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Abstract. Stochastic collocation methods as a promising approach for solving stochas-
tic partial differential equations have been developed rapidly in recent years. Similar
to Monte Carlo methods, the stochastic collocation methods are non-intrusive in that
they can be implemented via repetitive execution of an existing deterministic solver
without modifying it. The choice of collocation points leads to a variety of stochastic
collocation methods including tensor product method, Smolyak method, Stroud 2 or 3
cubature method, and adaptive Stroud method. Another type of collocation method,
the probabilistic collocation method (PCM), has also been proposed and applied to
flow in porous media. In this paper, we discuss these methods in terms of their ac-
curacy, efficiency, and applicable range for flow in spatially correlated random fields.
These methods are compared in details under different conditions of spatial variabil-
ity and correlation length. This study reveals that the Smolyak method and the PCM
outperform other stochastic collocation methods in terms of accuracy and efficiency.
The random dimensionality in approximating input random fields plays a crucial role
in the performance of the stochastic collocation methods. Our numerical experiments
indicate that the required random dimensionality increases slightly with the decrease
of correlation scale and moderately from one to multiple physical dimensions.

AMS subject classifications: 60H15, 65M70, 76S05, 76M22
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1 Introduction

Geological formation properties are ordinarily observed at a few locations despite they
exhibit a high degree of heterogeneity. This leads to uncertainty in the description of the
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formation properties and thus in the prediction of subsurface flow and transport. Such
uncertainty necessitates a stochastic description of the formation parameters, which leads
to stochastic partial differential equations governing flow and transport [25].

Monte Carlo (MC) simulation is one of the most natural approaches for solving the
stochastic differential equations numerically. It is a statistical method that samples a large
number of realizations for the random process and approximates the moments of interest
with ensemble average. Thus the number of realizations, which one chooses, controls the
accuracy of MC simulation [4]. To ensure the convergence of the moments, typically a
few thousand samples or more are required, which is the main disadvantage of the direct
sampling MC simulation.

An alternative approach is the stochastic finite element method, which has been rapid-
ly developed in recent years [2, 6, 9, 10]. This method employs the polynomial chaos
expansion (PCE) for random processes. After truncation in probability space, its formu-
lation fits into the traditional spectral method framework [5, 9]. However, as the deter-
ministic spectral methods, one must solve a set of coupled equations for the deterministic
coefficients of the PCE. This increases the computational effort when the number of coef-
ficients is large.

To overcome the difficulty for solving the coupled system, Mathelin et al. [13] pro-
posed the so-called stochastic collocation method (SCM), which has had several success-
ful applications [1, 15, 22]. In this approach, the output random field is approximated by
Lagrange polynomial interpolation in probability space. One can derive an uncoupled
system to solve the function values at selected positions. The solution process is highly
parallelizable and it is found to be quite promising approach on the basis of examples
with low random dimensions in the input random fields. The choice of collocation points
leads to a variety of collocation methods including tensor product method [1], Smolyak
method [15], Stroud 2 or 3 cubature method [17], and adaptive Stroud method [7].

Another kind of collocation method is the probabilistic collocation method (PCM) in-
troduced by Tatang et al. [18] and successfully applied to the uncertainty analysis in some
fields [11, 12, 20]. In this approach, the polynomial chaos expansion is used to approxi-
mate the output random field in probability space. The PCM is used to determine the
coefficients of the polynomial chaos expansion by solving for the output random field for
different sets of collocation points. The solution process is also highly parallelizable. For
the cases examined with low random dimensions, this approach is found to be accurate
and computationally efficient.

For numerical methods, accuracy and efficiency are two important aspects. For both
the SCM and PCM, the computational efficiency depends on the total number of colloca-
tion points, which depends on both the representative random dimensions in the input
random fields and the order of polynomial or other expansions in the dependent random
fields. For a given dimensionality of input random field, the effect of the order or level of
approximations in representing the dependent random fields has been studied [1,12,22]].
However, in practical applications the exact or proper dimension of the random space is
often not known a priori. When the underlying (input) fields are spatially correlated, they
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are described with an infinite number of random variables. These random fields may be
approximated with a finite number of terms, hence a finite random dimensionality (N).
For both the SCM and PCM, the solution accuracy may improve with the increase of N.
However, the total number of collocation points and thus the computational efforts re-
quired increase rapidly with N. That is, the SCM and PCM may suffer from the so called
”curse of dimensionality”. In situations where the required random dimensionality N is
too large, the SCM and PCM may become either less efficient than Monte Carlo simu-
lations or even impractical computationally. The required dimensionality depends on a
number of factors such as the correlation scale relative to the domain size, the variance,
and the physical dimensionality. The effect of the retained random dimensionality on
solution accuracy and efficiency has not been investigated for the SCM and PCM. How-
ever, that is crucial for the application of the SCM and PCM to flow and transport as
well as other phenomena in correlated random fields. In addition, most of the studies
of the stochastic collocation methods are in one physical dimension. Extending to multi-
ple physical dimensions is conceptually straightforward. However, the random dimen-
sionality could be much higher in multiple dimensions because the rate of decay of the
eigenvalues of a correlated random field is much slower. Then the stochastic collocation
methods may suffer from the curse of dimensionality and become impractical compu-
tationally if the critical random dimensionality is not selected wisely. In this work, we
focus on discussing the computational properties and applicable range of these methods.
In particular, we explore the possibility of defining a critical input random dimension-
ality for achieving the balance of accuracy and efficiency for the SCM and PCM. We do
so through numerical experiments under different conditions and with numerical error
analyses.

This paper is organized as follows: in Section 2 we introduce the governing equations
for flow in spatially correlated random fields and the general formulations of various
stochastic (probabilistic) collocation methods. In Section 3, we discuss the implementa-
tion of these methods. Numerical examples and analyses are presented in Sections 4 and
5. Some conclusions are given in Section 6.

2 Mathematical formulations

2.1 Governing equations

We consider the steady-state flow in saturated porous media satisfies the following equa-
tion:

∇·[Ks(x)∇h(x)]+g(x)=0, (2.1)

subject to boundary conditions

h(x)= H(x), x∈ΓD, (2.2)

Ks(x)∇h(x)·n(x)=−Q(x), x∈ΓN , (2.3)
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where h(x) is the hydraulic head, Ks(x) is the hydraulic conductivity, and g(x) is the
source (or sink) team. H(x) is the prescribed head on Dirichlet boundary segment ΓD,
Q(x) is the prescribed flux across Neumann boundary segment ΓN and n(x)=(n1,··· ,nd)

T

is the outward unit normal to the boundary ΓD∪ΓN .

