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Abstract. We present an energy absorbing non-reflecting boundary condition of
Clayton-Engquist type for the elastic wave equation together with a discretization
which is stable for any ratio of compressional to shear wave speed. We prove stability
for a second-order accurate finite-difference discretization of the elastic wave equation
in three space dimensions together with a discretization of the proposed non-reflecting
boundary condition. The stability proof is based on a discrete energy estimate and is
valid for heterogeneous materials. The proof includes all six boundaries of the com-
putational domain where special discretizations are needed at the edges and corners.
The stability proof holds also when a free surface boundary condition is imposed on
some sides of the computational domain.
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1 Introduction

In regional simulations of seismic wave propagation, the extent of the computational
domain must be limited to make the problem computationally tractable. Some form of
far-field absorbing boundary condition needs to be imposed where the computational
domain is truncated such that waves can propagate out of the computational domain
without being reflected due to the artificial boundary. For a material with constant wave
speeds, and a domain with a single planar boundary, it is possible to derive a bound-
ary condition which allows all waves to exit the domain without any artificial reflec-
tion. However, such a boundary condition involves a pseudo-differential operator and is
therefore non-local in space and unsuitable for numerical computations.
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One of the first practically useful far-field boundary condition for the elastic wave
equation was derived by Clayton and Engquist [4], where the authors presented a hierar-
chy of boundary conditions by approximating the exact pseudo-differential operator to
increasing order of accuracy in the angle of incidence. (All boundary conditions in the
hierarchy are perfectly non-reflecting for waves of normal incidence.) A slightly different
approach was suggested by Higdon in [9], where the boundary condition is obtained by
component wise application of a scalar non-reflecting boundary condition. Higdon also
derived a hierarchy of boundary conditions with increasingly absorbing properties. In
the case of a scalar wave equation, the Higdon and Clayton-Engquist boundary condi-
tions are equivalent. First order Clayton-Engquist conditions have been used extensively
in large scale computations of seismic wave propagation, see [5]. However, instabilities
have been reported for the third order condition for some values of the wave speeds [12].

The perfectly matched layer (PML) is a more modern boundary condition which was
originally developed for Maxwell’s equations by Berenger [2] and has been studied in
numerous subsequent papers, see for example [16] and the references therein. Perfectly
matched layers have superior non-reflecting properties compared to low order Clayton-
Engquist or Higdon conditions, but they are also more complicated to implement and
require correct tuning of the size and strength of the absorbing layer. PMLs for the elastic
wave equation were developed in [1,10]. Unfortunately, the PML boundary condition can
become unstable when it interacts with surface waves along material discontinuities [17].

Higdon [8] performed a normal-mode stability analysis for a class of discretized non-
reflecting boundary conditions for the elastic wave equation, which includes the first or-
der Clayton-Engquist condition as a special case. In particular, Higdon showed stability
for a first order accurate discretization of the Clayton-Engquist condition. Note that the
normal mode analysis is only valid for half-space problems with homogeneous materials
and does not take corners or edges into account. Furthermore, the stability concept in the
normal mode analysis only guarantees the solution to be bounded independently of the
grid size for a fixed, finite, interval in time. It does not exclude the possibility that the
solution may grow as the time interval is made longer. We remark that the discretization
given in the original paper by Clayton and Engquist [4] is second order accurate and is
therefore not covered by Higdon’s analysis.

In seismic simulations, the material properties are not known very precisely and there
are often uncertainties associated with the source terms modeling the spatial distribu-
tion and temporal variation of the slip during an earthquake. We therefore believe that
in many realistic seismic simulations, adequate accuracy can be obtained by using low
order outflow boundary conditions as long as they are stable. Often the material proper-
ties vary rapidly on the computational grid and this can cause stability problems for the
Clayton-Engquist conditions, which are derived under the assumption of constant coef-
ficients. Additional stability problems occur for large ratios between the compressional
and shear wave speeds: cp/cs. Here,

cp =
√

(2µ+λ)/ρ, cs =
√

µ/ρ,
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where µ, λ are the Lamé parameters and ρ is density.

In this paper we propose an alternative non-reflecting boundary condition based on
summation by part operators, which is stable for all values of cp/cs. Since the stability
follows from an energy estimate for the fully discretized problem, the proposed bound-
ary condition is stable in realistic situations with strongly variable coefficients. Further-
more, our theory shows how to discretize the non-reflecting boundary condition at edges
and corners of a logically cubical three-dimensional domain and also extends to the case
where free surface boundary conditions are imposed on some sides of the computational
domain.

When implementing a production code for use by application experts, who often do
not have expertise in tuning numerical stabilizing parameters, we believe it is extremely
valuable to use techniques where there is a mathematical proof of the stability of the
underlying numerical method. Hence, the main advantage of the method proposed in
this article lies in the stability proof for heterogeneous materials including corners and
edges. Furthermore, the stability follows from an energy estimate which shows that the
energy is bounded as time goes to infinity on a fixed grid.
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Figure 1: Simulation of the October, 2007, Alum Rock earthquake using the Clayton-Engquist (blue) and energy
absorbing (red) boundary conditions.

While the Clayton-Engquist condition works well in most practical situations, there
are cases where it makes the simulation go unstable. The instability appears to occur
when the outflow boundary cuts through a heterogeneous material with high cp/cs ra-
tio. As a motivating example, consider the synthetic seismograms in Fig. 1 from two
simulations of the magnitude 5.4 earthquake which occurred in Alum Rock, CA, in Oc-
tober of 2007. Both calculations were performed using the WPP code [15] and a modified
version of the material model from the U.S. Geological Survey [3]. The first, displayed
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in blue, uses the first order Clayton-Engquist non-reflecting boundary condition. This
computation is unstable and the solution starts growing exponentially after time ≈ 60
seconds. The second computation, displayed in red, uses the stable energy absorbing
non-reflecting boundary condition proposed in this paper. In this case the solution re-
mains bounded for long times.

The remainder of this paper is organized in the following way. In Section 2 we re-
view the standard non-reflecting boundary conditions and present the basic idea behind
our proposed boundary condition. Furthermore, we investigate reflection properties for
various non-reflecting boundary conditions in the continuous setting. In Section 3 we
introduce a discretization of the elastic wave equation together with the proposed non-
reflecting boundary conditions, and prove that this approximation satisfies a discrete
energy estimate. Finally, in Section 4 we show some numerical examples where our pro-
posed boundary condition is compared with the first order Clayton-Engquist condition.

