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Abstract. We study a continuum paradigm of the lipid bilayer based on minimizing
the free energy of a mixture of water and lipid molecules. This paper extends previ-
ous work of Blom and Peletier [European J. Appl. Math., 15 (2004), pp. 487-508] in the
following ways. (a) It formulates a more general model of the hydrophobic effect to
facilitate connections with microscale simulations and first-principles analysis. (b) It
clarifies the meaning and role of the model parameters. (c) It outlines a method for
determining parameter values so that physically-realistic bilayer density profiles can
be obtained, for example for use in macroscale simulations. Points (a)-(c) suggest that
the model has potential to robustly connect some micro- and macroscale levels of mul-
tiscale blood flow simulations. The mathematical modelling in point (a) is based upon
a consideration of the underlying physics of inter-molecular forces. The governing
equations thus obtained are minimized by gradient flows via a novel numerical ap-
proach; this enables point (b). The numerical results are shown to behave physically in
terms of the effect of background concentration, in contrast to the earlier model which
is shown here to not display the expected behaviour. A “short-tail” approximation of
the lipid molecules also gives an analytical tool which yields critical values of some pa-
rameters under certain conditions. Point (c) involves the first quantitative comparison
of the numerical data with physical experimental results.
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1 Introduction

We show that a continuum paradigm [1] of the lipid bilayer can produce physically-
realistic bilayer properties. We first introduce into the paradigm a new model of the hy-
drophobic effect. Secondly, we investigate the influence and meaning of the paradigm’s
parameters by performing the first quantitative comparison of numerical solutions of the
paradigm with physical experimental data, and in so doing provide a method for deter-
mining parameter values.

As is well-known, the cell is the fundamental element of all living matter. The activity
of the cell sustains life and the cell itself is sustained by a metabolism which utilizes mass
transfer through its membrane. The cell membrane is composed of a double layer of lipid
molecules (lipids) with proteins and other components floating in it [9]. The dynamics of
this lipid bilayer membrane become especially important in the case of dispersed compo-
nents in the blood, such as red blood cells (RBCs), white blood cells, platelets and so on,
because the deformation dynamics of these membranes directly affect the mass transfer
in the blood. These membranes are often modelled as hyperelastic due to the presence of
a cytoskeleton. On the other hand, a liposome, composed of lipid bilayers only, is usually
modelled as a two-dimensional fluid membrane, because the membrane lipid molecules
can easily move laterally within the bilayer. Liposomes are used as drug delivery agents
(DDAs) and artificial oxygen-carriers in blood. Although fluid, a “soft” entropic force
called the hydrophobic force (or effect) gives the pure lipid bilayer integrity [3].

In all these cases the behavior of the lipid bilayer is responsible for the mass transfer
through the cell membranes. Hence, the modelling of the lipid bilayer membrane from
a molecular level through to the continuum level is expected ultimately to predict mass
transfer behavior in blood [2, 8, 10, 11].

Here we focus on one crucial intermediate scale the mesoscale at which both molec-
ular physics and continuum mechanics are important to the bilayer dynamics, since the
bilayer is typically only two molecules in thickness but extends laterally for several mi-
crometers. Understanding how membrane composition affects deformability, and how
deformation affects the mass-transfer properties of RBCs and DDAs, are key to the mul-
tiscale modelling of blood flow. In this paper, we consider bilayers composed of one type
of lipid.

[1] base their continuum paradigm, herein called the “BP paradigm”, on the meso-
scopic dynamics framework of [5], minimizing a free energy for a system of lipid and
water molecules. Formally, the intrinsic free energy of the system is minimized with re-
spect to a constraint that the (unobservable) distribution of the molecules generates the
(observable) continuous volume fractions, thus assuming that the microstate has relaxed
to equilibrium over the relatively long time scale of the continuous description.

Within this paradigm, several different models of lipid structure and inter-molecular
interaction may be considered, and here we present a new interaction model which dif-
fers from the original choice in [1] in a number of ways. Our main point is a new model of
the hydrophobic effect which has two advantages over the original, both stemming from
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the fact that our model deals with physical attractive forces between molecules. Thus,
on the one hand, the model is more general than the original which penalized proximity
between waters and tails, whereas the new model promotes the hydrogen-bond network
in which heads and waters partake, making the appearance of bilayer-like solutions less
obvious. On the other hand, by working with attractive inter-molecular forces we feel
that our model is more physical and anticipate being able to connect the model more
readily with microscale simulations, and also with first-principles analysis.