In this study, Ks(x) is treated as a spatially correlated random field, thus equation (2.1)
becomes a stochastic differential equation, whose solutions are no longer deterministic
values but probability distributions or related moments. We aim to estimate the statistical
properties of the hydraulic head in teams of the statistic moments of the log transformed
Ks(x).

2.2 The standard stochastic collocation method

2.2.1 Stochastic partial differential equations (SPDE)

Let (Ω,F ,P) be a complete probability space, where Ω is the event space, F ⊂2Ω the σ-
algebra, and P the probability measure. We consider a d-dimensional bounded domain
D⊂Rd (d=1,2,3) and study the following problem: find a random function, u≡u(ω,x) :
Ω×D→R, such that for P-almost everywhere ω∈Ω, the following equation holds:

L(u;ω,x)= f (ω,x), x∈D, (2.4)

where L is an operator involving differentiation in space and can be nonlinear and f (ω,x)
is a known function. Here we omit the boundary conditions for simplicity. To solve
equation (2.4) numerically, we need to reduce the infinite-dimensional probability space
to a finite-dimensional space. This can be accomplished by characterizing the probability
space by a finite number of random variables. So we suppose that u(ω,x) depends on
random variables ξ = (ξ1,ξ2,··· ,ξN)T which take values in space P. Then equation (2.4)
can be rewritten as

L(u;ξ(ω),x)= f (ξ(ω),x), ξ∈P, x∈D. (2.5)

In numerical solution, Eq. (2.5) is usually represented in a weak form: to seek û(ξ,x)∈
V such that

∫

P
ρ(θ)L(û;θ,x)v(θ)dθ=

∫

P
ρ(θ) f (θ,x)v(θ)dθ, ∀v(θ)∈W, (2.6)

where û(ξ,x) is a approximation of u(ξ,x), V is called the trial function space, W is called
the test function space, v is a test function, and ρ(θ) is the probability density function of
ξ. Different choices of V and W lead to different kinds of methods such as polynomial
chaos expansion approach (PCE), probabilistic collocation method (PCM), and stochastic
collocation method (SCM). In the following subsections, we give the general formulations
for the PCM and the SCM, respectively.
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2.2.2 The probabilistic collocation method (PCM)

The construction of the PCM is based on polynomial chaos expansion approximation in
space P [12]. Now we define

V = span{Ψi(ξ)}M
i=1 , W = span{δ(ξ−θi)}M

i=1 , (2.7)

where {Ψi(ξ)}M
i=1 is a set of orthogonal polynomials in terms of the multi-dimensional

random variable ξ with a specific probability distribution and θi ∈ P is a particular set
selected with certain algorithm out of the random vector ξ. Then the elements in θi are
called the set of collocation points. With the choice of V, we actually have the following
approximation for u(ξ,x):

û(ξ,x)=
M

∑
i=1

ci(x)Ψi(ξ). (2.8)

Define the residual R as

R({ci},ξ)=Lû− f . (2.9)

Then Eq. (2.6) takes the following form:

∫

P
R({ci},θ)δ(θ−θj)ρ(θ)dθ=0, j=1,··· ,M, (2.10)

which is equivalent to

R({ci},θj)=0, j=1,··· ,M, (2.11)

resulting in a set of independent equations, evaluated at the given sets of collocation
points, θj, where j=1,··· ,M. In order to obtain the M coefficients {ci}, where i=1,··· ,M,
we need to choose M sets of collocation points to solve Eq. (2.11) for M times. Once
we obtain the coefficients of Eq. (2.8) from a system of M linear algebraic equations, the
statistical moments of u(ξ,x), such as mean and variance, can be derived as follows:

〈u(ξ,x)〉= c1(x), (2.12)

σ2
u =

M

∑
j=2

cj(x)2
〈

Ψ2
j

〉

. (2.13)

The algorithm for choosing the sets of collocation points is significant to the perfor-
mance of the PCM. The particular scheme described in [12] is to select the collocation
points at a given order of polynomials from the roots of the next higher order of orthogo-
nal polynomial for each uncertain parameter. Owing to the fact that the number of collo-
cation points available is always larger than the number of collocation points needed, the
algorithm is designed to select the points by keeping as many as possible of the variables
at high probability values.
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2.2.3 The stochastic collocation methods (SCM)

The construction of standard SCM is based on polynomial interpolation approximation
in space P. Now we define

V = span{Li(θ)}M
i=1 , W = span{δ(θ−θi)}M

i=1 , (2.14)

where {θi}M
i=1 ⊂P be a set of prescribed interpolation nodes and {Li(θ)}M

i=1 be the cor-
responding Lagrange interpolation basis function. Actually, we have the following ap-
proximation for u(ξ,x),

û(ξ,x)=I(u)(θ,x)=
M

∑
i=1

u(θi,x)Li(θ), (2.15)

where I is the Lagrange interpolation operator. Denote ui(x)=u(θi,x), the function value
at the interpolation node θi, which can be computed form the following equation,

L(ui(x);θi,x)= f (θi,x), x∈D, (2.16)

which also results in a set of independent equations, evaluated at the given sets of inter-
polation nodes, θi, where i = 1,··· ,M. Furthermore, we can approximate the mean and
variance of function u as follows

〈u(ξ)〉=
∫

P
u(θ)ρ(θ)dθ≈

M

∑
i=1

u(θi)
∫

P
Li(θ)ρ(θ)dθ=

M

∑
i=1

uiwi, (2.17)

Var(u(ξ))=
∫

P
u2(θ)ρ(θ)dθ−

(

∫

P
u(θ)ρ(θ)dθ

)2

≈
M

∑
i=1

u2(θi)
∫

P
Li(θ)ρ(θ)dθ−

(

M

∑
i=1

u(θi)
∫

P
Li(θ)ρ(θ)dθ

)2

=
M

∑
i=1

u2
i wi−

(

M

∑
i=1

uiwi

)2

, (2.18)

where {wi}M
i=1 are the corresponding quadrature weights. The construction of the SCM is

composed of two sets of parameters: the interpolation nodes and the quadrature weights.
The computational complexity of stochastic collocation methods is M times that of a de-
terministic problem, where M is the total number of collocation points. Thus we need to
choose a nodal set with the fewest possible number of points under a prescribed accuracy.
In the following subsections, we will present some existing choices.

