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Abstract. Usually extended two-phase capillary pressures are used in three-phase sim-
ulations, because three-phase capillary pressures are not possible or hard to measure.
In this work three-phase capillary pressure surfaces are created by at pore network
model. The input parameters to this network model are found by matching two-phase
capillary pressure curves. This matching is done with a slightly modified EnKF rou-
tine. Tables with three-phase capillary pressures are created and used as input to flow
simulations.
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1 Introduction

When starting production from an oil reservoir the pressure drops, and this pressure
needs to be replaced if you want high oil recovery. Injection of water is the most common
way to maintain the pressure, but also injection of gas is used.

In recent years it has been shown that a water-alternating-gas (WAG) scenario, where
short slugs of gas and water are injected in a sequence, results in lower residual oil, less
trapped oil in the reservoir, than if you inject only water or only gas. Skauge and Stensen
reported an increased oil recovery from WAG of five to ten percent of the initial oil in
place [1].
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The combination of gas and water gives many favorable effects [2, 3]. Gas results in
better microscopic displacement; less oil left in the pores of the gas swept areas when
compared to water swept areas. The zones swept with both gas and water may have
even lower trapped oil saturation [4–7].

The water is controlling the mobility of gas and consequently the stability of the dis-
placement front i.e. the transition zone between injected fluid and oil. The result is better
macroscopic displacement of the oil. Without water present the gas would sweep a much
smaller volume, because the gas would then zoom through at the top of the reservoir or
through zones with high pore connectivity, high permeability. There would be more oil
left in the reservoir and earlier breakthrough of gas in the producers.

Figure 1: Schematic sketch of WAG injection (Adapted from NPD [5]).

In thick homogeneous reservoirs the main advantage of WAG is the improved vertical
sweep due to gravity segregation of water and gas. The water sinks to the bottom and
the gas rises to the top of the reservoir. This effect can be seen in Fig. 1. At the top of the
reservoir we get two-phase flow of gas and oil, and near the bottom we get two-phase
flow of water and oil. In parts of the reservoir, especially close to the injector we get three-
phase flow of gas, water and oil. Gas, water and oil are then flowing simultaneously and
interacting in the reservoir.

In homogeneous reservoirs the gas and water may segregate rapidly and the three-
phase zone is then located close to the injector. The region with three-phase flow can in
many cases extend to a considerable part of the reservoir. More heterogeneous reservoirs
may have a slower segregation of the fluids. Lower mobility of gas and water in the
three-phase zone also delays the segregation process [6, 7].

The influence of capillary pressure is often neglected in complex three-phase pro-
cesses like immiscible WAG. There is very little experimental data on three phase capil-
lary pressure available. In Kalaydjian [8], three-phase capillary pressure was measured
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for both drainage and imbibition on an outcrop water-wet core and on unconsolidated
material. The experimental data show the complexity of three-phase capillary pressure as
both drainage and imbibition capillary pressures were found to depend on more than one
phase saturations. The three-phase capillary pressure was higher than the corresponding
two-phase capillary pressure.

More recently there has been several attempts to estimate three-phase capillary pres-
sure from network modeling [9–11]. Among the results is the fact that the gas/water
capillary pressure curves depend strongly on the spreading coefficient and the oil/water
capillary pressure [9]. The trend in capillary pressure variation from two-phase to three-
phase situations is similar in the network derived capillary pressure [11] as in the data
from Kalaydjian [8]. The network data has been generated by anchoring the network to
drainage and imbibition two-phase capillary pressure. Thereafter the three-phase cap-
illary pressure (Pc) was estimated on the conditioned network representing pore size
distribution and wetting properties.

Although the experimental data is very limited, there already exist developed corre-
lations for three-phase capillary pressure [12]. These types of analytical functions are in
particular useful and needed when generating input data to reservoir simulations.

The article will be organized in the following way: Subsection 1.1 will describe the
work flow and explain the mathematical model for the needed three-phase parameters.
Section 2 is a discussion of possible approaches to solve the inverse problem, and Section
3 introduces stochastic filters and explains the adapted Ensemble Kalman filter. In Section
4 we have used this filter to find estimates for the parameters by anchoring three-phase
capillary pressures to two-phase capillary pressure curves. The parameters are used to
construct three-phase capillary pressure functions, as explained in Section 5. Conclusions
and further work are summarized in Section 6. The nomenclature used to explain the
adapted Ensemble Kalman filter is listed in Appendix A. Parameters from the network
model are explained in Appendix B.

1.1 Mathematical model and work flow

WAG injection is becoming more common and the need for describing the WAG dynam-
ics consequently becomes more important. Immiscible WAG injection includes complex
multi-phase, multi-component flow problems. On a continuous macro scale, the WAG
flow is described mathematically by a three-phase, three component model (Black Oil
model) [13, 14]. The alternation of injection fluids leads to strong hysteresis effects. Ear-
lier studies, including three-phase relative permeability hysteresis models have shown
that the three-phase zone may extend to a large part of the reservoir [1, 4, 15]. The effect
of capillarity has in earlier studies been neglected, and current research focus is on the
impact of capillary pressure on three-phase flow related to WAG processes. Since cap-
illary forces are controlling the main dynamics on pore level, the capillary pressure is
expected to be an important factor describing the three-phase flow in a porous heteroge-
neous media.
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A mathematical model for three-phase fluid flow processes through porous media
needs the representation of three-phase parameters.