2 Absorbing boundary conditions

The elastic wave equation can be formulated in terms of the displacement vector u(x,t)=
(u(x,t),v(x,t),w(x,t))T , where x=(x,y,z)T is the Cartesian coordinate and t is time,

ρutt =divT (u)+f(x,t), x∈Ω, t≥0. (2.1)

Here ρ=ρ(x)>0 is the density, f(x,t) is the external forcing, and T (u) is the stress tensor,

T (u)=λdiv(u)I+2µD(u).

The Lamé parameters µ(x) > 0 and λ(x) > 0 characterize the elastic properties of the
material. The identity matrix is denoted by I, and the symmetric part of the displacement
gradient is given by

D(u)=
1

2




2ux uy+vx uz+wx

uy+vx 2vy vz+wy

uz+wx vz+wy 2wz


.

The displacement and its first time derivative are given as initial data, and boundary
conditions are enforced along the boundary of the domain, ∂Ω.

2.1 Clayton-Engquist’s hierarchy of far-field boundary conditions

Consider the case where the boundary is the plane x = 0 and Ω is the half-space x > 0,
−∞<y<∞, −∞< z<∞. Freeze the coefficients of (2.1) and cast it into the form

utt = Auxx+Buxy+Cuyy+Duzz+Euxz+Fuyz. (2.2)
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Fourier transformation in space and time with dual variables t→ω, x→ kx, y→ ky, and
z→ kz gives the algebraic relation

0=−I+A
k2

x

ω2
+

kx

ω

ky

ω
B+

k2
y

ω2
C+

k2
z

ω2
D+

kx

ω

kz

ω
E+

ky

ω

kz

ω
F=: P

(
kx

ω
,
ky

ω
,
kz

ω

)
. (2.3)

We define the p’th order Clayton-Engquist non-reflecting boundary condition as the dif-
ferential equation obtained by inverse Fourier transformation of

kx

ω
=C00+

n−1

∑
q=1

n−1

∑
l=1

(
ky

ω

)q(
kz

ω

)l

Cql. (2.4)

Here the matrix C00 has positive eigenvalues, and the matrices Cql are determined to
make

P

(
kx

ω
,
ky

ω
,
kz

ω

)
=O

((
ky

ω

)p

+

(
kz

ω

)p)
, (2.5)

when the ansatz (2.4) is inserted into (2.3). Note that the p’th order non-reflecting bound-
ary condition is not unique, because the number of terms n can be chosen larger than
necessary to satisfy (2.5). If the smallest possible number of terms in (2.5) is used, we call
the resulting boundary condition a minimal p’th order Clayton-Engquist condition.

In general, the matrices Cql have coefficients that depend on the compressional wave
speed, cp, and the shear wave speed, cs. For example

C00 =




1/cp 0 0
0 1/cs 0
0 0 1/cs


.

It follows that the minimal first order Clayton-Engquist boundary condition for the half-
plane problem x>0 is

ut = cpux,

vt = csvx, x=0, t≥0, (2.6)

wt = cswx.

2.2 Energy absorbing boundary conditions

When the external forcing is zero, f(x,t)=0, the following energy estimate holds for (2.1),

1

2

d

dt

(
‖ρ1/2ut‖2+

∫

Ω
λ(divu)2+2µ(D : D)dx

)
=

∫

∂Ω
uT

t T (u)ndS. (2.7)

Here n is the outward unit normal of the boundary, dS is a surface element, and tensor
contraction over two indices is defined by

(A : B)=
3

∑
i=1

3

∑
j=1

ai,jbi,j.
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According to (2.7), any boundary condition that satisfies

uT
t T (u)n≤0, x∈∂Ω, t≥0, (2.8)

leads to non-increasing energy in the solution and thereby a well-posed problem. Exam-
ples of boundary conditions satisfying (2.8) with an equality are the free surface bound-
ary condition T (u)n = 0 and the homogeneous Dirichlet condition u = 0. Both these
condition are non-dissipative. In general any boundary condition of the form

ut =−MT (u)n, x∈∂Ω, t≥0, (2.9)

where M is a positive definite matrix, is dissipative because it makes the right hand side
of (2.7) negative.

We can make (2.9) agree with the first order Clayton-Engquist conditions in the nor-
mal direction by taking

M=
1√
ρ




1/
√

2µ+λ 0 0
0 1/

√
µ 0

0 0 1/
√

µ


, (2.10)

which defines our proposed boundary condition in the continuous setting. For the half-
space problem (x>0) in Section 2.1, n=(−1,0,0)T on x=0, and the proposed boundary
condition becomes

ut = cpux+
λ√

ρ(2µ+λ)
(vy+wz),

vt = csvx+csuy, x=0, t≥0, (2.11)

wt = cswx+csuz.

This boundary condition belongs to the class of Clayton-Engquist conditions of order
p=1 with n=2. The key difference compared to the minimal first order Clayton-Engquist
condition (2.6) is that the right hand side of boundary condition (2.11) is proportional to
the normal stresses along the boundary. Energy estimate (2.7) can therefore be used to
show that (2.11) is energy absorbing, both for constant and variable coefficients (ρ, λ, µ).

2.3 Reflection properties

In this section we compare the reflection properties of the continuous (no discretiza-
tion) minimal Clayton-Engquist boundary conditions of order p = 1,2,3 and the pro-
posed boundary condition (2.11). To simplify the presentation, we only consider the
two-dimensional elastic wave equation in the (x,y)-plane. We consider the half-plane
domain x > 0, −∞ < y < ∞, where an incident planar wave starting at infinity travels
at an angle 0 ≤ θ ≤ π/2 from the negative x-direction. Ideally this wave should pass
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through the x = 0 boundary without reflections. In practice, the wave gets partially re-
flected when θ 6=0 and some energy travels back into the x >0 half-plane. The reflected
wave consists of both an S-wave and a P-wave. We therefore obtain four different re-
flection coefficients: 1) reflected P-wave from incident P-wave, 2) reflected S-wave from
incident P-wave, 3) reflected P-wave from incident S-wave, and 4) reflected S-wave from
incident S-wave. Furthermore, the reflection coefficients can become complex valued,
indicating an evanescent reflected wave.

The general solution for x>0 with an incident P-wave and reflection coefficients Rpp

and Rps is

u(x,y,t)=ei(ωt+kxx+kyy)

(
kx

ky

)
+Rppei(ωt−kxx+kyy)

(
kx

ky

)

+
Rpse

i(ωt−αkxx+kyy)

√
α2k2

x +k2
y

(
−ky

αkx

)
, (2.12)

where k2
x +k2

y =1, ω = cp, and α is chosen to make

c2
s (α2k2

x +k2
y)= c2

p.

We determine the reflection coefficients by inserting (2.12) into the outflow bound-
ary condition, such as the two-dimensional counterparts of (2.11) or (2.6). In two space
dimensions, two boundary equations give two linear equations for the unknowns Rpp

and Rps. For an incident S-wave, we insert the corresponding general solution into the
outflow boundary condition to determine the reflection coefficients Rsp,Rss.