Tensor product of one-dimensional nodal sets

A natural choice of the nodal set is the tensor product of one-dimensional sets. When
N =1, there are many good interpolation formulas for smooth functions u : (−∞,∞)→R
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i.e. for each direction i=1,··· ,N, we can construct a one-dimensional interpolation,

U i(u)=
mi

∑
k=1

u(θi
k)·ai

k , (2.19)

based on nodal sets
Θi =(θi

1,··· ,θi
mi

)⊂ (−∞,∞), (2.20)

where ai
k = ak(θi) is the one-dimensional (1D) interpolation basis polynomial at θi

k. For
the multivariate case, the tensor product formulas are

I (u)=
(

U i1 ⊗···⊗U iN

)

(u)=

mi1

∑
k1=1

···
miN

∑
kN=1

u
(

θi1
k1

,··· ,θiN

kN

)

·
(

ai1
k1
⊗···⊗aiN

kN

)

. (2.21)

Clearly, the above product formula needs M = mi1 ···miN
nodal points. However, if we

use the same interpolating function (2.19) for each dimension with the same number of
points, i.e., mi1 = ···=miN

≡m, the total number of points is M=mN. This number grows
quickly in high dimensions N ≫ 1. This property makes the tensor product algorithm
impractical for high dimensions.

The Smolyak method

The Smolyak formulas are the linear combinations of the product formulas (2.21) with
the following key properties: only products of a relatively small number of nodes are
used and the linear combination is chosen in such a way that an interpolation property
for N =1 is preserved for N >1 [16].

The Smolyak algorithm is given by [19]

I (u)= A(q,N)(u)= ∑
q−N+16|i|6q

(−1)q−|i|
(

N−1
q−|i|

)

(

U i1 ⊗···⊗U iN

)

(u), (2.22)

where i=(i1,··· ,iN)∈N
N
+ and |i|= i1+···+iN . To compute A(q,N)(u), one only needs to

know the function values on the ”sparse grid”,

ΘN ≡H(q,N)= ∪
q−N+16|i|6q

(Θi1×···×ΘiN ). (2.23)

In this paper we choose to use the Smolyak formulas based on polynomial interpola-
tion at the zeros of the orthogonal polynomials with respect to a weight ρ. This naturally
leads to the Gauss formulas that have a maximum degree of exactness of 2mi−1. (Here
we do not use the Clenshaw-Curtis formulas because the probability space with which
we deal is infinite.) Furthermore, we choose m1 =1 and mi =2i−1+1 for i>1.

From Fig. 1, we can see that the sparse grid method uses fewer nodes than the tensor
product algorithm from the same one-dimensional nodes. This will be much obvious
when the dimension is high. For example, when N = 6, the total number of nodes of
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Figure 1: Two-dimensional (N =2) interpolation nodes. Left: sparse grid H(4,2) from Smolyak algorithm, the
total number of points being 17. Right: tensor product algorithm from the same one-dimensional nodes, the
total number of nodes being 49.

sparse grid H(8,6) is 97 while the corresponding number of tensor product algorithm
from the same one-dimensional nodes is 76 =117649.

In the computation, we set q= N+k and refer to k in the A(N+k,N) as the ”level ” of
Smolyak construction [22].

Stroud-2 cubature method and adaptive Stroud collocation method

For P=[−1,1]N , Stroud [17] constructed a set of cubature points with (N+1)-point that is
accurate for multiple integrals of polynomials of degree 2. The degree 2 formula, termed
as the Stroud-2 method hereafter, consists of points {θi}N

i=0 such that

θ2r−1
i =

√

2

3
cos

2riπ

N+1
, θ2r

i =

√

2

3
sin

2riπ

N+1
, r=1,2,···,[N/2], (2.24)

where [N/2] is the greatest integer not exceeding N/2, and if N is odd θN
i =(−1)i/

√
3.

The quadrature weight is wi =1/(N+1), i=0,··· ,N.
The Stroud-2 method employs the minimal number of points for its corresponding

algebraic accuracy [14]. But when N is prescribed, the accuracy cannot be improved
any further. An adaptive Stroud collocation method was recently put fourth in order to
improve accuracy [7]. That is to subdivide the space [−1,1]N into small parts and take
integral in each.

Mathematically, let {Pj}K
j=1 express the partitions of P. By affine transformation and

using the collocation points of the Stroud-2 method, one can get the points in Pj, {θ
j
i}N

i=0.
So the approximations about the mean and variance of u(ξ) are

〈u(ξ)〉=
∫

[−1,1]N
u(θ)ρ(θ)dθ≈ 2N

K(N+1)

N

∑
i=0

K

∑
j=1

u(θ
j
i )ρ(θ

j
i ), (2.25)

Var(u(ξ))=
∫

[−1,1]N
u2(θ)ρ(θ)dθ−

(

∫

[−1,1]N
u(θ)ρ(θ)dθ

)2

≈ 2N

K(N+1)

N

∑
i=0

K

∑
j=1

u2(θ
j
i )ρ(θ

j
i )−

(

2N

K(N+1)

N

∑
i=0

K

∑
j=1

u(θ
j
i )ρ(θ

j
i )

)2

. (2.26)
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3 KL based stochastic collocation method

3.1 Karhulen-Loeve expansion

Let Y(x,ω) be a random process, where x∈D and ω∈Ω. One may write Y(x,ω)=Y(x)+
Y′(x,ω), where Y(x) is the mean and Y′(x,ω) is the fluctuation. The spatial structure of
the random field may be described by the covariance CY(x,y)= 〈Y′(x,ω)Y′(y,ω)〉. Since
the covariance is bounded, symmetric and positive-defined, it may be decomposed as [9]

CY(x,y)=
∞

∑
n=1

λn fn(x) fn(y), (3.1)

where λn and fn(x) are eigenvalues and eigenfunctions, respectively, and can be solved
from the following Fredholm equation,

∫

D
CY(x,y) f (x)dx=λ f (y). (3.2)

Then the random process Y(x,ω) can be expressed as

Y(x,ω)=Y(x)+
∞

∑
n=1

√

λn fn(x)ξn(ω), (3.3)

where ξn(ω) are orthogonal Gaussian random variables with zero mean and unit vari-
ance when Y is assumed to be Gaussian. The expansion in Eq. (3.3) is called the Karhulen-
Loeve (KL) expansion. The KL expansion, which is a spectral expansion, is optimal with
mean square convergence when the underlying process is Gaussian [9]. As such, one may
truncate the infinite series of (3.3) with a finite number (N) of terms. The rate of decay of
λn determines the number of terms that are retained in the Karhulen-Loeve expansion,
which determines the retained random dimensionality (N) of the problem. Therefore,
when the input random fields are spatially correlated, the random dimensionality is not
known a priori. In this study, we will explore the effect of correlation length, variance,
and physical dimensionality on the retained random dimensionality and the impact of
the latter on the solution accuracy and efficiency.