A further improvement supporting the above advantages is a term β to control the
decay rate of the interaction strengths. Since tests not reported here show that both mod-
els have very similar computational costs, we concentrate largely on our new model.
Our point is not that our model has computational advantages or performs better un-
der certain conditions, but rather that it is more general and more physical, enabling a
better connection to microscale simulations or first principles. Moreover, although [1]
demonstrated that the paradigm in principle has bilayer-like solutions, we are able to
show that further that, with our model, the paradigm actually generates bilayer profiles
with physically-realistic properties which can be fine-tuned to create model bilayers for
different lipid species. It does so while yet being relatively fast to solve numerically, and
relatively straight-forward to analyze, lending credibility to the numerical solutions.

Our analysis of the paradigm shows that some of its parameters which at first sight
appear physical (as opposed to purely numerical) are in fact largely numerical, in that
they cannot be directly connected a priori with physical measurements. Properties of
numerical bilayers must be compared a posteriori with physical properties in order to set
some parameter values. The numerical bilayers are obtained by a method of solution new
to the paradigm, and are for the first time quantitatively compared with experimental
measurements of physical bilayers, and fine-tuned to match them.

In more detail, the system of water molecules and heads and tails of lipids has a free
energy split into an ideal part roughly corresponding to the Helmholtz free energy, in-
volving only connectivity interactions, and a non-ideal part representing inter-molecular
interactions. Lipid structure and configuration are therefore explicitly represented. [1]
formulate a non-ideal part of the free energy with a term reflecting the (global) com-
pressibility of the system and another modelling the (local) hydrophobic interactions; the
modelling of the hydrophobic interaction term is an open question and is not inherent
to the formalism of [5]. In this paper we introduce a new model of the hydrophobic in-
teractions which captures the physics underlying the hydrophobic effect, based on the
following discussion.

Liquid water is a dynamic hydrogen bond network in which each water molecule
forms up to four hydrogen bonds with its neighbours. The non-zero dipole moment of
lipid head groups makes them able to accept hydrogen bonds from water molecules (but
unable to donate a bond to each other): they are hydrophilic. By contrast, the hydropho-
bic lipid tail groups are unable to form hydrogen bonds, although thermodynamic and
electrostatic interactions between water molecules and tail groups occur, but in liquid
water at room temperature the hydrogen-bond energy is typically an order of magnitude
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stronger than such interactions [6, 9].
A cavity with a structured “surface” in the hydrogen bond network forms around a

hydrophobic moiety, causing a decrease in the entropy of the system [7]. An entropic
“force” acts to gather together hydrophobic moieties so as to minimize the disruption
to the hydrogen bond network. The physical origin of this hydrophobic effect is that
water molecules close to a sufficiently large hydrophobic moiety no longer participate
in four hydrogen bonds; with no attractive force towards the hydrophobic moiety, these
molecules’ remaining bonds now draw them away from the moiety. It is thus because
lipid head groups can be nodes in the hydrogen bond network while tail groups can-
not that bilayers and other structured lipid assemblies form, and this is the basis of our
model.

Of the physical parameters, we take the system to be incompressible, leaving the ef-
fects of the compressibility parameter p to future work. The relative tendency of heads
and waters to form hydrogen bonds is modelled here by the new parameter γ which is
set as unity in this paper: the effects of γ are also left to future work, while we simply note
here that γ moves the paradigm beyond modelling heads as attached water molecules.
Herein we investigate the effects of the key physical parameters α,ǫ,β,c0, and m. Re-
spectively these represent temperature effects, lipid head-tail group separation distance,
decay of the interaction strength, and a “background concentration” and “excess mass”
of lipids (these last two terms, inherited from [1], are clarified in this paper).

The paper is structured as follows. We introduce into the BP paradigm a new model
of the inter-molecular interactions in Section 2.1 which forms the basis of the numerical
solutions. The parameters and lipid model are discussed here. Euler-Lagrange equations,
whose solution minimizes the free energy functional, are derived in Section 2.2, and a
novel numerical approach to solving them is given in Section 2.3, along with a sample
numerical result. All solutions and discussions are based on a one-dimensional model.
The “smoothed” nature of the paradigm and the choice of lipid model are discussed in
Section 2.4.

