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Abstract. This paper is to present a finite volume element (FVE) method based on the
bilinear immersed finite element (IFE) for solving the boundary value problems of the
diffusion equation with a discontinuous coefficient (interface problem). This method
possesses the usual FVE method’s local conservation property and can use a structured
mesh or even the Cartesian mesh to solve a boundary value problem whose coefficient
has discontinuity along piecewise smooth nontrivial curves. Numerical examples are
provided to demonstrate features of this method. In particular, this method can pro-
duce a numerical solution to an interface problem with the usual O(h?) (in L? norm)
and O(h) (in H' norm) convergence rates.
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1 Introduction

In many applications, a simulation domain is often formed by several materials sepa-
rated by curves or surfaces from each other, and this often leads to the so called in-
terface problem consisting of the usual boundary value problem of the diffusion equa-
tion, the usual boundary condition, plus jump conditions across the material interface
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required by pertinent physics. It is well known that efficiently solving this type of in-
terface problem is critical in many applications of engineering and sciences, including
flow problems [10, 11, 27, 29, 30, 43, 52], electromagnetic problems [4, 16, 61, 66-70, 78],
shape/topology optimization problems [13-15, 29, 36-38, 46, 74], and the modeling of
nonlinear phenomena [41, 79, 86], to name just a few. In this paper, we present a finite
volume element method with bilinear immersed finite element (IFE) [39,59] for solving
this popular interface problem. This method possesses both the advantages of finite vol-
ume element method and those of IFE. In particular, this method can use a Cartesian
mesh to solve a boundary value problem with a discontinuous coefficient whose inter-
face consists of nontrivial piecewise smooth curves.

Q-‘r

0
Q —_

Figure 1: A sketch of the domain for the interface problem.

To be specific, we consider the following boundary value problem:
—V-(BVu)=f, (xy)eqQ) (1.1)
Ulpn=g. (1.2)

Here, see the sketch in Fig. 1, without loss of generality, we assume that () C IR? is a
rectangular domain, the interface I' is a curve separating () into two sub-domains ()™,
Q7 such that O=0Q~UQTUT, and the coefficient B(x,y) is a piecewise constant function

defined by
_[ B, (xy)eq,
,B(x,y)—{ B, (xy)eQr.

Because of the discontinuity in the coefficient §, jump conditions are also imposed on the
interface I':

[u]lr=0, (1.3)
{ﬁg—ﬂ Ir=0. (1.4)

Of course, conventional numerical methods can be used to solve interface problem
(1.1)-(1.4). Standard discretization techniques such as finite difference (FD), see [73] and
references therein, finite volume (FV), see [40] and references therein, and finite element
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(FE), see [5,17,25] and references therein, are all applicable, provided that meshes used
by these methods are tailored to resolve the interfaces, see Fig. 2. Otherwise, the lack of
smoothness in the exact solution across the interface will prevent a numerical method to
perform satisfactorily [9,17,25]. In general, this requires a conventional method to use
a mesh such that each of its element is basically occupied by one of the materials, and
consequently, this prevents the usage of a structured mesh such as a Cartesian mesh if
the interface is nontrivial. Therefore, conventional methods have limitations for them to
solve interface problems efficiently in many applications. As an incomplete list of their
limitations, we first note that for applications with moving interfaces, the meshes used
by these methods have to be regenerated again and again according to current location
of the interfaces at the moment the interface problems have to be solved. Second, there
are many applications in which structured meshes are preferred, for example, Particle In
Cell method for Plasma Particle Simulation, see [48,62] and references therein. Last, but
not the least, we note that the algebraic system based on a structured mesh often requires
much less computational time to solve because efficient algebraic solvers such as fast FFT
and multigrid can be easily implemented.

Figure 2: The plot on the left shows how elements are placed along an interface in a standard FE method. Each
of the elements is essentially on one side of the interface. An element not allowed in a standard FE method is
illustrated by the plot on the right.