Although, in general, the eigenvalue problem (3.2) has to be solved numer-
ically, there exist analytical or semi-analytical solutions under certain conditions.
For a one-dimensional stochastic process with a covariance function CY(x1,y1) =
σ2

Y exp(−|x1−y1|/η), where σ2
Y and η are the variance and the correlation length of the

process, respectively, the eigenvalues and their eigenfunctions can be expressed as [26]

λn =
2ησ2

Y

η2w2
n+1

, (3.4)

and

fn(x)=
1

√

(η2w2
n+1)L/2+η

[ηwn cos(wnx)+sin(wnx)], (3.5)
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where wn are positive roots of the characteristic equation

(η2w2−1)sin(wL)=2ηwcos(wL). (3.6)

Eq. (3.6) has an infinite number of positive roots. If the roots wn are sorted in an increasing
order, the related eigenvalues λn are monotonically decreasing.

3.2 The implementation of PCM

Here we follow closely the work of [12] for describing the implementation process of the
PCM. Suppose the input random field, Ks(x), is a lognormal random field. Let Y(x) =
ln[Ks(x)] and substitute the KL expansion of Y(x) into the governing equation (2.1) yields

∇
{

exp

[

Ȳ(x)+
N

∑
n=1

√

λn fn(x)ξn(ω)

]

∇h(x)

}

+g(x)=0. (3.7)

Here we truncate Eq. (3.3) by keeping a finite number (N) of terms and N is the di-
mensionality of the input random field. We consider the approximation of the output
random field, h(x,ξ), with a second order polynomial chaos expansion, and express it as
ĥ(x,ξ) [8, 9, 21]

ĥ(x,ξ)= a0(x)+
N

∑
i=1

ai(x)ξi+
N

∑
i=1

aii(x)(ξ2
i −1)+

N−1

∑
i=1

N

∑
j>i

aij(x)(ξiξ j). (3.8)

Here we use the multi-dimensional Hermite Polynomials owing to the fact that ξ is a
Gaussian random vector [9]. In case of other random distributions, generalized polyno-
mial chaos expansions [23, 24] can be used to represent the random field. Eq. (3.8) can be
rewritten as

ĥ(x,ξ)=
M

∑
i=1

ci(x)Ψi(ξ). (3.9)

There is a one-to-one correspondence between the terms in Eqs. (3.8) and (3.9). The total
number of terms (M) is determined by the random dimensionality (N) and the degree (d)

of the polynomial chaos expansion, M= (N+d)!
N!d! .

For the probabilistic collocation method, the residual is zero at the selected set of
collocation points, specified as θj = (θ1,j,θ2,j,··· ,θN,j)

T, where j = 1,··· ,M. We have the
following equation

∇·
{

exp

[

Ȳ(x)+
N

∑
n=1

√

λn fn(x)θn,j

]

∇ĥj(x)

}

+g(x)=0, (3.10)

where ĥj(x), j=1,··· ,M, is the function value for the jth set of collocation points.
We need to choose M sets of collocation points to solve Eq. (3.10) for M times. Then

we can obtain M sets of the hydraulic head field, ĥj(x). Here we denote the coefficients
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in Eq. (3.9) by c1(x), c2(x),··· , cM(x) in sequence, and C(x)= [c1, c2,··· , cM]T. The corre-
sponding hydraulic head field at each collocation point are ĥ1(x), ĥ2(x),··· , ĥM(x), and
h(x)= [ĥ1, ĥ2,··· , ĥM]T. Then we have

ZC(x)=h(x), (3.11)

where Z is a space-independent matrix of dimension M×M, consisting of Hermite poly-
nomials at the collocation points. By solving the linear system of equation, (3.11), the
deterministic coefficients C(x) could be obtained readily. Note that the selected colloca-
tion points should make the matrix Z satisfy the limitation of rank(Z)= M.

Finally we can use Eqs. (2.12) and (2.13) to evaluate the statistical properties of the
hydraulic head field.

3.3 The implementation of SCM

The major steps in the implementation of SCM are: (1) Representing the input random
field with the KL expansion in terms of a set of independent Gaussian random vari-
ables; (2) Approximating the output random field with the polynomial interpolation in
the probability space of the same set of Gaussian random variables; (3) Determining the
values of the output random field at the interpolation nodes; (4) Evaluating the statistical
properties of the output random field.

The implementation of the SCM is similar to that of the PCM, so we do not need to
discuss them in detail. But we must pay attention to the Stroud method whose interpola-
tion nodes are chosen from the probability space [−1,1]N of uniform random vector with
N elements, not the probability space (−∞,+∞)N of Gaussian random vector. Owing to
the assumption that both the random fields ln[Ks(x,ω)] and h(x,ω) depend on Gaussian
random vector ξ, we need to establish the relationship between uniform and Gaussian
random variables before using this method [7].

Denote the cumulative distribution function (CDF) of a Gaussian random variable ξi

by F(ξi) and suppose

F(ξi)=2F(ξi)−1. (3.12)

It is straightforward to know that ηi = F(ξi) is uniformly distributed in [−1,1]. Denote
the jth interpolation node of Stroud method as ηj =(η1,j,η2,j,··· ,ηN,j). Then the function

value at the jth interpolation node, ĥj(x), can be solved from the following equation

∇·
{

exp

[

Y(x)+
N

∑
n=1

√

λn fn(x)F−1(ηn,j)

]

∇ĥj(x)

}

+g(x)=0. (3.13)

Eqs. (2.17) and (2.18) can be used to evaluate the statistical properties of the hydraulic
head field for all types of SCM.
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3.4 The computational effort for PCM and SCM

In the following, we denote the interpolation nodes of the SCM as collocation points also
for simplicity and express the total number of the collocation points as M. The imple-
mentation of the PCM and SCM is nearly the same. But there is one more step in the
PCM, which is to solve the coefficients of Eq. (3.9) after obtaining the values of the hy-
draulic head for each collocation point set. This step can be done according to Eq. (3.11).
Note that Z is a space-independent matrix of dimension M×M, that is to say, Z is a fixed
matrix when we have chosen the collocation points already. We only need to deal with
matrix Z once so this step will not increase much computational effort for the PCM.