Fig. 2 shows the absolute value of the reflection coefficients |Rpp| (solid curves) and
|Rps| (dashed curves) for the proposed energy absorbing condition (2.11) (blue) and the
minimal Clayton-Engquist conditions of orders one (purple), two (green), and three (red),
when the ratio of wave speeds equals cp/cs = 1.732. The case of incident S-wave (right
subfigure), have complex reflection coefficients when the incident angle is larger than 35
degrees.

In Fig. 3 we show the same refection coefficients as in Fig. 2, for the case cp/cs = 30.
In the case of an incoming S-wave, note that the reflection coefficients are in many cases
greater than one. However, the reflection coefficients of the proposed boundary condition
(2.11) are always less than unity.

These results raise some concerns about the well-posedness of the Clayton-Engquist
boundary conditions for high ratios cp/cs, also for the lowest order conditions. However,
the first order minimal Clayton-Engquist condition has been shown to be well-posed, in
two space dimensions, for all ratios cp/cs>0, see [8]. Note that for the first order minimal
condition, the only amplification occurs for a P wave that is reflected from an incident
S wave. Because the P wave can not be amplified further by new reflections, it can not
grow unlimitedly due to repeated reflections. Engquist [6] proved that the third order
condition is well-posed if cp/cs <2. Our results indicate that the third order condition is
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Figure 2: Reflection coefficients when cp/cs =1.732. Incident P-wave (left) and incident S-wave (right). Solid
curves are P wave reflections and dashed curves are S wave reflections.
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Figure 3: Reflection coefficients when cp/cs = 30. Incident P-wave (left) and incident S-wave (right). Solid
curves are P wave reflections and dashed curves are S wave reflections.

ill-posed for cp/cs > 2. The instability for the third order condition when cp/cs > 2 has
been demonstrated in numerical experiments [12].

3 Stable discretizations of the elastic wave equation

We discretize the elastic wave equation (2.1) on the domain 0≤x≤a, 0≤y≤b, 0≤z≤c. On
the boundaries we either impose the free surface condition T (u)n = 0, or the proposed
energy absorbing condition (2.11).

We introduce a grid spacing h>0, a time step ∆t>0, and consider the finite difference
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approximation of (2.1),

ρi,j,k

un+1
i,j,k −2un

i,j,k+un−1
i,j,k

∆t2
=L(un)i,j,k+fi,j,k(tn), (3.1)

where we used the vector notation u=(u,v,w)T and L(u)i,j,k represents the discretization
of the spatial operator in (2.1). The external forcing is discretized according to

fi,j,k(t)=
(

f
(u)
i,j,k(t), f

(v)
i,j,k(t), f

(w)
i,j,k (t)

)T
= f(xi,j,k,t).

Let the grid function un
i,j,k denote the approximation of the x-component of the displace-

ment at grid point xi = (i−1)h, yj = (j−1)h, zk = (k−1)h and at time tn = n∆t. In the
same way, vn

i,j,k and wn
i,j,k denote the approximations of the y- and z-components of the

displacement, respectively. The domain sizes and the grid spacing are defined such that
xNx =a, yNy =b, and zNz =c. The discrete equation (3.1) is applied at grid points 1≤ i≤Nx ,
1≤ j≤Ny, and 1≤ k≤Nz . The grid points with i =0, i = Nx +1, j =0, j = Ny +1, k =0, or
k= Nz +1 are called ghost points, and are used to impose the boundary conditions.

We generalize the summation by parts discretization introduced in [14] to include
boundary modified mixed derivatives on all six sides of the domain. In component form,
the spatial discretization is given by

L(u)=
(

L(u)(u,v,w),L(v)(u,v,w),L(w)(u,v,w)
)T

,

where

L(u)(u,v,w)=Dx
−

(
Ex

1/2(2µ+λ)Dx
+u

)
+D

y
−

(
E

y
1/2(µ)D

y
+u

)
+Dz

−
(
Ez

1/2(µ)Dz
+u

)

+D̃x
0

(
λD̃

y
0v+λD̃z

0w
)
+D̃

y
0

(
µD̃x

0 v
)
+D̃z

0

(
µD̃x

0w
)

, (3.2)

L(v)(u,v,w)=Dx
−

(
Ex

1/2(µ)Dx
+v

)
+D

y
−

(
E

y
1/2(2µ+λ)D

y
+v

)
+Dz

−
(
Ez

1/2(µ)Dz
+v

)

+D̃x
0

(
µD̃

y
0u

)
+D̃

y
0

(
λD̃x

0 u+λD̃z
0w

)
+D̃z

0

(
µD̃

y
0w

)
, (3.3)

L(w)(u,v,w)=Dx
−

(
Ex

1/2(µ)Dx
+w

)
+D

y
−

(
E

y
1/2(µ)D

y
+w

)
+Dz

−
(
Ez

1/2(2µ+λ)Dz
+w

)

+D̃x
0

(
µD̃z

0u
)
+D̃

y
0

(
µD̃z

0v
)
+D̃z

0

(
λD̃x

0 u+λD̃
y
0v

)
. (3.4)

Here we used the standard second order accurate divided difference operators, i.e.,

Dx
+ui,j,k =(ui+1,j,k−ui,j,k)/h, Dx

−ui,j,k = Dx
+ui−1,j,k, Dx

0 =
1

2
(Dx

++Dx
−).

The boundary modified operator defining differences in the x-direction is defined by

D̃x
0 ui,j,k =





Dx
+ui,j,k, i=1,

Dx
0 ui,j,k, 2≤ i≤Nx−1,

Dx
−ui,j,k, i= Nx,
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and the averaging operator is defined by

Ex
1/2(µ)i,j,k =

1

2

(
µi+1,j,k+µi,j,k

)
.

The superscripts on the difference and averaging operators denote the direction in which
the operator is applied and we use corresponding definitions for the difference operators
in the y- and z-directions.

To analyze the stability of the discrete equations, we define the weighted scalar prod-
uct,

(u,v)h =h3
Nx

∑
i=1

Ny

∑
j=1

Nz

∑
k=1

a
(x)
i a

(y)
j a

(z)
k ui,j,kvi,j,k,

where the weights satisfy

a
(x)
i =

{
1/2, i=1 or i= Nx ,

1, 1< i< Nx ,

with corresponding definitions of a(y) and a(z). We define the vector scalar product and
norm by

(u0,u1)h =(u0,u1)h+(v0,v1)h+(w0,w1)h, ‖u‖2
h =(u,u)h.