Section 3 connects the BP paradigm to physical in vitro measurements of lipid bilayers.
The summary of bilayer properties in Section 3.1 is used in Section 3.2 to describe how
numerical solutions can be calibrated to physical data. Numerical solutions are calibrated
in this way for the parameters of interest in Section 3.2.1,2,3. In particular, a short-range
interaction (or “short-tail”) approximation based on the new parameter β is introduced
in Section 3.2.2, and its effects studied analytically and numerically. This work enables
guidelines on the choice of parameter values to be given in Section 3.3. The conclusions
are in Section 4.

2 The new model: derivation and numerics

2.1 The new model

The original model of the hydrophobic interaction acted to move tails away from heads
and waters by penalizing proximity between them, mimicking the effect of the hydropho-



P. L. Wilson, H. Huang and S. Takagi / Commun. Comput. Phys., 6 (2009), pp. 655-672 659

Figure 1: Cartoon of the setup, showing the basic lipid structure, the key parameter ǫ, the direction x normal
to the plane of the bilayer, and the water molecules represented by hatched circles. Below is drawn a sketch of
the densities of the two tail groups u and v, from which are extracted the total tail density u+v (solid line),
and total head density τ−ǫu+τǫv (dashed line).

bic force but not the underlying cause, which ultimately rests on the attractive forces of
the hydrogen bond network. Our approach, in direct contrast to the original model, is
to promote water-water and water-head (but not head-head) proximity, modelling the
hydrogen bond network, and effectively to ignore the hydrophobic tails. The relative
strength of the water-water bonding preference to the water-head bonding preference is
controlled by a parameter γ.

Formally, our system comprises “waters”, each represented by a single “bead”, and
“lipids”, each represented by a “head” bead and a “tail” bead† connected by a rigid mass-
less rod of length ǫ. The one-dimensional model has two lipid groups aligned in the x-
direction, normal to the bilayer plane, as illustrated in Fig. 1. One group has tails, having
normalized density u(x), pointing in the positive x-direction, and the other has tails of
normalized density v(x) pointing in the negative x-direction. The head beads of the first
group have normalized density τ−ǫu(x) = u(x+ǫ), and similarly for the second. Water
beads have normalized density w(x). The lipids have here been chosen as the simplest
allowed in the paradigm; see Section 2.4.

The total free energy of the system consists of three parts in the form

E=T
∫

[η(u)+η(v)+η(w)] dx+
p

2

∫

(1−u−v−τ−ǫu−τǫv−w)2 dx

+α

∫

wκ̂∗[w+γ(τ−ǫu+τǫv)] dx. (2.1)

†All beads are of zero dimension.
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The integration measure is the spatial dimension x. In real terms this would run between
the two sides of the container holding the lipid-water mixture — effectively ±∞ on the
working length scale. In practice, we integrate numerically over a domain periodic mod-
ulo 2L, for some L≫ ǫ. The new model differs from the original in the third integral; the
meanings of all three integrals, and the parameters and variables follow.

The first integral, favouring spreading, represents the entropy of the system, in which
η(s)= slogs for non-negative s and η(s)= ∞ otherwise, and where T is the temperature
of the system. The second integral is a potential energy due to compressibility, where p
is the system pressure.

The third integral involves a water-water term wκ̂∗w and a water-head term wκ̂∗
γ(τ−ǫu+τǫv), where ∗ indicates convolution in the form

( f κ̂∗g)(x)=
∫

f (x)κ̂(x−y)g(y) dy. (2.2)

The overall strength of these interactions is controlled by α with their relative strength
controlled by γ.