To alleviate these limitations, FD methods are modified by reformulating the interface
problem in elements cut through by interface or by employing finite difference stencils
sophisticated enough to capture the discontinuity at the nodes in the neighborhood of the
interface. Along this direction, Peskin’s immersed boundary method [71,72] is one of the
early representative ideas followed by many publications with applications in numerous
fields [3,21,26,28,31,35,42,45,49-51,53,55,65,80,81,84,85]. For FE methods, special local
basis functions have been developed to handle the interface jump conditions in elements
cut through by interface. Early work can be found in [8] and [6,7], which have developed
basis functions for treating rough coefficients. Further development can be found in the
partition of unity methods and the extended finite element methods (X-FEMs) [12,64,77].
Another class of FE methods along this idea are the recently introduced immersed finite
element (IFE) methods [1, 2,22, 33,39, 47,48, 54,57-60, 76]. More references can also be
found in [56].

We like to point out that the early works by Babuska et al. in [5-7] proposed and an-
alyzed several classes of finite element methods for interface problems, in particular for
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linear element in one-dimension, these are equivalent or identical to the linear immersed
finite elements, therefore the work [54] is just a special case of [5-7] with somewhat dif-
ferent settings. However for high order elements in one-dimension the immersed finite
element proposed in [1,2,59,60] and etc are different from those in [5-7].

In IFE methods, standard finite element functions are used in elements occupied by
one of the materials, but piecewise polynomials patched by interface jump conditions
are employed in elements formed by multiple materials. Particularly, the meshes used
by IFE methods can be independent of the interface; hence, structured meshes, even the
Cartesian mesh, can be used to solve boundary value problems with rather sophisticated
interfaces between materials.

Up to now, IFE has been applied to solve interface problems in the Galerkin for-
mulation, see [1,2,22,47,54,57-60]. On the other hand, finite volume element (FVE)
has the local conservation property which is very much desired in many applications,
see [18-20,23,24,32,34,44,63,75,82] and related reference therein. We believe that the com-
bination of the FVE’s local conservation property and IFE’s flexibility to handle interface
jump conditions without using complicated meshes can generate competitive numerical
methods for solving interface problems.

The rest of this article is organized as follows. In Section 2, we recall the definition
of the bilinear IFE space to be used and its basic features. In Section 3, we present the
finite volume element method based on this bilinear IFE space. In Section 4, we present
several numerical examples to demonstrate features of this immersed FVE method. The
conclusion is given in Section 5.

2 The bilinear immersed finite element space

In this section, we recall the bilinear IFE space discussed in [39,59]. We will also list some
of its basic properties and refer reader to the references above for more details.

Let 7j,, h>0 be a family of rectangular meshes of the solution domain (2 that can be a
union of rectangles. For each mesh 7;, we let

Ny={X;, i=1,2,---,N}

be the set of its nodes, and let N/;” = N, NQ). We first consider a typical rectangle element
T €7}, assuming that the vertices of T are A;, i=1,2,3,4, with A;=(x;,y;)". For a nontrivial
interface I', some of the elements in a mesh will be cut through by I and we will call them
interface elements. The meaning of non-interface elements is obvious. If T is an interface
element, then we use D=(x,,y, )" and E=(x,,y,) to denote the intersection points of T
and the edge of T. In general, there are two types of rectangular interface elements. Type
I are those for which the interface intersects two of its adjacent edges; Type II are those
for which the interface intersects two of its opposite edges, see Fig. 3.

The basic idea of IFE method is to use standard finite element functions in non-
interface elements, and use special finite element functions in interface elements that are
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Figure 3: Two typical interface elements. The element on the left is of Type | while the one on the right is of
Type Il

constructed according to jump conditions across the interface. Hence, our main concern
is the finite element functions in a typical interface element T € 7. Note that the interface
I' separates an interface element T into two subsets T° = TN()°, s==+. This suggests us
to form a piecewise function with two bilinear polynomials on T patched up together by
interface jump conditions as follows:

¢~ (X)=¢~(x,y)=a x+b"y+c +d xy, X=(x,y)€T,
PT(X)=¢"(x y)—a+x+b+y+c++d+xy, =(xy)eTT,
$(xy)=1 ¢~ (D)=9"(D), ¢ (E)=¢" (E), ¢~ (PFE) =" (PFE), (2.1)

where ng; is the unit vector perpendicular to the line DE. Further, we let ¢;(X) be the
piecewise hnear function described by (2.1) such that

o
¢i(Aj):¢i(xj/yj)={ (13 if;;é; (2.2)

for 1 <i, j <4. We then introduce the local bilinear IFE space on element T € 7},
Sp(T)=span{¢;i=1,2,3,4},

where ¢;, i =1,2,3,4 are the usual bilinear nodal basis functions if T is a non-interface
element; otherwise, ¢;, i=1,2,3,4 are the piecewise bilinear polynomials defined by (2.1)
and (2.2). Then, for each node X; € NV, we define ®;(X) = ®;(x,y) to be a piecewise
bilinear function such that ®;|r € 5,(T), ®;(X;) = d;;, VT € 7;,. Finally, we define the
bilinear IFE space on Q) by Sj,(Q) =span{®;(X) | X; €Ny }.