To discretize the boundary conditions, we use a special approximation of the stress
tensor on the boundary which matches the properties of the boundary modified dis-
cretization of the cross terms in (3.2)-(3.4). On the sides I =1 and I = Nx,

(Bn
I,j,k)

11 =
1

2
(2µ+λ)I−1/2,j,kDx

−un
I,j,k+

1

2
(2µ+λ)I+1/2,j,kDx

+un
I,j,k

+λI,j,k(D̃
y
0vn

I,j,k +D̃z
0wn

I,j,k),

(Bn
I,j,k)

21 =
1

2
µI−1/2,j,kDx

−vn
I,j,k +

1

2
µI+1/2,j,kDx

+vn
I,j,k +µI,j,kD̃

y
0un

I,j,k, (3.5)

(Bn
I,j,k)

31 =
1

2
µI−1/2,j,kDx

−wn
I,j,k+

1

2
µI+1/2,j,kDx

+wn
I,j,k+µI,j,kD̃z

0un
I,j,k.

The stress components on the sides J =1 and J = Ny are discretized as

(Bn
i,J,k)

12 =
1

2
µi,J−1/2,kD

y
−un

i,J,k+
1

2
µi,J+1/2,kD

y
+un

i,J,k+µi,J,kD̃x
0 vn

i,J,k,

(Bn
i,J,k)

22 =
1

2
(2µ+λ)i,J−1/2,kD

y
−vn

i,J,k+
1

2
(2µ+λ)i,J+1/2,kD

y
+vn

i,J,k

+λi,J,k(D̃x
0 un

i,J,k+D̃z
0wn

i,J,k), (3.6)

(Bn
i,J,k)

32 =
1

2
µi,J−1/2,kD

y
−wn

i,J,k+
1

2
µi,J+1/2,kD

y
+wn

i,J,k+µi,J,kD̃z
0vn

i,J,k,
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and the stress components on the sides K =1 and K = Nz are discretized as

(Bn
i,j,K)13 =

1

2
µi,j,K−1/2Dz

−un
i,j,K+

1

2
µi,j,K+1/2Dz

+un
i,j,K+µi,j,KD̃x

0 wn
i,j,K,

(Bn
i,j,K)23 =

1

2
µi,j,K−1/2Dz

−vn
i,j,K +

1

2
µi,j,K+1/2Dz

+vn
i,j,K +µi,j,KD̃

y
0wn

i,j,K, (3.7)

(Bn
i,j,K)33 =

1

2
(2µ+λ)i,j,K−1/2Dz

−wn
i,j,K+

1

2
(2µ+λ)i,j,K+1/2Dz

+wn
i,j,K

+λi,j,K(D̃x
0 un

i,j,K+D̃
y
0vn

i,j,K).

Our main result is given in the following theorem:

Theorem 3.1. The approximation (3.1) with f = 0 satisfies a discrete energy estimate under a
CFL restriction on ∆t/h if the discretization of the boundary conditions satisfies

(un+1
i,j,k −un−1

i,j,k )TBn
i,j,k ni,j,k≤0, (no summation over i, j, k), (3.8)

on all faces of the boundary. Here,

Bn
i,j,k =




(Bn
i,j,k)

11 (Bn
i,j,k)

12 (Bn
i,j,k)

13

(Bn
i,j,k)

21 (Bn
i,j,k)

22 (Bn
i,j,k)

23

(Bn
i,j,k)

31 (Bn
i,j,k)

32 (Bn
i,j,k)

33


,

and ni,j,k is the outward boundary normal. (For example, n1,j,k=(−1,0,0)T on the boundary with

i=1 and ni,j,Nz
=(0,0,1)T on the boundary with k= Nz.)

Remark 3.1. The free surface boundary conditions and the Dirichlet conditions used in
[14] satisfy (3.8) with equality.

The proof of Theorem 3.1 relies on the following fundamental identity.

Lemma 3.1. For any two vector grid functions u0 and u1 it holds that

(u1,L(u0))h =−S(u1,u0)+T(u1,u0), (3.9)

where S is symmetric and positive semi-definite, i.e., S(u1,u0)=S(u0,u1) and S(u,u)≥0 for all
u. Furthermore, S(u0,u1) is a function of the interior points only, no ghost points appear in the
expression for S(u0,u1). The non-symmetric boundary term is given by

T(u1,u0)=h2
Ny

∑
j=1

Nz

∑
k=1

a
(y)
j a

(z)
k

(
(u1

1,j,k)
TB0

1,j,kn1,j,k+(u1
Nx,j,k)

TB0
Nx ,j,knNx,j,k

)

+h2
Nx

∑
i=1

Nz

∑
k=1

a
(x)
i a

(z)
k

(
(u1

i,1,k)
TB0

i,1,kni,1,k+(u1
i,Ny,k)

TB0
i,Ny,kni,Ny,k

)

+h2
Nx

∑
i=1

Ny

∑
j=1

a
(x)
i a

(y)
j

(
(u1

i,j,1)
TB0

i,j,1ni,j,1+(u1
i,j,Nz

)TB0
i,j,Nz

ni,j,Nz

)
. (3.10)
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Proof. See Appendix A.

We define the discrete energy

En+1 =

∥∥∥∥ρ1/2 un+1−un

∆t

∥∥∥∥
2

h

−(un+1,L(un))h+T(un+1,un). (3.11)

The discrete counterpart of the energy estimate (2.7) is given by

Lemma 3.2. In the absence of external forcing, f(t)=0, the discrete energy satisfies

En+1−En =T(un+1−un−1,un).

Proof. At each grid point (i, j,k) with 1≤ i≤ Nx, 1≤ j≤ Ny, and 1≤ k≤ Nz the difference
scheme (3.1) can be written

ρ

∆t2

(
un+1−un

)
− ρ

∆t2

(
un−un−1

)
=L(un). (3.12)

Point wise scalar multiplication by (un+1−un−1) gives

ρ

∆t2

(
un+1−un−1

)T(
un+1−un

)
− ρ

∆t2

(
un+1−un−1

)T(
un−un−1

)

=
(
un+1−un−1

)T
L(un).

After some algebra, we get

ρ

∆t2

(
un+1−un

)T(
un+1−un

)
−(un+1)TL(un)− ρ

∆t2

(
un−un−1

)T(
un−un−1

)

+(un)TL(un−1)=(un)TL(un−1)−(un−1)TL(un).

Point wise multiplication by the weights a(x)a(y)a(z) and summation over all non-ghost
grid points give

∥∥∥∥
un+1−un

∆t
ρ1/2

∥∥∥∥
2

h

−(un+1,L(un))h−
∥∥∥∥

un−un−1

∆t
ρ1/2

∥∥∥∥
2

h

+(un,L(un−1))h

=
(
un,L(un−1)

)
h
−

(
un−1,L(un)

)
h
,

and we arrive at

En+1−En =(un,L(un−1))h−(un−1,L(un))h+T(un+1,un)−T(un,un−1).