For both the PCM and SCM, computing the values of the hydraulic head at all phys-
ical nodes for each collocation point is the most time consuming step, especially in the
presence of large number of physical nodes. So the computational effort for both the
PCM and SCM depends on the total number of collocation points, M, which strongly de-
pends on the order or level of approximations in the dependent variables and the random
dimensionality (N) retained for the input random fields.

4 Numerical results

In the following subsections, we use both the SCM and the PCM to solve the problem of
flow in porous media. We aim to compare these methods about their accuracy and effi-
ciency. We consider the steady state flow in one-dimensional domain of length L=10[L]
(where [L] denotes any consistent length unit) and assume the source (sink) term to be
zero. The boundary conditions are prescribed heads on the two ends, H0 = 7[L] and
HL =5[L]. The correlation length is given as η =4[L]. The mean of the log hydraulic con-
ductivity is given as <Y>=0. We choose three different values for the spatial variability
of Y (i.e., the variance σ2

Y =0.3, 1.0 or 2.0) in the computations.
We need to decide the random dimensionality according to the correlation length. The

eigenvalue and eigenfunction, λn and fn(x), n=1,2,··· , can be determined analytically by
solving Eqs. (3.4) and (3.5). The eigenvalues are monotonically decreasing as illustrated
in Fig. 2(a) with different correlation lengths (η = 1.0 and 4.0). Fig. 2(b) shows the sum
of the eigenvalues as a function of number of terms included. From Eq. (3.1), we have
σ2

Y=∑
∞
n=1λn f 2

n (x). Integrating this equation yields Dσ2
Y=∑

∞
n=1λn, where D is the measure

of the domain size (length, area, or volume for 1D, 2D, or 3D domain, respectively).
On the other hand, λn expresses the energy and input information for each term. It is
clear that when we deal with the small correlation length condition, more terms must be
included in the KL expansion to retain enough energy. The salient question is how many
terms are needed to retain in order to keep the balance between solution accuracy and
efficiency.

In the following computations, the finite difference method is used to solve Eq. (3.10)
or (3.13) and 151 physical nodes are chosen for all SCMs and the PCM. We solve the
same problem with the direct sampling Monte Carlo method as a reference solution. We
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Figure 2: Series of eigenvalues (a) and finite sum (b), for η =4.0 and η =1.0.
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Figure 3: The mean and variance of hydraulic head derived from 5 sets of Monte Carlo simulations, corresponding
to 10, 100, 1000, 10,000 and 20,000 realizations, for η =4.0 and σ2

Y =1.0.

truncate the KL expansion to 100 terms to generate the random field of the log hydraulic
conductivity based on Eq. (3.3) and solve multiple realizations.

Fig. 3 illustrates 5 sets of Monte Carlo simulations, corresponding to 10, 100, 1000,
10,000 and 20,000 realizations. It can be found that Monte Carlo simulations with 10 or
100 realizations do not lead to statistically accurate results and that even the variance
from 1000 realizations deviates from that obtained with 10,000 realizations. The results
from 10,000 and from 20,000 realizations coincide with each other and are believed to
have converged statistically. Therefore, in this study the Monte Carlo simulations with
10,000 realizations are regarded as the reference solutions in all cases.

Here we choose a moderate correlation length, η = 4.0, for the random input field.
Owing to the rapid decay of the eigenvalues, only the first 6 terms are retained in the
KL expansion. That is, the random dimensionality is N = 6. Owing to the particular
boundary conditions in our examples, the mean head obtained from different approaches
are very close to each other. We thus focus our discussion only on the head variance in the
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Figure 4: Comparisons of the variance of hydraulic
head derived from the MC, SCMs, and PCM, for
η/L=0.4.

following sections. For numerical modeling and simulation, accuracy and efficiency are
two important aspects. As such, we provide two groups of comparisons for the stochastic
collocation methods. In the first group, the methods all use small number of collocation
points, which also means a small computational effort, so we compare their accuracy
based on Figs. 4(a), (b) and (c). In the second group, all the methods compared can
obtain accurate results, so we compare their efficiency based on Figs. 4(d) and (e). The
observations are given in the following paragraphs.
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It is clear that Stroud method uses the fewest collocation points but it is not accu-
rate even under the condition of small variability, σ2

Y =0.3. As such, we will not discuss
the Stroud method in the following comparisons. An improvement is found in the 2×2
adaptive Stroud method [7] relative to the Stroud method, where ′2 means the first two
dimensions of the random variable ξ are subdivided, and 2′ means each dimension is
divided into 2 parts. But the variance from the 2×2 adaptive Stroud method still devi-
ates from the Monte Carlo result in the middle part of the domain for the case of small
variability, σ2

Y = 0.3. As shown in Fig. 4(b), the variances from the adaptive Stroud and
level-1 Smolyak are acceptable but not as accurate as the second order PCM whose result
agrees with the Monte Carlo result fairly well. The superiority of the second order PCM
can also be seen from Fig. 4(c) where we increase the variability to 2, σ2

Y=2.0. We perform
the 3×2 adaptive Stroud method but we do not find much improvement (Fig. 4(c)).

Figs. 4(d) and (e) show the variances of hydraulic head obtained from the Monte
Carlo, the second order PCM, the level-2 Smolyak, and the tensor product method. Here
we use the anisotropic full tensor product algorithm [3], which is implemented with the
following strategy: for a given accuracy requirement, it increases the number of interpo-
lation nodes in one dimension as much as possible before considering the next direction.
The notation [4,4,2,2,2,2] means the number of interpolation nodes we used for each di-
mension. As shown in Figs. 4(d) and (e), the results derived from all the methods con-
sidered agree with the Monte Carlo result fairly well. So we only need to compare their
efficiency. As mentioned before, the computational complexity of the SCMs and the PCM
depends on the total number of collocation points. The total number of collocation points
of the second order PCM, the lever-2 Smolyak and the tensor product are 28, 97 and 256,
respectively. So for this case, the second order PCM is the most efficient method.