The convolution measures the extent to which members of the two bead types rep-
resented by f and g in (2.2) are in proximity at a given point. For example, the term
wκ̂∗γ(τ−ǫu+τǫv) is a function of x and effectively measures the proximity between wa-
ter beads at x and head beads in the rest of the domain of integration. Although we take
the opposite approach, the kernel function κ̂ can be chosen to “penalize” proximity be-
tween the bead types by producing a large contribution to the energy functional when
aggregation occurs; since we seek to minimis the energy functional, the solution moves
away from this situation. By contrast we “reward” proximity by taking the interaction
kernel to be

κ̂(s)=κ0−κ(s) for κ(s)=δβ(s), (2.3)

where δβ(s) is a general smooth function with the properties

δβ(±∞)=0,
∫

δβ dx=1,

and the constant κ0 is chosen so that
∫

κ̂ dx=1. In this paper, we define

κ̂(s)=κ0−
1

2β
e−|s|/β, (2.4)

although other choices could be considered. The new kernel κ̂(s) rewards proximity and
thus represents an attractive water-water and water-head force, in contrast to the original
model of [1] which penalized water-tail and head-tail proximity. The new parameter β

controls the decay of the hydrophobic interaction, and will be shown in Section 3.2.2 to
introduce a straightforward analytical tool.

The system is taken to be infinite with an averaged density c0 for both u and v. To
simplify the analysis and computation we consider the case of periodic cells of length 2L,
L≫ǫ. All the discussions are valid for the infinite system.
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2.2 Derivation of the Euler-Lagrange equations

Here we take the system to be incompressible, p=∞, so that

1−u−v−τ−ǫu−τǫv−w=0. (2.5)

The energy functional can be simplified as

EI =
∫

[η(u)+η(v)] dx+α

∫

(1−u−v−τ−ǫu−τǫv)κ̂∗(1−u−v) dx (2.6)

subject to constraints

non-negative water density 1−u−v−τ−ǫu−τǫv=w>0, (2.7a)

mass conservation
∫

(u+v−2c0) dx=m. (2.7b)

The result of scaling T into α is that we can consider the temperature effects by varying
α; see Section 3.2.3. We have also dropped the entropy of the water molecules, which is
justified since although the entropy changes of the water associated with reduced con-
figurational arrangements around hydrophobic moieties actually assists solvation, the
effect is very small [7]. Furthermore, we have taken γ =1, effectively indicating that the
electronegativities of waters and heads are equal, and leaving the effects of the relative
strength of the water-water to water-head bonding preference to future work.

Using the definition (2.4) of the interaction kernel and the mass conservation con-
straint (2.7b) the energy functional becomes

EI =
∫

[η(u)+η(v)] dx+α
(

1−2c0−
m

2L

)

∫

(1−u−v−τ−ǫu−τǫv) dx

−α

∫

(1−u−v−τ−ǫu−τǫv)κ∗(1−u−v) dx, (2.8)

where we have chosen κ0=(2−e−L/β)/2L. Using the method of Lagrange multipliers we
rewrite the energy functional as

ET =EI +
K

2

∫

µ2 dx+λ+

(

m−
∫

u+v−2c0 dx

)

+λ−

(

∫

u+v−2c0 dx−m

)

, (2.9)

where K and λ± are Lagrange multipliers and µ = (u+v+τ−ǫu+τǫv−1)+, with (·)+ =
max{·,0}.

Carrying out calculus of variations in a formal way, assuming that the order of in-
tegrations and translations can be changed wherever necessary, we derive the Euler-
Lagrange equations

0= logu−ακ∗(2u+2v+2τ−ǫu+τ−ǫv+τǫv)+Kµ+Kµ(x+ǫ)+λ, (2.10a)

0= logv−ακ∗(2u+2v+τ−ǫu+τǫu+2τǫv)+Kµ+Kµ(x−ǫ)+λ, (2.10b)
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where
λ=λ−−λ++1+3α−2α(1−2c0−m/2L). (2.11)

We solve the Euler-Lagrange equations by first replacing them with evolution equations
based on gradient flows:

ut =−logu+ακ∗(2u+2v+2τ−ǫu+τ−ǫv+τǫv)−Kµ−Kµ(x+ǫ)−λ, (2.12a)

vt =−logv+ακ∗(2u+2v+τ−ǫu+τǫu+2τǫv)−Kµ−Kµ(x−ǫ)−λ, (2.12b)

for the gradients ut =−(δE/δu), vt =−(δE/δv), with given values of K,λ. These equa-
tions are solved numerically in the next section.

There are thus nine model parameters in total: seven apparently physical and two
(K,λ) strictly numerical. K and λ will be chosen subject to stability, symmetry, and water
conservation considerations described shortly. Of the physical parameters we consider
herein ǫ,β,c0,m,α, as described previously.