The symmetry properties of Lemma 3.1 give
(
un,L(un−1)

)
h
−

(
un−1,L(un)

)
h
=T(un,un−1)−T(un−1,un),

and therefore

En+1−En =−T(un−1,un)+T(un+1,un)=T(un+1−un−1,un),

which proves the lemma.
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Lemma 3.2 shows that the discrete energy is non-increasing (En+1≤En) if and only if
the boundary inequality (3.8) is satisfied.

The final step in our stability proof is to show that the discrete energy always is non-
negative. Lemma 3.1 defines the symmetric positive semi-definite quadratic form

S(u,v)=−(u,L(v))h+T(u,v).

Lemma 3.3. The energy is non-negative,

En ≥0,

for all n≥0 if the CFL-condition ζmax∆t2 ≤4 holds, where

ζmax =max
u 6=0

S(u,u)

(ρu,u)h
. (3.13)

Proof. The symmetry of S(u,v) gives

En+1 =

∥∥∥∥ρ1/2 un+1−un

∆t

∥∥∥∥
2

h

+
1

2
S(un+1,un)+

1

2
S(un,un+1)

=

∥∥∥∥ρ1/2 un+1−un

∆t

∥∥∥∥
2

h

− 1

4
S(un+1−un,un+1−un)+

1

4
S(un+1+un,un+1+un). (3.14)

Since

S(un+1+un,un+1+un)≥0,

En+1≥0 if
1

∆t2
‖ρ1/2w‖2

h−
1

4
S(w,w)≥0, (3.15)

for all w=un+1−un. Clearly, (3.15) holds if w=0. If w 6=0, we rewrite (3.15) as

∆t2

4

S(w,w)

(ρw,w)h
≤1,

which shows the lemma.

Proof of Theorem 3.1: Lemma 3.2 and (3.10) show that condition (3.8) leads to a non-
increasing energy. Furthermore, Lemma 3.3 shows that the energy is non-negative under
the CFL-condition (3.13). Hence, we arrive at the energy estimate

0≤En ≤En−1≤···≤E0,

which proves the theorem. �
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3.1 Discrete non-reflecting boundary conditions

We discretize the dissipative boundary condition (2.9) by approximating the time-derivative
by a centered second order accurate formula, evaluating the matrix M in (2.10) on the
boundary, and approximating the normal component of the stress-tensor by Bn

i,j,kni,j,k.

On the boundary where i=1, we have n1,j,k =(−1,0,0)T so this procedure gives

un+1
1,j,k −un−1

1,j,k

2∆t
=

(Bn
1,j,k)

11

√
ρ1,j,k(2µ+λ)1,j,k

,

vn+1
1,j,k −vn−1

1,j,k

2∆t
=

(Bn
1,j,k)

21

√
ρ1,j,kµ1,j,k

, (3.16)

wn+1
1,j,k −wn−1

1,j,k

2∆t
=

(Bn
1,j,k)

31

√
ρ1,j,kµ1,j,k

.

Since
un+1

i,j,k −un−1
1,j,k =−2∆tM1,j,kBn

1,j,kn1,j,k,

condition (3.8) in Theorem 3.1 is satisfied.
Note that the boundary condition is imposed at the grid points (1, j,k), where we also

impose the internal difference scheme (3.1). The ghost point values at the new time level,
un+1

0,j,k , do not appear in (3.16), but are instead determined such that (3.1) and (3.16) give

the same value for un+1
1,j,k . For example, for the first equation in (3.16) we solve

2un
1,j,k−un−1

1,j,k +
∆t2

ρ1,j,k
L(u)(un,vn,wn)1,j,k+ f

(u)
1,j,k

=un−1
1,j,k +

2∆t(Bn
1,j,k)

11

√
ρ1,j,k(2µ+λ)1,j,k

(3.17)

for the ghost point value un
0,j,k, which occurs in L(u)(un,vn,wn)1,j,k and (Bn

1,j,k)
11. Eq. (3.17)

can be written of the form αun
0,j,k =β, where α 6=0 and β is a function of the solution at the

interior grid points at tn and tn−1. We determine vn
0,j,k and wn

0,j,k similarly.

At an edge of the domain where two boundary conditions of the type (3.16) meet, for
example at the grid points (1,1,k), we use the same technique to obtain a coupled linear
system of two equations for the two unknowns un

0,1,k and un
1,0,k. Similarly, at a corner

where three sides with boundary conditions of the type (3.16) meet, we obtain a coupled
linear system of three equations for three unknowns, e.g., un

0,1,1, un
1,0,1, un

1,1,0.
The ghost point values can be solved for directly along boundary faces where the free

surface condition is imposed. For example, if the boundary with k = 1 is a free surface,
we enforce the discrete boundary conditions

(Bn
i,j,1)

13 =(Bn
i,j,1)

23 =(Bn
i,j,1)

33 =0. (3.18)
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These equations obviously satisfy (3.8), and it is evident from (3.7) that the ghost point
values un

i,j,0,vn
i,j,0,wn

i,j,0 do not couple along the boundary or to other boundaries along the

edges.

4 Numerical experiments

To numerically investigate the outflow boundary conditions we discretize the elastic
wave equation in three space dimensions by the formulas (3.1)-(3.4). The free surface
boundary condition is discretized by (3.18), the energy absorbing boundary condition
by (3.16), and the minimal first order Clayton-Engquist condition by the technique sug-
gested in [4], except for edges and corners which are treated according to [14]. On bound-
aries with Clayton-Engqust conditions, a centered approximation replaces the boundary

modified operators for mixed derivatives in (3.2)-(3.4) (i.e., D̃x
0 is replaced by Dx

0 , etc.).

All experiments were run with version 1.2 of the open source code WPP [15], which
solves the elastic wave equation in the setting of seismic applications. WPP implements
all combinations of energy absorbing, free surface, Clayton-Engquist as well as Dirichlet
boundary conditions, including all special cases for edges and corners in three spatial
dimensions.

4.1 Influence of cp/cs ratio on stability

To verify the energy absorbing property of our proposed boundary condition and to in-
vestigate how the ratio cp/cs influences the performance of the far field boundary con-
ditions, we consider the elastic wave equation on the domain [0,2]×[0,2]×[0,2]. A ho-
mogeneous free surface condition is imposed at z = 0 and far field boundary conditions
are imposed on all other boundaries. The external forcing is set to zero, i.e., f = 0 in
(3.1). Throughout this experiment we use a random number generator θ which gives
uniformly distributed values between zero and one, where the sequence is determined
by a seed number. We first use the random number generator to assign initial data. By
writing u0

i,j,k = θ and u−1
i,j,k = θ we mean that the random number generator is invoked

separately for each component of the displacement, each grid point, at each time level to
generate an extremely unsmooth displacement field.