5 Discussions

5.1 Effect of small correlation length η

As shown in Fig. 2, the correlation length L relative to the domain length L controls the
rate of decay in the eigenvalues. To further test the effect of correlation length on the
SCMs and the PCM, three cases for η/L=0.1 with different spatial variability σ2

Y =0.3, 1.0
and 2.0, are performed. We also use the Monte Carlo simulation result for comparison.
For these cases, we choose the random dimensionality as N = 9. The strategy for deter-
mination of random dimensionality will be discussed in Section 5.3. In these cases, the
tensor product method will not be considered because there will be 29 = 512 collocation
points even if only 2 interpolation nodes are used in each dimension.

As shown in Fig. 5(a), in the case of small spatial variability, the level-1 Smolyak
method is attractive because it uses the fewest collocation points and its result is good.
From Fig. 5(b), we can see that the results derived from the 6×2 adaptive Stroud method
and level-1 Smolyak method deviate from the Monte Carlo result obviously. Notice that
the 6×2 adaptive Stroud method uses more than 11 times of collocation points compared
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Figure 5: Comparisons of the variance of hydraulic
head derived from the MC, SCMs, and PCM, for
η/L=0.1.

to the second order PCM, so the adaptive Stroud method is not attractive for the high
dimensional problem. The second order PCM is superior to the level-2 Smolyak method
for using fewer collocation points to get nearly the same accuracy in the case of moderate
spatial variability. As shown in Fig. 5(c), when σ2

Y is large, i.e., σ2
Y=2.0, the results derived

from the second order PCM, the fourth order PCM and the level-2 Smolyak method all
somewhat deviate from the Monte Carlo result and only the level-3 Smolyak method
provides a close match.

5.2 Effect of large spatial variability σ2
Y

As illustrated in the previous sections, for moderate spatial variability, the second order
PCM can obtain quite accurate results with fewer collocation points compared to other
methods. However, for large spatial variability, there are some deviations in the moderate
correlation length case and the deviation is even larger in the case of small correlation
length. In this section, we examine some cases with an even larger spatial variability, i.e.,
σ2

Y =4.0.

As shown in Fig. 6(a), for the case of large spatial variability and moderate correlation
length, the results derived from the second order PCM and tensor product deviate from
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Figure 6: Comparisons of the variance of hydraulic head derived from the MC, SCMs, and PCM, for σ2
Y =4.0.

the Monte Carlo result while the fourth order PCM and the level-2 Smolyak method agree
with the Monte Carlo result well. So, in this case, the level-2 Smolyak method is superior
to the fourth order PCM for its less computational effort. When dealing with large spatial
variability and small correlation length, the level-3 Smolyak method may be appropriate.
There are five sets of results from the Monte Carlo simulation: the dash lines come from
the Monte Carlo simulation with 1519 realizations and the solid line comes from the
Monte Carlo simulation with 10,000 realizations, which we use as the benchmark. As
shown in Fig. 6(b), with 1519 realizations, the Monte Carlo simulation does not converge.
The result from the level-3 Smolyak method agree with the benchmark fairly well, so it
is superior to the direct Monte Carlo simulation with the same computational effort.

5.3 The error comparison between PCM and Smolyak method

As discussed above, the PCM and Smolyak method are two accurate and efficient meth-
ods compared to other methods. When the random input fields can be represented
isotropically with a fixed (and known) random dimensionality, there is a rigorous error
analysis for the Smolyak method [15]. Such an error analysis is not applicable to spatially
correlated random fields because after representing the latter with the KL expansion, the
random space becomes anisotropic owing to different eigenvalues and eigenfunctions
and a proper random dimensionality is neither fixed nor known a priori. For flow in cor-
related random fields, both the choice of the random dimensionality and that of the order
of polynomials contribute to the errors. In this study, we introduce the following error
definition:

ε=
1

M̂

M̂

∑
j=1

∣

∣y(xj)−yN,d(xj)
∣

∣, (5.1)

where M̂ is the total number of physical nodes, y(xj) are the reference values, yN,d(xj) are
the approximate function values, and subscripts N and d denote the random dimension-
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ality and the order (level) of a given method, respectively. Owing to the fact that there is
no analytical solution for our problem, we use the high-resolution Monte Carlo results as
the reference solution. Note that, here we only analyze the error in the random space by
using the same numerical solver on the same grid.

It is seen from Eq. (5.1) that, in order to perform the error analysis, for a given order
of method, we must first determine the proper random dimensionality, N, for each case.
As we know, for both the SCM and PCM, the solution accuracy and efficiency depends
on the total number of collocation points, which is a strong function of the representative
random dimensions in the input random fields. As such, we introduce the following
error definition,

ε i =
1

M̂

M̂

∑
j=1

∣

∣yi,d(xj)−yi−n,d(xj)
∣

∣· 1

σY
, (5.2)

where yi,d(xj) is the value of statistical moment (being the variance in our cases) of the
random variable at xj when the random dimensionality is i and the order of the method
is d, and n∈N+ is the step size of the increment of the random dimensionality.

In practice, we need to choose an error criterion, εc, for the determination of N. In
the following, we determine a critical random dimensionality so that the results from
each method are converged to a given criterion. We first investigate the influences of
spatial variability and correlation length. As show in Figs. 7(a) and (b), for a fixed corre-
lation length, with the increase of the spatial variability the critical random dimension-
ality should also be increased for a given εc. If we choose a very small criterion error,
the difference between the random dimensionality for different spatial variability is ne-
glectable. As show in Figs. 7(c) and (d), for a fixed spatial variability, with the decrease
of correlation length the critical random dimensionality should be increased for a given
εc. We can see that the correlation length is a more important parameter than the spatial
variability for determining the critical N. It should be noted that the PCM and Smolyak
method possess nearly the same rate of convergence with respect to N.

In order to better understand why we need the convergence criterion mentioned
above to find the critical random dimensionality at various correlation lengths, we in-
troduce another criterion for choosing the random dimensionality that is to retain the
same energy level in the KL expansion. That is, a random dimensionality, Nc, is selected
to make sure that a certain level of energy is preserved in the input field. We denote this
energy as Ec, which can be computed as

Ec =
∑

Nc
n=1λn

∑
∞
n=1λn

=
∑

Nc
n=1λn

Dσ2
Y

.