The word “immersed” is used for this finite element space just to emphasize the fact
that the mesh can be independent of the interface such that the interface can be immersed
inside elements of this mesh. Fig. 4 illustrates the difference between the bilinear IFE local
nodal basis function and the standard bilinear local nodal basis functions. Fig. 5 provides
a sketch of the surface of a global bilinear IFE basis function over its support.
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Figure 4: The plot on the left is for one of the bilinear IFE local nodal basis functions, the plot on the right is
the corresponding regular bilinear local nodal basis function on the same element.

Figure 5: The plot on the left is the surface of one global bilinear IFE basis over its support, the plot on the
right shows the elements forming the support and the interface

We now list some basic properties of S;,(€)), and we refer readers to [39] for details.
From now on, for a given function f(X), we let f°= f|ns, s==.

e For a given rectangular mesh, the IFE space S;,(Q)) has the same number of nodal
basis functions as that in the usual bilinear FE space.

e For a rectangular mesh 7j, fine enough, most of its elements are non-interface ele-
ments, and most of the nodal basis functions of the IFE space Sp(Q)) are just the usual
bilinear nodal basis functions except for few nodes in the vicinity of the interface I'.

e For any ¢ € 5,(Q)), we have

Plonor € H(Q\QY),

where (V' is the union of interface rectangles.
o If I'NT is a line segment, then

¢ [rnr=9"rnr, Vo ESH(Q).

e Every function ¢ € S,(T) satisfies the flux jump condition on I'NT exactly in a weak
sense as follows:

[ (BV¢™—p"V¢")nids=0.
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e The bilinear IFE local nodal basis functions on an interface element T satisfy the
partition of unity, i.e.,

¢1(X)+¢2(X)+¢3(X)+¢ps(X)=1, VXE€T.

e The bilinear IFE space is consistent with the usual bilinear finite element space in
the sense that when = =+, we have

and ¢ become a usual bilinear polynomial for any ¢ € S;,(T), V T € 7).
e The bilinear IFE space S, (Q) has the usual approximation capability expected:

e —=ello g+ R Iyt —ully r < Ch?
provided that u has the required regularity.

Remark 2.1. It is possible to extend the method in this article to handle variable discon-
tinuous coefficient and non-homogeneous jump conditions. In order to deal with the
variable discontinuous coefficients, we need to replace the constants = and g in (2.1)
by the corresponding variable discontinuous coefficients. The idea of homogenization by
using level-set method from [83] seems to be a viable approach to treat non-homogeneous
jump conditions.

3 The immersed finite volume element method

Since the bilinear IFE space has the usual approximation capability expected from bi-
linear polynomials [39], we now apply it to solve the interface problem of the diffusion
equation in the finite volume element formulation. To describe the method, for each mesh
75, of Q, we introduce a dual mesh 7}, by connecting the nearby centers of the elements
in 7}, in the vertical and horizontal directions, see the illustration in Fig. 6 where the dual
mesh 7}, is sketched by the dash lines while 7}, is sketched by solid lines.

First, we derive a weak form on each element of the dual mesh. Assume that the
source term f(X) is smooth enough so that the exact solution has the required smooth-
ness in the discussion below. Let K; be an element of ’ZA}, containing the node X; of 7.
First, we integrate the differential equation (1.1) over K; to have

—/Eiv-(ﬁw) dxdy:/lzif daxdy. (3.1)

If K; is not an interface element, then a straightforward application of the Green’s formula
leads to

n

ou
_ /a B o= /12 f dudy (3.2)
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Figure 6: A mesh of () and the dual mesh for an interface problem. Elements in the mesh are solid rectangles
and elements in the dual mesh are dash rectangles.