2.3 Numerical scheme and solutions

Our numerical scheme solves the gradient flow equations (2.12a,b) to find the densities
u,v which minimize the Euler-Lagrange equations (2.10a,b). The approach uses a dis-
cretized grid with finite difference formulae for ut,vt. Both first- and second-order back-
ward differencing was used, with the results in close agreement. Generally, very small
time steps were required. The numerical domain was taken to be periodic and of length
2L, in contrast to [1] who used a finite domain with small decay at the edges. In both
approaches, u,v deviate from c0 at the boundaries. In tests using the original model, our
numerical scheme reproduced the profiles of [1], as near as we can tell, given that their
simulation conditions were not fully specified. Typical runtime on a machine with two
2GHz AMD Opteron 270 Dual Core processors with 16GB of DDRS-667 SDRAM is four
minutes.

The values of the Lagrange multipliers K,λ are not specified by the model. Indeed,
we require an explicit penalty term in the algorithm, effectively replacing λ−−λ+ in λ

with λ∗(
∫

u+v−2c0 dx−m). Within the range of values of K,λ∗ for which the numerics
are stable, K is chosen large enough to ensure w > 0 but no larger, and λ∗ is chosen to
ensure that the solutions are symmetrical, as expected. Typically, K is of the order of 103

(but can be as large as O(104)), whereas λ∗ is around 102.
A sample result is shown in Fig. 2. The system has separated into a well-defined

bilayer-like profile, in which the hydrophobic tail region is separated from the water re-
gion by two peaks in the hydrophilic head group density. Although it is not our purpose
to compare solutions of our model with those of the original model of [1], we here note
briefly that the forms are similar, but with lipids being slightly more strongly drawn into
the bilayer of the new model. All the results presented in this paper are independent
of domain length 2L (above a certain value) and grid resolution (beyond some level of
coarseness).
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Figure 2: A sample “bilayer” for the parameter set α=3,ǫ=2,β=1,c0 =0.024,m=0.05∗2L.

2.4 Smoothing and the choice of lipid model

There is no one-to-one correspondence between the paradigm’s “lipids” and the physi-
cal lipid molecules, but there is a rigorous correspondence between the densities of the
one and those of the other. We prefer to call the paradigm’s “lipid” a model lipid compo-
nent. These components represent as-yet unclear spatial and temporal smoothing of the
molecular-level information. The temporal smoothing, is central to the paradigm and
is important not just because it enables access to longer time scales, but also because it
captures some detail of the real thermal motion of the lipid molecules within the bilayer,
which is a defining characteristic of bilayers and plays a key role in their function. Re-
gardless, we are free to choose any lipid component model; we have here picked the
simplest. All information from the physical lipid is smoothed into (some sum of the
densities of) the two beads, capturing all of the molecular data in a smaller number of
variables.

Together, the spatial and temporal smoothing is evident in the numerical results since
the model lipid components have combined to create a bilayer of total width greater than
the naively-expected 2ǫ, as can be seen in Fig. 2 (see a more formal discussion in Section
3.2).



664 P. L. Wilson, H. Huang and S. Takagi / Commun. Comput. Phys., 6 (2009), pp. 655-672

3 Connecting the paradigm with the physics

3.1 Physical bilayer properties

Three biologically significant membrane characteristics are (1) the elastic moduli, (2) the
intrinsic monolayer curvature, and (3) the bilayer thickness [9]. The latter is the focus of
the present section ((1) and (2) require working in higher dimensions).

The averaged thickness dSZof the hydrophobic core, or saturation zone where w≈ 0,
is a common physical measure of bilayer thickness. In a physical system this can be
increased by the following means [9, §8.3]: increasing the length lT of the tails; replacing
the double carbon bonds by single bonds in the tails; decreasing the degree of hydration;
increasing the cholesterol concentration; decreasing the temperature. These effects can
increase dSZ by several percent [9, Section 9.2].

The main approaches used in physical experiments to determine the time-averaged
structure of lipid bilayers, and hence their thickness, exploit the high structural period-
icity in the x-direction normal to the bilayer, for example in combining diffraction data
from x-ray and neutron scattering [12]. One such data set is represented in Fig. 3 for
the DOPC lipid molecule. In this figure, the water density measures only the waters of
hydration (those bonded to head groups).

