one-dimensional model for the immersed bound-
ary method, SIAM J. Numer. Anal. 29 (1992) 332-364.

[7] J. Blake, Fluid mechanics of cilliary propulsion, Computational Modeling in Biological Fluid
Dynamics (editor: L.J. Fauci and S. Gueron), Springer-Verlag: NY, 1999.

[8] D.L. Brown, R. Cortez and M.L. Minion, Accurate projection methods for the incompressible
Navier-Stokes equations, J. Comput. Phys. 168 (2001) 464-499.

[9] J.E. Butler and E.S.G. Shaqfeh, Dynamic simulation of the inhomogeneous sedimentation of
rigid fibers, J. Fluid Mech. 468 (2002) 205-237.

[10] R. Cortez and M. Minion, The blob projection method for immersed boundary problems, J.
Comput. Phys. 161 (2000) 428-453.

[11] R.H. Davis and A. Acrivos, Sedimentation of noncolloidal particles at low Reynolds number,
Ann. Rev. Fluid Mech. 17 (1985) 91-118.

[12] R. Dillon, L. Fauci and D. Gaver III, A microscale model of bacterial swimming, chemotaxis,
and substrate transport, J. Theor. Biol. 177 (1995) 325-340.

[13] X. Fan, N. Phan-Thien and R. Zheng, A direct simulation of fibre suspensions, J. Non-
Newtonian Fluid Mech. 74 (1998) 113-135.

[14] L. Fauci and A. McDonald, Sperm mobility in the presence of boundaries, Bull. Math. Biol.
57 (1995) 679-699.

[15] D. Goldstein, R. Handler and L. Sirovich, Modeling a no-slip flow boundary with an external
force field, J. Comput. Phys. 105 (1993) 354-366.
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