We consider the two cases cp/cs = 1.732 ≈
√

3 and cp/cs = 30. When cp/cs = 1.732
we run the computation to time t = 20 with CFL number 0.7, corresponding to 926 time
steps. When cp/cs = 30, the time step is smaller and we run the computation to time
t=2 with CFL number 0.7, giving 1244 time steps. For both ratios of r=cp/cs, we use two
different materials. First we use a homogeneous material with µ=2.5, λ=µ(r2−2), ρ=2.5.
Secondly, we use the random number generator θ to create a material with extremely
unsmooth spatial variation:

µ=2+θ, λ=µ(r2−2)+θ, ρ=2+θ.
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Figure 4: Logarithm of energy vs. time when cp/cs =1.732 (left) and when cp/cs =30 (right). Random initial
data. Constant material (blue and red curves) and randomly varying material (cyan and magenta curves).

Fig. 4 displays the energy (3.11) as function of time for the minimal first order Clayton-
Engquist (CE1) and energy absorbing (EA1) far field boundary condition, respectively. In
the case of the Clayton-Engquist condition, the boundary term T is excluded from (3.11)
since it is not relevant. We show results for both the homogeneous and the randomly
varying materials. The left subplot of Fig. 4 displays results for the wave speed ratio
cp/cs = 1.732, while the right hand subplot of Fig. 4 shows the case cp/cs = 30. For the
lower cp/cs ratio, the energy absorbing and Clayton-Engquist boundary conditions be-
have similarly. However, only the energy absorbing boundary condition performs well
for the larger cp/cs ratio, whereas the Clayton-Engquist condition is unstable. Note that
the behavior is similar for both constant and random materials.
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Figure 5: Energy difference ∆E(tn)= En+1−En as function of time when cp/cs = 30 for the energy absorbing
boundary condition. A closeup for later times is shown in the right subfigure. Note that the scale on the vertical
axis goes from −3×104 to 5×103 in the left subplot, and from −1000 to 0 in the right subplot.

In Fig. 5 we show the energy difference En+1−En as function of time for the energy
absorbing boundary condition when cp/cs=30 with the randomly varying material. Note
that the energy is perfectly decreasing, as expected from our theory.
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Figure 6: Source time function, g(t), used in the solution of Lamb’s problem.

4.2 Lamb’s problem with λ=µ

Lamb [11] derived an analytic solution to the elastic wave equation in a homogeneous
half-space subject to an impulsive point forcing on the free surface boundary. Many
generalizations have been made to Lamb’s original derivation, see for example [13] or [7].
Here we focus on the case with λ=µ (Poisson ratio 1/4) which simplifies the evaluation
of the analytic solution.

We solve Lamb’s problem numerically on the truncated domain 0≤ x≤12, 0≤y≤12,
0≤ z≤6 with the point force

f(x,t)=




0
0

g(t)δ(x−x0)


,

where δ(x−x0) is the Dirac distribution centered at x0 =(6,6,0) and

g(t)=

{
1024t5(1−5t+10t2−10t3+5t4−t5), 0< t<1,

0, otherwise.

The function g(t), displayed in Fig. 6, is four times continuously differentiable. The
smoothness in time of the point forcing translates to smoothness in space of the solu-
tion after the point force has stopped acting, i.e., for times t > 1 in this case. Far field
boundary conditions are enforced on all sides of the domain except along z = 0, where
the discretized free surface condition (3.18) is imposed. The material has the constant
properties µ=λ=ρ=1, which implies that cp/cs =

√
3.

Fig. 7 shows the numerical solution at three different times when the energy absorb-
ing far field boundary condition is used. The plotted quantity is the magnitude of the
displacement,

√
u2+v2+w2. The point forcing on the surface initiates a strong Rayleigh

surface wave. A weak downward propagating compressional wave moving with speed
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Figure 7: Magnitude of the displacement for Lamb’s problem at times 3, 6, and 9 (from top to bottom) in the
z = 0 plane (left) and y = 6 plane (right). The energy absorbing far-field boundary condition (3.16) was used
to truncate the computational domain in this calculation, which used the grid size h=0.02. The contour levels
are the same in all plots and are equally spaced between 0 and 0.15 with interval 0.00375.
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cp =
√

3 can be seen in the top left and right subfigures, before it exits the computational
domain. The shear wave moves with speed cs =1 and consequently arrives at the bottom
of the domain near time 6, as can be seen in the middle right subfigure. It can be shown
that the Rayleigh surface wave propagates with phase velocity cr ≈ 0.92 when µ = λ, so
the surface wave should reach the corners of the z = 0 plane at t ≈ 9.22, which agrees
well with the bottom left subfigure. The only visible wave in the bottom right subfigure,
as indicated by the first contour level at 0.00375, is an artifact of the far-field boundary
condition. These artifacts get more pronounced near the corners of the z=0 plane, as can
be seen in the bottom left subfigure.

The evolution of the solution along the surface is shown in more detail in Fig. 8. Here
we study the magnitude of the displacement as function of x, along the line z =0, y=6.
The solution is dominated by the Rayleigh surface wave and its decaying amplitude is
due to geometrical spreading along the z = 0 surface. The surface wave travels with
phase velocity cr ≈ 0.92, so the wave arrives at the outflow boundary at t≈ 6.52. While
most of the wave is transmitted through the outflow boundary, it is apparent that some
of it gets reflected back into the computational domain, even though the surface wave
has normal incidence to the boundary along this line. This behavior is explained by
the mismatch in phase velocity between the surface waves and shear waves, because
the outflow boundary condition only provides perfect transmission of waves at normal
incidence when they travel at the shear or compressional phase velocities.
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Figure 8: Magnitude of the surface displacement in the numerical solution of Lamb’s problem when the energy
absorbing far-field boundary condition (3.16) is used to truncate the computational domain. The displacement
is shown as function of x, along the line z = 0, y = 6, at times 3, 4, 5, 6, 7 (left) and times 8, 9, 10 (right).

Note that the vertical scale goes from 0 to 0.12 on the left, but from 0 to 7×10−3 on the right.