3.2 Making comparisons with physical measurements

For our analysis the key features of Fig. 3 are the saturation zone, the density curves of
the end of the tails (here, the CH3 moiety of DOPC), and those of the heads (here, choline
and phosphate). The DOPC bilayer will form the basis of the comparative work in this
paper, but the key point is that any single-species bilayer can be simulated by our model
within the BP paradigm, when basic structural details are known from experiments.

We consider only those numerical results with a clear bilayer structure like that of
Fig. 2, namely with a single saturation zone of width dSZ, a single tail peak with exactly
two transitions from concavity to convexity, and two head peaks of equal width dHZ,
each likewise with exactly two transitions from concavity to convexity. The head zone
width dHZ is defined in the following way. Using the left-hand head peak, let xL,xR

be the first points to the left and right of the peak satisfying hx = 0,hxx > 0, i.e. local
minima, with the local maxima of the head peak located at x∗. We then find x1,x2 from
h(x1,2)=

1
2(h(xL,R)+h(x∗)) and define dHZ =x2−x1. Defining the head zone width in this

way as running from the left-hand midpoint to the right-hand midpoint of the peak is not
unusual (e.g. [9, fig 8.1]), but none of our conclusions is changed significantly by defining
it as xR−xL.

In a physical system, the ratio dHZ/dSZ depends on the choice of lipid molecule (other
factors such as temperature being equal) and so characterizes the bilayer properties for
our purposes. For the DOPC bilayer of Fig. 3, dHZ/dSZ≈0.4.

We now show that varying the key paradigm parameters of Section 2.1 enables a so-
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Figure 3: The experimentally-determined structure of a DOPC bilayer (figure reproduced from [12] with kind
permission of the authors and the Biophysical Society).

lution to be found corresponding closely to any desired physical bilayer, with the DOPC
bilayer as our example. The method of selecting the values of the parameters is summa-
rized in Section 3.3.

3.2.1 c0, m and the critical micelle concentration

The parameters c0 and m combine to form a numerical equivalent of the critical micelle
concentration (CMC), in which the monomer density of lipids in solution only increases
up to the CMC, beyond which the excess lipids aggregate into ordered structures.The
CMC refers to an average lipid density, which here is

ρ̄=
2

2L

∫

u+v=
m

L
+4c0. (3.1)

Consequently, the true background density is not c0 but m/L+4c∗0 , where c∗0 is the value
of c0 for which aggregates first form (with all other parameters fixed), and the total excess
of lipids is 8L(c0−c∗0). We numerically fix m at a working value and vary c0 only.

In Fig. 4 we consider three data sets in which the parameters α, ǫ, and c0 vary, the
values of α and ǫ being given in parentheses on the graph. The widths dHZ and dSZ are
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Figure 4: Left: dHZ and dSZ against c0 for three different pairs (α,ǫ), with all other parameters equal. Right:
the ratio dHZ/dSZ for the three parameter sets. Straight lines of best fit have been drawn.

normalized on ǫ in these figures. Numerical data is represented by points and a straight
line of best fit is drawn in each case.

As c0 increases beyond c∗0, the excess lipids should be drawn into the bilayer with
the numerical background concentration remaining more or less the same. This required
increase of dHZ and dSZ with increasing c0 can be seen in the left figure. It is worth noting
here that the original model does not show the expected increase of dHZ with c0: indeed,
an inverse relationship between dHZ and c0 holds for numerical data generated by the
original model, as shown in Fig. 5.

More importantly, the data from our new model can be combined into the ratio
dHZ/dSZ as shown in the right figure of Fig. 4. Taking the example of a DOPC bilayer,
the data shows that we can choose suitable parameter sets such that dHZ/dSZ ≈ 0.4,
namely (α,ǫ,c0) = (3,2,0.028) for which dHZ/dSZ = 0.41, (α,ǫ,c0) = (4,2,0.022) for which
dHZ/dSZ =0.37, and (α,ǫ,c0)= (3,3,0.052) for which dHZ/dSZ =0.42. We expect that ulti-
mately α can be set physically (see also Section 3.2.3) and that the role of ǫ is more one
of clarifying the structure (Section 3.2.2), so that effectively here our only choice would
be c0, and the data shows that a value can be chosen which yields a bilayer characteristic
close to that desired. There is no apparent reason for this not to hold for lipids other than
DOPC.