If K; is an interface element, then, by applying the Green’s formula piecewisely, we have

/K -(BVu) dxdy— / (BVu) dxdy= / £ dxdy,

1

/3— is— [ p" ds—/ F dxdy,

BK’ Z)K+

_/akiﬁﬁ ds = /amr ['Ba_u} ds—/fdxdy,

which leads to (3.2) again because of the flux j jump condition (1.4). Hence, we conclude
that the weak form (3.2) holds for any element Ki e ’]}Z This weak form enables us to
introduce the bilinear immersed FVE method as follows: find uj, € Sj, £(Q)) such that

ﬁa“h ds= / Fdxdy, YX:ENT. (3.3)

Here, S;, £(Q) ={0v,€5,(Q),v,(X) =g(X) VX eN;,N0Q}. We would like to point out that
(3.3) indicates that the immersed FVE solution also have the local conservation property.

We now discuss some details in the implementation of the bilinear immersed FVE
method. The key issue is the integrals used in this method. On each non-interface ele-
ment K;, standard Gaussian quadratures can be applied because we can assume that all
the integrands involved are smooth enough. If K; is an interface element, both the line
integral and the area integral in the bilinear immersed FVE method need to be treated
carefully because of the discontinuity across the interface.

First, let us consider the area integral [ %,/ dxdy on the right hand side of (3.3). Under
the assumption that f(X) is piecewise smooth with respect to the interface I', we can
approximate its integration over K p1ecew1sely by suitably partitioning K into several
sub-triangles. Assume that K; has vertices X;, j=1,2,3,4 and interface T intersects with
the boundary of K; at D and E on two adjacent edges, see Fig. 7. We can then use use points

D and E to partition K; into 4 triangles by adding 3 line segments: DE, DXs, EX3. Note
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that the last two line segments are formed by connecting D and E to the vertex of K; not
on the edges containing D and E. Hence,

[ £ dxdy = / iy + / £+ dxdy

Dggy 3,

+/ fr dxdy+/ T dxdy.
DX3Xy ADE)?3

Gaussian quadratures with enough degree of precision can be applied straightforwardly
to handel integrations on those sub-triangles within either O~ or Q. A little extra care is
need to handle the sub-triangles whose interiors intersect both 3~ and Q7. For the case
illustrated in Fig. 7, when applying a Gaussian quadrature to compute | Boes, fT dxdy,

we can replace the value of f at a quadrature node outside Q" by the value of f at a
point on I so long as this replacement has an O(h?) accuracy which can be achieved if
I' is smooth enough within K; [25]. A similar procedure can be developed for handling
the case in which the interface T intersect with the boundary of K; at D and E on two
opposite edges.

Figure 7: A dual element I?:EI)AQ)AQ)AQ}AQ G’ZA71 sketched by dash lines and 4 adjacent elements of 7). This
element can be partitioned into 4 sub-triangles for the area integrals in the immerse FVE method.

For an interface element K;, the line integral on the left hand side of (3.3) also needs to
be treated piecewisely to handle the discontinuity. Again, let us consider a dual element
Ki=0X1X:X5X4, see Fig. 8. Since K; has 4 edges, we have

auh ‘Bauh ﬁauh s

XX XX
Pon

ou
po - ds—
X3X4 XXy

< Pon
auh ds

Note that the flux ,Ba“" on the boundary of K; is discontinuous at the points where 9K;
intersects either the edges of 7, or the interface I. Therefore, the line integrals on the
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Figure 8: A dual element I?,-:D)A(lf(zf(ﬁh eﬁ sketched by dash lines and 4 adjacent elements of 7;,. The

edges of I?,- is partitioned by the discontinuous points of the flux for the line integrals in the immersed FVE
method.

right hand side above need to be computed on the small line segments between these
discontinuous points. For the example demonstrated in Fig. 8, we have

ou ou ou ou
Xlxz'B 5= ’B_ L d ’B_ 4 EX2’B+ h as,
Bu Bu Bu
Xzs hd_/ ‘B+ hd+ BX3‘B+aI:ld
ou ou ou
JoiPom = fech +/cxf* ;s
X4X]’Bauh ds = A4D'B+E ds+ ﬁ’g_g FX]'B_ - ds.

We note that all the integrands in the line integrals on the right hand sides above are
polynomials; hence, a Gaussian quadrature with enough degree precision can be used
to compute all of them precisely. As a consequence, this leads to another interesting fact
that the matrix in the immersed FVE can be assembled exactly even if the interface I is
a general curve. On the contrary, the matrices in the immersed finite element methods
[39,48,57-59] cannot be formed precisely unless the interface I' is trivial. In assembling
the matrix in any of these immersed finite element methods over an interface element
K €7y, assuming that the interface I' intersects the edges of K at D and E, the error in the
computation of the area integral over the region enclosed by DE and T is inevitable if T
is a general curve.