The error in the numerical solution of Lamb’s problem has contributions from the
numerical discretization of the governing equations as well as errors due to the truncation
of the computational domain. The numerical discretization error can further be divided
into errors due to the discretization of the elastic wave equation, the discretization of
the free surface boundary condition, and the discrete approximation of the point force.
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Table 1: Errors in the w component of the solution along the surface z=0 for Lamb’s problem when cp/cs =
√

3
at time 3, before any waves have reached the far-field boundaries.

h L∞ error L2 error L∞ ratio L2 ratio

0.04 0.01192 0.02406 * *
0.02 0.00374 0.00751 3.18 3.20
0.01 0.00100 0.00201 3.74 3.74

Table 2: Maximum norm errors in the w component of the solution along the surface z=0 for Lamb’s problem
when cp/cs =

√
3 at time 11, after all waves in the exact solution have exited the surface of the computational

domain.

h CE1 Energy Absorbing Dirichlet

0.04 0.00313 0.00813 0.07467
0.02 0.00356 0.00947 0.08360

Because the analytical solution is very hard to evaluate in the interior of the domain,
we limit our study to evaluating the error in the z-component of the solution along the
boundary z=0. For this purpose we define the maximum and L2-norm on the surface by

||w||∞ =max
i,j

(|wi,j,1|), ||w||2 =

√√√√h2

Ny

∑
j=1

Nx

∑
i=1

w2
i,j,1.

In Table 1 we display the error in the numerical solution at time 3 for three different
grid sizes. Because no waves have reached the far-field boundary at this time, these er-
rors are solely due to effects of the numerical discretization. Table 1 illustrates that the
errors decrease with decreasing grid size, at close to the expected second order conver-
gence rate. Table 2 displays errors in the maximum norm along the z =0 surface at time
11, comparing the influence of either the minimal first order Clayton-Engquist, energy
absorbing, or homogeneous Dirichlet boundary conditions on the far-field boundaries.
Setting the displacement to zero on the far-field boundary causes significant reflections
so the Dirichlet boundary conditions are only provided as a reference point. Note that all
waves should have exited the computational domain at this time, so the exact solution
is identically zero inside the computational domain. In this case the errors are almost
independent of the grid size, which indicates that the error is dominated by effects of
the far-field boundary condition. We conclude that both the energy absorbing and the
Clayton-Engquist boundary conditions give significantly smaller errors than the simple
Dirichlet boundary condition.

4.3 Lamb’s problem with λ≫µ

Lamb’s problem has a complicated analytic solution for homogeneous materials with
λ 6=µ, see [13]. Since we are interested in the accuracy of the far-field boundary conditions,
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Table 3: Max errors in the w component of the solution along the surface z = 0 for Lamb’s problem when
cp/cs =10 at time 11, after all waves in the exact solution have exited the computational domain.

h Minimal CE Energy Absorbing Dirichlet

0.04 0.00874 0.00182 0.02362
0.02 0.00528 0.00190 0.03416

it suffices to study the numerical solution at a time T when the exact solution is identically
zero in the computational domain. The solution is dominated by the Rayleigh surface
wave and we focus our attention on the error along the surface z=0. As before, we solve
Lamb’s problem on the truncated domain 0≤ x≤ 12, 0≤ y≤ 12, 0≤ z≤ 6 with the point
force located at x0=(6,6,0). We set ρ=1, µ=1, and take λ=98, which gives cp/cs=10. The

corners of the z =0 plane are at a distance 6
√

2 from the point force. The phase velocity
of the Rayleigh surface wave, cr, is given by the real solution of

(2−ξ2)2−4

√(
1−

(
cs/cp

)2
ξ2

)
(1−ξ2)=0, 0< ξ = cr/cs <1.

Since cr > 0.9 for cp/cs ≥
√

3, and g(t) = 0 for t≥ 1, all waves in the exact solution have
propagated out of the z=0 surface of the computational domain after the time

T =1+
6
√

2

0.9
≈10.43.

To be consistent with the numerical experiments in the previous section, we evalu-
ate the numerical solution at t = 11, see Table 3. All three boundary conditions behave
similarly to the case with cp/cs =

√
3, i.e., the error is essentially independent of the grid

size, with a significantly smaller error for the two far-field conditions compared to the
Dirichlet condition. However, in this case, the error is smaller for the energy absorbing
condition than the Clayton-Engquist condition. To investigate what happens as the solu-
tion is integrated further in time, we plot the evolution of the maximum norm error of the
w component in Fig. 9. We see that the error starts growing rapidly after t≈19 when the
Clayton-Engquist condition is used. A closer examination of the solution along the line
z =0, y=6 at t =22 shows a highly oscillatory error for the Clayton-Engquist condition,
while the error is smooth for the energy absorbing condition, see Fig. 10. We conclude
that the discretized Clayton-Engquist far-field condition is unstable for cp/cs =10.

5 Conclusions

We have derived an outflow boundary condition for the elastic wave equation which is
stable for heterogeneous materials having any ratio between cp and cs. An energy es-
timate has been derived for the fully discretized equations, proving that the proposed
boundary condition is energy absorbing when the explicit time-step satisfies a Courant
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Figure 9: Evolution of the error along the z = 0 surface for 11≤ t ≤ 22, for the Clayton-Engquist (left) and
the energy absorbing (right) far field boundary conditions. Here, cp/cs =10 and the two curves correspond to
h=0.02 and h=0.04, respectively. Note that the vertical scale goes from 0 to 1 in the left plot, but from 0 to
2.5×10−3 in the right plot.
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Figure 10: The error along the line z=0, y=6 at t=22, for the Clayton-Engquist (left) and the energy absorbing
(right) far field boundary conditions. Here, cp/cs = 10 and h = 0.04. Note that the vertical scale goes from

−0.04 to 0.03 in the left plot, but from −4×10−4 to 8×10−4 in the right plot.

condition. The stability proof includes edges and corners in a three-dimensional compu-
tational domain where several outflow boundaries meet. The stability proof also extends
to the case where free surface boundary conditions are imposed on some sides of the
computational domain.

The main advantage of the proposed non-reflecting boundary condition is its guaran-
teed stability property for heterogeneous materials. The proposed boundary condition is
first order accurate in the incident wave angle, and it would be desirable to generalize
the energy absorbing principle to derive an outflow boundary condition with improved
transmission properties for larger angles of incidence.
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A Proof of Lemma 3.1

In one space dimension we define the scalar products

(u,v)1h =h
N

∑
i=1

aiuivi, (u,v)1m =h
N−1

∑
i=1

uivi, (u,v)1r =h
N−1

∑
i=2

uivi.