3.2.2 ǫ and the interaction decay length, β

That ǫ is not an actual lipid length has already been discussed. Varying ǫ changes the
degree of separation of the head and tail regions, larger ǫ giving clearer bilayer structure,
meaning that we need only consider a few order unity values of ǫ; see also Section 3.3.
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Figure 5: Example data for the original model: dHZ against c0 for (α,ǫ)= (4,2), plotted on the same scale as
Fig. 4. A straight line of best fit has been drawn, indicating a non-physical inverse relationship between dHZ

and c0.

Turning to the parameter β, which controls the interaction decay length, we consider
another special case of the kernel function of equation (2.4). Our “short-range interac-
tion” approximation takes β→0, so that the kernel function approaches the delta function

κ(s)=

{

1, s=0;

0, s 6=0.
(3.2)

Taking also K→∞, the Euler-Lagrange equations (2.10) reduce to

logu−α(2u+2v+2τ−ǫu+τǫv+τǫv)=−λ, (3.3a)

logv−α(2u+2v+τ−ǫu+τǫu+2τǫv)=−λ. (3.3b)

Separating λ into a constant term plus a term dependent on c by rewriting (2.11) as λ =
λ̄+2α(2c0+m/2L), we look for constant solutions u=v= c, obtaining

logc−4αc=−λ̄. (3.4)

Differentiating (3.4) with respect to c yields the critical concentration cc as the first neces-
sary condition for the existence of a solution:

c= cc≡
1

4α
. (3.5)

The short-range interaction tool thus gives a simpler way to find the same result (3.5)
as [1]. To simplify our discussion, we assume that c0 = cc =1/4α and take α>1.
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The other necessary condition for the existence of a solution is estimated as follows.
From the incompressibility condition (2.7a) we see that c 6 0.5. Substituting c = 0.5 into
(3.4) gives

λ̄min =−log2−2α. (3.6)

When there is phase separation, (3.4) must have more than one solution: indeed, λ̄ must
also be less than λ̄max where

λ̄max = logcc−4αcc =−log(4α)−1, (3.7)

in which case there is only one solution. When β = 0 the incompressibility condition
implies c60.25, and therefore

λ̄min =−log4−α. (3.8)

With λ̄min < λ̄ < λ̄max there are many possible states. The relevant question is whether
there exists a global minimum of the δ-function free energy

ED = lim
β→0

EI =
∫

η(u)+η(v)+α
(

u+v−2c0−
m

L

)

(1−u−v−τ−ǫu−τǫv) dx. (3.9)

With λ̄ chosen between its minimum and maximum values, we assume that u=v=c1 for
−l <x< l, some l < L, and u=v= c2 elsewhere, where c1 and c2 are two distinct solutions
of (3.4). The mass conservation (2.7b) gives

l =
m+4L(c0−c2)

4(c1−c2)
, (3.10)

which in (3.9) yields

ED

4
= l

[

c1 logc1−c2 logc2+2α
(

2(c1+c2)+2c0+
m

L

)

(c1−c2)
]

+L
[

c2 logc2+α
(

c0+
m

2L

)

(4c2−1)+4αc2
2

]

−ǫα(c1−c2)
2. (3.11)

In Fig. 6, we have plotted ED as a function of λ̄, for (α,ǫ) = (4,2). We can see that the
global minimum occurs when λ̄= λ̄max.

Returning to the question of finding a desired profile, Fig. 7 shows how dHZ,dSZ and
their ratio vary with β for all other parameters fixed. A multi-lammellar profile began
to appear for β <0.75, while separation without a saturation zone appeared for β >2.25.
Crucially, a bilayer-like profile could be found for all values of β in the given range,
meaning that, by varying β, the important ratio dHZ/dSZ can be fine-tuned to the desired
accuracy; see Section 3.3.
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Figure 6: Solutions of Eqs. (3.11), (3.10), (3.4) for the parameters α=4,ǫ=2,c0 =1/(4α),m= c0/10,L=20.