Finally, we would like to point out that, for any given rectangular mesh 7, of (), the
algebraic system of this bilinear immersed FVE method has the same structure as the
algebraic system in the usual bilinear finite element method for the Dirichlet boundary
value problem of the Poisson equation. The matrix in its algebraic system is guaranteed
to be symmetric positive definite.
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Table 1: Errors of the FV-IFE solution for the case with = =1, ,B+ =10.

h ([ —u]lg |up—uly =
1/8 | 7.7394%x1073 | 1.1705%x10~! | 2.5110x 103
1/16 | 1.9658 107> | 5.8644x10 2 | 6.5026 x 10— *
1/32 | 4.8127x10% | 2.9255x 1072 | 1.6598 x 10~*
1/64 | 1.2173x10~% | 1.4550x 102 | 4.1413x 10>
1/128 | 3.0115x107° | 7.2699 x 103 | 1.0611x 10>
1/256 | 7.5436x107° | 3.6362x 1073 | 2.6485x 10 °

Table 2: Errors of the FV-IFE solution for the case

with B~ =1, B =10000.

h ([ —ulg |up—ul [[p — 1]l
1/8 | 1.8420x10° | 4.1025x10°2 | 1.4562 x 10>
1/16 | 4.0555x10% | 2.1051x 102 | 4.2813x 10~ *
1/32 | 7.6016 10> | 1.0193x 102 | 2.5606 x 10~*
1/64 | 2.4890x107° | 4.8512x10 3 | 5.0649 x 10>
1/128 | 5.1332x 10 ° | 2.4100x 103 | 1.8048 x 10>
1/256 | 1.1050x10~°% | 1.2110x 1073 | 4.7363 x10~°

4 Numerical examples

195

In this section, we present numerical examples for the bilinear immersed finite volume
element method to illustrate its features. We consider the interface problem defined by
(1.1)-(1.4) on the typical rectangular domain Q= [—1,1] x [—1,1]. The interface curve I' is
a circle with radius ro = 71/6.28 that separates Q) into two sub-domains O~ and QO with
O~ ={(xy) | x*+y*><r3}. The coefficient function is

_[ B, (xyeqr,
ﬁ(x,y)—{ B*, (X,Z)€Q+~

The boundary condition function g(x,y) and the source term f(x,y) are chosen such that
the following function u is the exact solution.

rt if r <
h—7 1 r_rOI
B

4.1)
’g—i + (’BL — ,5%) ry, otherwise,

u(x,y)=

with « =5, r = /x2+y2. For simplicity, we only use the simple rectangular Cartesian
meshes in our numerical experiments.

Table 1 contains the errors of the bilinear immersed FVE solution u; with various
mesh size h and B~ =1, B =10. Table 2 contains the errors of the bilinear immersed FVE
solution u;, with B~ =1, B =10000 representing a large jump. Table 3 contains the errors
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h ([ —ullg |up—uly =
1/8 | 7.6119x10~2 | 1.0927x10° | 2.6593 x 102
1/16 | 1.9110x102 | 5.4809x10~! | 6.6274x 103
1/32 | 4.7894x1073 | 2.7425x 101 | 1.6796 x 103
1/64 | 1.1967x1073 | 1.3715x10 1 | 4.1590 x 10— *

1/128 | 2.9946 x10~* | 6.8576 x 1072 | 1.0489x 104
1/256 | 7.4846x10° | 3.4288x 1072 | 2.6144x 10>

Table 4: Errors of the FV-IFE solution for the case

with B~ =10000, B+ =1.

h ([ —ully |up—uly [y — 1]
1/8 | 7.6026x10~2 | 1.0927x10° | 2.6270x 102
1/16 | 1.9119x10~2 | 54813x10~1 | 6.7172x 1073
1/32 | 4.7613x107° | 2.7425x 101 | 1.6608 x 103
1/64 | 1.1930x10°3 | 1.3714x10 1 | 4.0496 x10~*
1/128 | 2.9813x10~% | 6.8575x1072 | 1.0940 x 10~*
1/256 | 7.4494x10° | 3.4288x10°2 | 2.6902 x 10>

of the bilinear immersed FVE solution uj, with various mesh size h and = =10, g7 =1.
Table 4 contains the errors of the bilinear immersed FVE solution u;, with §~=10000, f=
1. In these tables, ||-||, represents the usual L? norm, ||, is the usual semi-H' norm, and
of course, they are computed numerically according to the mesh used. The quantity ||-||,
is the discrete infinity norm which is the maximum of the absolute values of the given

function at all the nodes of a mesh.