It is seen from Fig. 8(a) that with the 90% energy criterion (curve with squares), the re-
tained random dimensionality increases exponentially with the decrease of the correla-
tion length. This energy criterion for choosing random dimensionality would lead to the
problem of the curse of dimensionality for the collocation methods (and other stochas-
tic expansion methods). On the other hand, we may adopt the convergence criterion
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Figure 7: Convergence analyses for both PCM and Smolyak method with respect to N. The convergence rate
for the PCM (a) and Smolyak method (b) with fixed correlation length and different spatial variability levels.
The convergence rate for the PCM (c) and Smolyak method (d) with fixed spatial variability and different
correlation lengths.

mentioned above to investigate how much energy is really needed at various correlation
lengths. The minimum N, denoted as Nc, can be found from (5.2) to achieve a given
error, say, εc = 5×10−4. The critical energy Ec can then be calculated corresponding to
this critical random dimensionality Nc. As shown in Fig. 8(a) (curve with triangles), the
critical energy decreases exponentially with the decrease of the correlation length. The
combination of the slower decay of eigenvalues and the lower level energy required leads
to only a slight increase in the critical random dimensionality Nc in the case of a smaller
correlation scale (shown in Fig. 8(b)). By comparing the curves of critical dimensionality
get from these two criterions, we can see, with a given energy, one may not obtain con-
verged results for the case of large correlation length whereas one would retain too many
terms in the KL expansion for the case of small correlation length and thus require un-
necessarily high computational efforts. Therefore, the energy criterion is not appropriate
for determining the critical random dimensionality. This finding has not been reported
in the literature. But it has a significant implication on the application of the SCM and



528 H. Chang and D. Zhang / Commun. Comput. Phys., 6 (2009), pp. 509-535

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

5

10

15

20

25

30

35

40

45

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

N
c

/L

 N
c
 w/ 90% energy criterion

2

Y
=1.0

 E
C

/L

 E
c
 w/ convergence criterion

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

5

10

15

20

25

30

35

40

45

2

Y
=1.0

 N
c
 w/ convergence criterion

N
c

/L
(b)

Figure 8: (a) The critical random dimensionality Nc obtained with the 90% energy criterion (curve with squares);
the critical energy Ec obtained with the convergence criterion (curve with triangles). (b) The critical random
dimensionality Nc obtained with the convergence criterion.

PCM: The curse of dimensionality may be less severe than previously thought in the case
of small correlation scale. Since it is only based on numerical experiments, it cannot be
regarded as a concrete conclusion. But it may provide a practical guidance for the appli-
cations of the SCM and PCM and for further theoretical studies.

With the critical random dimensionality needed to retain, we can now perform com-
parisons between PCM and Smolyak method about their error properties. Denote d1 as
the order of polynomial chaos expansion and d2 as the level of the Smolyak method. We
know that the total number of collocation points, M, depends on d1 (or d2) and the ran-
dom dimensionality, N. We compute the errors of the 2nd order, 4th order, and 6th order
PCM as well as the level-1, level-2, and level-3 Smolyak methods according to equation
(5.1). Here we only use the even order PCM on the basis of the findings in [12]. As shown
in Fig. 9, when the number of the collocation points is small, the error of the PCM is less
than that of the Smolyak method for the cases of different correlation lengths and dif-
ferent spatial variability levels. When the number of the collocation points is large, the
Smolyak method is more accurate than the PCM. As shown in Fig. 9(d), for the case of
large spatial variability, σ2

Y =4.0, the error of PCM does not seem to converge. To further
test this property, we investigate another case whose correlation length equals to 2 and
find the same phenomena. As shown in Fig. 9(f), the error increases as the order of PCM
increases. It is also found that the error of Smolyak method always decreases as the num-
ber of collocation points increases. Therefore, for the case of large spatial variability if a
high accuracy is desired and a large computational effort can be afforded, the high level
Smolyak method is a better choice compared to the high order PCM.

5.4 Illustrative examples in 2D

In this section, we consider four cases in a two-dimensional (2D) domain of saturated het-
erogeneous medium, which is a square of size L1 = L2 =10[L], uniformly discretized into
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Figure 9: Comparisons of the error of the hydraulic head variance derived from the PCM and Smolyak method
for the cases of different correlation lengths and spatial variability levels.

40×40 square elements. The no-flow conditions are prescribed at two lateral boundaries.
The hydraulic head is prescribed at the left and right boundaries as 7[L] and 5[L], respec-
tively. The mean of the log hydraulic head is given as <Y>=0.0. Assume the covariance
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Figure 10: Series of eigenvalues and their finite sums for two-dimensional square flow domain with a separable
covariance function, for η/L=0.4 and σ2

Y =1.0.

function of the log hydraulic conductivity is CY(x,y)=σ2
Y exp(−|x1−y1|/η1−|x2−y2|/η2)

where η1 = η2 = η = 4.0 or 1.0 and σ2
Y = 1.0 or 2.0. There is no source term, i.e., g(x) = 0.

Fig. 10 shows the series of eigenvalues and their finite sums. By comparing Fig. 2(a) and
Fig. 10(a), it is found that the eigenvalue decay ratio is slower in 2D. One would have to
retain a large number of terms in the KL expansion, thus a large random dimensionality
(say, N =100), for a certain level of energy (say, 90%). This would lead to a huge compu-
tational effort for the SCM and PCM and may even make them either less efficient than
Monte Carlo or impractical computationally.

As in 1D, we use the convergence criterion to determine the critical random dimen-
sionality. We choose εc =5×10−4 and n=5. Here we use a value of n other than one due
to the fact that for the 2D cases some of the neighboring eigenvalues may be the same
or very similar, which may lead to false convergence if comparing them. In Table 1, we
list the values of Nc and Ec for one and two dimensional cases with three different corre-
lation lengths. It is seen that we need to use a larger random dimensionality in the two
dimensional cases than in the one dimensional cases with the same correlation length.
For Ec, when η/L=0.7 or 0.4, we have Ec2≈E2

c1. But when η/L=0.1, Ec2 is less than E2
c1,

where the digitals 1 and 2 denote the one and two dimensional case, respectively. This
finding is both new and surprising. It may lead to lessening the computational require-
ments for the SCM and PCM. As most of previous studies of the SCM and PCM are in
one physical dimension, this finding may provide a practical guidance for extending the
SCM and PCM to multiple dimensions while still retaining their computational efficiency
compared to the MC.