Here ai = 1 for i = 2,3,··· ,N−1, but ai = 1/2 for i = 1 and i = N. The proof of Lemma 3.1
relies on the application of the identities

(u,D−E1/2(µ)D+v)1h

=−(D+u,E1/2(µ)D+v)1m−
1

2
u1(µ1/2D+v0

+µ3/2D+v1)+
1

2
uN(µN+1/2D+vN +µN−1/2D+vN−1), (A.1)

(u,D−E1/2(µ)D+v)1h

=−(D̃0u,µD̃0v)1h−
h2

4
(D+D−u,µD+D−v)1r−

1

2
u1(µ1/2D+v0

+µ3/2D+v1)+
1

2
uN(µN+1/2D+vN +µN−1/2D+vN−1), (A.2)

and
(u,D̃0v)1h =−(D̃0u,v)1h−u1v1+uNvN , (A.3)

along each of the coordinate directions. We have

(u1,L(u0))h

=(u1,L(u)(u0,v0,w0))h+(v1,L(v)(u0,v0,w0))h+(w1,L(w)(u0,v0,w0))h, (A.4)

and we proceed by making a detailed analysis of the first term on its right hand side,

(u1,L(u)(u0,v0,w0))h

=
(

u1,Dx
−(Ex

1/2(2µ)Dx
+u0)

)
h
+

(
u1,Dx

−(Ex
1/2(λ)Dx

+u0)
)

h

+
(

u1,D
y
−(E

y
1/2(µ)D

y
+u0)

)
h
+

(
u1,Dz

−(Ez
1/2(µ)Dz

+u0)
)

h

+
(

u1,D̃x
0(λD̃

y
0v0+λD̃z

0w0)
)

h
+

(
u1,D̃

y
0(µD̃x

0 v0)
)

h
+

(
u1,D̃z

0(µD̃x
0 w0)

)
h
. (A.5)
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We use relation (A.1) in the x-direction on the first term in the right hand side of (A.5). The
second, third, and fourth terms are rewritten by using (A.2) in the x-, y-, and z-coordinate
directions, respectively. For the fifth, sixth, and seventh terms we use the summation by
parts property (A.3) in the x-, y-, and z-directions, respectively. These manipulations lead
to

(u1,L(u)(u0,v0,w0))h

=−2(Dx
+u1,Ex

1/2(µ)Dx
+u0)mx−

h2

4

[
(Dx

+Dx
−u1,λDx

+Dx
−u0)rx

+(D
y
+D

y
−u1,µD

y
+D

y
−u0)ry+(Dz

+Dz
−u1,µDz

+Dz
−u0)rz

]

−(D̃x
0 u1,λ(D̃x

0u0+D̃
y
0v0+D̃z

0w0))h−(D̃
y
0u1,µD̃

y
0u0)h−(D̃z

0u1,µD̃z
0u0)h

−(D̃
y
0u1,µD̃x

0 v0)h−(D̃z
0u1,µD̃x

0 w0)h+h2
Ny

∑
j=1

Nz

∑
k=1

(
−u1

1,j,k(B0
1,j,k)

11+u1
Nx,j,k(B0

Nx,j,k)
11

)

+h2
Nx

∑
i=1

Nz

∑
k=1

(
−u1

i,1,k(B0
i,1,k)

12+u1
i,Ny,k(B0

i,Ny,k)
12

)

+h2
Nx

∑
i=1

Ny

∑
j=1

(
−u1

i,j,1(B0
i,j,1)

13+u1
i,j,Nz

(B0
i,j,Nz

)13
)

, (A.6)

where (B0
i,j,k)

11, (B0
i,j,k)

12, and (B0
i,j,k)

13 are defined by (3.5)-(3.7). The reduced norm (u,v)rx

is the three-dimensional counterpart of (u,v)1r, i.e., it is defined like (u,v)h but with the
sum over i taken from 2 to Nx−1 instead of 1 to Nx. Similarly, the sum over j in (u,v)ry is
taken from 2 to Ny−1, and the sum over k in (u,v)rz is taken from 2 to Nz−1. Furthermore,
we define

(u,v)mx =h3
Nx−1

∑
i=1

Ny

∑
j=1

Nz

∑
k=1

ui,j,kvi,j,k.

Similarly, we define (u,v)my with the sum over j from 1 to Ny−1, and (u,v)mz with the
sum over k from 1 to Nz−1,

It is not hard to see that the boundary contributions from summation by parts prop-
erty (A.3) applied to terms five, six, and seven in (A.5) give the D̃0 terms in (B)11, (B)12,
and (B)13. The remaining parts of (B)11, (B)12, and (B)13 come from applying (A.1) to
the first term as well as applying (A.2) to terms two, three, and four.

We rewrite (v1,L(v)(u0,v0,w0))h and (w1,L(w)(u0,v0,w0))h using the same approach as
for (u1,L(u)(u0,v0,w0))h. Assembling all terms in the right hand side of (A.4) gives

(u1,L(u0))h =−S1(u1,u0)− h2

4
R(u1,u0)+T(u1,u0), (A.7)
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where T(u1,u0) is given by (3.10) and

S1(u1,u0)

=2(Dx
+u1,Ex

1/2(µ)Dx
+u0)mx+2(D

y
+v1,E

y
1/2(µ)D

y
+v0)my+2(Dz

+w1,Ez
1/2(µ)Dz

+w0)mz

+(D̃x
0u1+D̃

y
0v1+D̃z

0w1,λ(D̃x
0 u0+D̃

y
0v0+D̃z

0w0))h+(D̃
y
0u1+D̃x

0v1,µ(D̃
y
0u0+D̃x

0 v0))h

+(D̃z
0u1+D̃x

0w1,µ(D̃z
0u0+D̃x

0w0))h+(D̃z
0v1+D̃

y
0w1,µ(D̃z

0v0+D̃
y
0w0))h. (A.8)

The term R(u1,u0) is given by

R(u1,u0)=(Dx
+Dx

+u1,λDx
+Dx

+u0)rx+(D
y
+D

y
+u1,µD

y
+D

y
+u0)ry+(Dz

+Dz
+u1,µDz

+Dz
+u0)rz

+(Dx
+Dx

+v1,µDx
+Dx

+v0)rx+(D
y
+D

y
+v1,λD

y
+D

y
+v0)ry

+(Dz
+Dz

+v1,µDz
+Dz

+v0)rz+(Dx
+Dx

+w1,µDx
+Dx

+w0)rx

+(D
y
+D

y
+w1,µD

y
+D

y
+w0)ry+(Dz

+Dz
+w1,λDz

+Dz
+w0)rz. (A.9)

Note that S1 and R are symmetric in their arguments. We can therefore group all sym-
metric contributions of (A.7) into

S(u1,u0)=S1(u1,u0)+
h2

4
R(u1,u0), S(u0,u1)=S(u1,u0).

Since all terms in S(u,u) are non-negative, it is positive semi-definite. Finally, note that

due to the restricted norms and the one-sided operators (D̃x
0 etc.) at the boundaries,

no ghost points values are used in any of the terms in (A.8) and (A.9). This proves
Lemma 3.1. �
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