We can easily see that the data in the second and third columns of these tables satisfy

1
oty —llg~ [l —u

for h=h/2. Using linear regression, we can see that the data in Table 1 obey

1t — ) g~ 0.5008129%4 |y, —u|, ~0.9427 1%, ||y —u| , ~0.1559 h-758,

the data in Table 2 obey

1
o ]uh—u\lziwﬁ—

Huh—uHO%O.1422 h2'1154, ’uh_uh ~0.3514 h1'0246,

the data in Table 3 obey

[y —u||g~4.8643 K998, |uy —u|, ~8.7375 h**P,  |luy—u|| , ~1.6923 B4,

and the data in Table 4 obey

|y — 1|y ~=4.8715 K, |uy, —ul, ~8.7379 K, ||uy —u|| . ~1.6301 !5,

ll

||, — | o, = 0.0486 1165%;
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regression of the data in Table 4.

See Figs. 9 and 10 for these linear regressions. These results further indicates that the bi-
linear immersed IVE solution u;, converges to the exact solution with convergence rates
O(h?) and O(h) in the L2 norm and H! norm, respectively. However, the actual computa-
tional results show that the solution does not always have the second order convergence
in the L* norm even though the mesh is fine enough. Similar phenomenon has been
observed for IFE method, see [39,57]. We guess this is mainly due to the non-conforming
feature of the IFE space, and we plan to investigate this issue in our future research.

For a given rectangular mesh of (), we note that the linear system in this bilinear
immerse IVE method has the same structure as that in the IVE method based on the stan-
dard bilinear finite elements for the Poisson’s equation, especially from the point view
of the number of non-zero entries and their locations in the matrix of the related linear
system. This suggests that, on any given computer, the CPU time needed to solve the
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Table 5: Comparison of the computational costs for solving linear systems in both the bilinear FVE method and
the bilinear immersed FVE method.

bilinear FVE | BT:f~=1:1.1 | pT:p~=1:2 | BT:~=1:10
# of iterations 221 222 279 299

bilinear immerse FVE method should be comparable to that needed to solve the linear
system in the standard bilinear FVE for simple Poisson’s equation. Since it has become
more and more difficult to obtain the precise CPU time usage of a computational pro-
cedure on a modern computer because of the complexity of the CUP unit (multi cores,
cache, hardware parallelization, etc.) and the software (operating system, fire-wall, virus
scan, etc.), we choose the number of iterations needed to make the preconditioned con-
jugate gradient (PCG) method to converge for a given error tolerance to illustrate the
above observation, see Table 5. For the () specified at the beginning of this section, we
use a rectangular mesh with h=1/128, the incomplete Cholesky preconditioner, and the
error tolerance fol =10~10 in all the computations. From this table, we can see that, while
the linear system in the bilinear FVE method for the Poisson’s equations uses 221 PCG
iterations, the linear system in the bilinear immersed FVE method uses a 222 PCG iter-
ation for the interface problem described in this section with f*:f~ =1:1.1. We have
also observed that the number of PCG iterations needed by the bilinear immersed FVE
method gradually increases as the ratio B : B~ becomes larger. This increase is due to
the fact that the interface problem is essentially more difficult than the simple boundary
value problem of the Poisson’s equation and will inevitably cost more time to solve by
any method.

5 Conclusion

In this paper, we have presented an bilinear immersed finite volume element method
for solving the interface problem of the diffusion equation whose domain is formed with
multiple materials. This method possesses both the advantages of local conservation in
a FVE method and the capability of IFE for handling the jump conditions across material
interface. This method can use a Cartesian mesh even if the interface separating the ma-
terials is nontrivial, and fast algebraic solvers such as multigrid can be easily applied to
generate numerical solutions efficiently for a problem with rather complicated interface.
The numerical examples show that this method does have an approximation capability
usually expected from bilinear polynomials.
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