Fig. 11 compares the head variance from the Monte Carlo simulations, the second
order PCM and the level-2 Smolyak method along the cross section x2 = 5.0. For com-
parison, we conduct Monte Carlo simulations using 10,000 two-dimensional realizations
generated on the grid of 41×41 nodes with the separable covariance function, based on
equation (3.3) with 200 terms. It is shown that the second order PCM and the level-2
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Table 1: The random dimensionality and energy needed for one and two dimensional cases with respect to
different correlation lengths. In the subscript of the variables, the digitals 1 and 2 denote the one and two
dimensional case respectively.

η/L Nc1 Nc2 Ec1 Ec2

0.7 5 15 0.94 0.87

0.4 6 20 0.91 0.80

0.1 9 30 0.77 0.44

Smolyak method agree with the Monte Carlo result fairly well for σ2
Y =1.0. For the case of

larger spatial variability, σ2
Y =2.0, the second order PCM is not as accurate as the level-2

Smolyak method but still acceptable. It is seen that the second order PCM uses a much
smaller number of collocation points than the level-2 Smolyak method. This leads to a
significant saving in computational effort for the reason that the two dimensional case
has much more physical nodes than does the one dimensional case.

0 2 4 6 8 10

0.00

0.02

0.04

0.06

0.08

0.10

2 h

X

 MC (10000)

 PCM 2nd order (231)

 Level-2 Smolyak  (881)

=4.0,
2

Y
=1.0, N=20 

(a)

0 2 4 6 8 10

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

2 h

X

 MC (10000)

 PCM 2nd order (231)

 Level-2 Smolyak  (881)

=4.0, 
2

Y
=2.0, N=20 

(b)

0 2 4 6 8 10

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

2 h

X

 MC (10000)

 PCM 2nd order (496)

 Level-2 Smolyak (1921)

=1.0,
2

Y
=1.0, N=30

(c)

0 2 4 6 8 10

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

2 h

X

 MC (10000)

 PCM 2nd order (496)

 Level-2 Smolyak (1921)

(d)

=1.0, 
2

Y
=2.0, N=30

Figure 11: Head variance derived from the MC, PCM and Smolyak method at x2 =5.0.
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6 Conclusions

In this study, we applied the stochastic collocation methods (SCM) and probability col-
location method (PCM) to the problem of flow in spatially correlated random fields,
with different spatial variabilities and correlation lengths. We performed comparisons
between them about their accuracy and efficiency. This study leads to the following ob-
servations and conclusions:

1. Both the second order PCM and the level-1 Smolyak method require fewer collo-
cation points and thus lead to less computational efforts compared to other methods. At
small spatial variability, both the level-1 Smolyak method and the second order PCM are
efficient and adequately accurate. At moderate spatial variability, the second order PCM
is superior to the level-1 Smolyak in terms of its performance.

2. For the case of large spatial variability, the fourth order PCM and the level-2
Smolyak method are required to obtain accurate results. Although the two methods have
nearly the same accuracy, the level-2 Smolyak method requires a smaller number of col-
location points and is thus computationally more efficient than the fourth order PCM.

3. In the case of extremely large spatial variability, the Smolyak method improves
with the level of the method while the PCM may not yield better results with the increase
of its order. Therefore, when a high accuracy is desirable and if a large computational
effort can be afforded, the high level Smolyak method is a better choice than the high
order PCM.

4. The error studies indicate that the second order PCM provides much better ap-
proximations that does the level-1 Smolyak method and yields almost the same accuracy
as the level-2 Smolyak method but with a much less computational effort. Compared to
the second order PCM the higher order PCM does not improve the accuracy significantly
(or, leads to a worse performance in the case of extremely large variability) despite a large
increase in the computational requirement. Therefore, the second order PCM provides a
practical approach, which is adequately accurate and sufficiently efficient, for large-scale
problems.

5. It is found that Stroud method uses the fewest collocation points but gives unac-
ceptable accuracy for our problem. The adaptive Stroud method leads to a significant
improvement compared to the Stroud method. The adaptive Stroud method uses the
same number of collocation points as the second order PCM for the case N = 6, but its
result is not as accurate as the latter. Furthermore, the adaptive Stroud method may not
be applicable for the problems with high random dimensionality.

6. A stochastic collocation method cannot give accurate results when the spatially
correlated input random fields are not approximated with the adequate number of terms
(modes) in the Karhunen-Loeve expansion, which is the so called retained random di-
mensionality. It is found that the higher the (retained) random dimensionality, the better
the results. However, for all the stochastic collocation methods discussed in this study,
the computational effort increases rapidly with this random dimensionality. Therefore,
it is desirable to have a priori error estimator, or a practical guidance, for estimating the
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optimal random dimensionality that leads to sufficiently accurate results with minimum
computational efforts.

7. It is well known that in order to retain the same level of energy in the KL expansion,
the number of required modes increases exponentially with the decrease of the correla-
tion scale relative to the domain size. However, it is found on the basis of our numerical
experiments that the level of energy required in the truncated expansion decreases ex-
ponentially with the decrease of the correlation scale. This leads to the net effect of that
the required random dimensionality increases only slowly with the decrease of the cor-
relation scale. This new finding is important for the application of the SCM and PCM to
random fields of small correlation length and may lead to lessening the curse of dimen-
sionality for the SCM and PCM.

8. Most of previous studies in the SCM and PCM are in one physical dimension. The
KL expansion decays much more slowly in multiple physical dimensions than in one di-
mension, thus requiring a large number of terms to keep the same level of energy. It is
well know that in the case of large random dimensionality, the SCM and PCM approaches
may become either less efficient than Monte Carlo or impractical computationally. Our
numerical experiments reveal that the required level of energy is significantly reduced
from one to two dimensions so that the random dimensionality only increases moder-
ately. This has a great implication on the extension of the SCM and PCM to multiple
physical dimensions.

9. In this study, the findings are based on numerical experiments and associated anal-
yses. Although they may provide some practical guidance on the applications of the
stochastic collocations methods, these findings cannot be regarded as concrete conclu-
sions without further rigorous mathematical analysis. However, this study motivates
theoretical studies on these important issues.
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