3.2.3 α and the effects of temperature

With reference to Section 3.1, increasing α should increase the measurable dSZ. Because
this can be seen in Fig. 4, it appears that temperature-related mechanisms can be cap-
tured in 1D. Indeed, turning to the incompressible free energy functional (2.6) in which
α is scaled on T, increasing α (decreasing T) reduces the effect of the entropy relative
to the interaction terms. This makes physical sense in that with less kinetic energy the
hydrogen-bond network is more strongly preserved.

Further, the other physical temperature-related mechanism is that by which lower
temperatures straighten the lipid tails on average. As a result, we would expect the ratio
dHZ/dSZ of our model to decrease as α increases (T decreases), and this is seen in Fig. 4.

Finally, we note that if the model were also capturing thermal undulations then dSZ

would decrease as α increased, because the order of magnitude of the thermal fluctua-
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Figure 7: dHZ, dSZ, dHZ/dSZ for different values of β. The other parameters were fixed: in particular, (α,ǫ,c0)=
(3,2,0.024). For dHZ the drawn line of best fit is straight ax+c, for dSZ it is of the form ax+b/x+c, and for
the ratio it is exponential and of the form aexp(bx)+c.

tions is larger than that of the changes in dSZ. Since we see the opposite, this precludes
using the amplitude of an averaged thermal undulation to fix α.

3.3 Choosing a parameter set

Based on the preceding sections, we can set the parameters to reproduce the profile of a
desired lipid species bilayer whose properties are known a priori from experimental data
as follows.

Choose α=3 or 4, noting from Fig. 4 that from the numerical viewpoint α controls the
sensitivity of the ratio dHZ/dSZ to variation in c0. Then, pick ǫ = 2 or 3, essentially only
requiring clear separation of the head and tail regions. Next set β = 1 to start. Now run
the numerics with several c0 until dHZ/dSZ is close to the desired value. Finally, fine-tune
the results by varying β.

4 Conclusions

We introduced a more general model of the hydrophobic effect into the continuum
paradigm of [1] and showed that one-dimensional numerical solutions can reproduce
key characteristics of physical lipid bilayers. In particular, the mechanically-important
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bilayer thickness can be reproduced. Indeed, various key characteristics were shown to
behave physically, with at least one in contrast to an unphysical behaviour of the original
model. The paradigm’s inherent smoothing of the molecular information was discussed,
and the smoothed numerical data calibrated to measurements of physical bilayers. Ex-
amining some of the key parameters in turn, we gave a strategy for setting their values,
noting that future work, especially in higher dimensions, could make this process even
more robust by further appeal to physical arguments. In particular, α is formally linked
to the temperature, and has been shown here to have a corresponding effect on the nu-
merical results, while β should be related to the range of the hydrogen bonding forces.
Already, however, the new parameter β has introduced the short-range interaction tool,
allowing analytical results to be obtained with greater ease.

The main aim of future work is to consider higher dimensions, and include compress-
ibility effects by allowing p to vary. If the conclusions of the current paper are supported
by higher-dimensional work, then the paradigm can be made as physical as desired by
varying γ, considering other κ (and indeed whether “promoting proximity” is the best
model of the underlying physics), including electrostatic effects, weak head-head van der
Waals repulsion terms, and so on. The level of detail will rest on computational issues,
in particular cost-benefit considerations in the light of the paradigm’s potential use as a
mesoscale numerical filter in multiscale numerical simulations.

Extending the 1D model to higher dimensions represents a significant challenge. In
one dimension, the lipids are all aligned and split into two distinct species. This is not
true in higher dimensions. As a first step towards generalizing our 1D model to higher-
dimensional cases, work is underway to develop a quasi-2D model which is computa-
tionally tractable. This model allows lipid density variations in 2D while restricting the
lipid alignment to 1D. This approach would allow for the formation of 2D bilayers, but
not for out-of-plane bending. A generalization, while yet remaining computationally
tractable, would be to allow small-angle deviations from an aligned state. In this way,
long wavelength, small amplitude bilayer fluctuations would be allowed. Moreover, this
approach may permit the study of embedded protein aggregation and the influence this
can have on vesiculation and membrane fusion [4]. We believe that this extension of the
present model to 2D is more feasible that tackling the seven coupled integro-differential
evolution equations forming a more complete model in [1].
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