The three-phase relative permeabilities for water (w), oil (o) and gas (g) are [16]:

krϕ = krϕ(Sw,Sg), for ϕ=w,o,g,

Sw+So+Sg =1,
(1.1)

where Sw, So and Sg are the water, oil and gas saturations.
Further the three-phase oil-water and gas-oil capillary pressures are given by:

Pcow(Sw,Sg)= po−pw, (1.2)

Pcgo(Sw,Sg)= pg−po. (1.3)

We note that all these three-phase parameters are given as surfaces in the (Sw,Sg)-
space. Two-phase relative permeability and capillary pressures are functions of one satu-
ration variable. The two-phase parameters can usually be measured experimentally, but
the three-phase parameters are difficult or impossible to measure and must therefore be
estimated by other methods [17]. The main objective of this work is to present a method
to estimate three-phase capillary pressures.

A two-phase capillary pressure is defined in a saturation interval [Sm,SM], Sm ≥ 0,
SM ≤ 1, where Sm is the residual saturation of the non-wetting fluid and 1−SM is the
irreducible saturation of the wetting fluid [13]. The capillary pressure curves may have
an asymptotic behaviour at S=Sm and S=SM.

In this work we will use a three-phase network model to estimate the three-phase
capillary pressures. The network simulator used is developed at the Heriot Watt Univer-
sity, Edinburgh [18]. It has different input parameters describing fluid properties, pore
properties (geometry) and wettability properties. The main steps in our work flow to
estimate the three-phase capillary pressures are:

• Get data from two-phase capillary pressure measurements and data for fluid
properties from the literature.

• Anchor the input parameters in a network simulator by matching the data.
This is done by using adapted Ensemble Kalman Filter (EnKF) method.

• Run the network simulator for systematic variations of the saturations as in-
put to produce three-phase capillary pressures.

This approach is based on the assumption that the three-phase capillary pressures
will go to the limit of a two-phase capillary pressure when the saturation of one of the
phases goes to zero.

The details of the procedure will be presented in the following chapters. Similar con-
sistent estimation methods for the three-phase relative permeabilities will be presented
in later work.
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2 Comments on using a classic, direct technique

Simulation of pore-scale flooding contains a vast amount of parameters that guide the
process, and this presents some challenges to textbook anchoring methods.

To determine how close we are to a solution that matches our data, we need a way
to quantify this. Usually, this is done by introducing an objective function which maps
a solution to a target value, such that the objective function is decreasing when it gets
closer to the true value. Fitting the parameters now becomes a question of minimizing
this objective function.

Defining a good objective function is in itself not straightforward. The capillary pres-
sure curves are assumed to behave according to a Brooks-Corey power-law function [22]
which essentially capture three factors: (1) The entry pressure needed for flooding of the
pores to start determines the horizontal asymptote, (2) connate water or residual oil satu-
ration at which flooding is no longer possible determines the vertical asymptote, and (3)
a measure of the pore-size distribution determines the speed at which flooding occurs,
i.e., the bend of the curve.

Various parameters have different effect on each of these factors, and sets of parame-
ters that give a good fit in one part of the curve may cause large deviation in another. An
additional snag is that the capillary pressure tends towards infinity at the asymptotes,
leading to problems in numerical representation.

First, we turn to the task of incorporating the output of the network simulator into
a formulation that can be used in an objective function. Since a Brooks-Corey function
is both continuous and has smooth derivatives, we settled in the preliminary evaluation
for an orthogonal distance regression using a Levenberg-Marquardt algorithm [23] of the
data points to a power-law function, and then use the integral between their inverses.
Going through this extra hoop is necessary in order to make the output which may be at
different locations comparable with the measurements. Even then, some choices must be
made as to which pressure intervals should be considered. Selecting a larger interval will
favour the asymptotes, whereas a smaller interval will favour the slope and position of
the curve.

With an objective function defined, we next turned to the problem of minimizing
it. This is not as easy as simply using the fitting procedure described above, since the
objective function exhibits the characteristics of the network itself instead of that of the
general behaviour.

Naı̈vely, the first thing to consider is to use brute force; to try out various combina-
tions of parameters to see which one is best. The large number of dimensions in the
problem makes this approach infeasible. Even if we just considered a low, medium and
high value for each of the parameters, it would amount to evaluating 340 combinations!
Clearly, that is not going to work.

Another way of attacking the problem is to start out at some initial point and then use
a scheme like a gradient method (see for instance [23,24]) to follow the target function to
the minimum value.
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However, pore-scale network simulations are done by modeling a discrete network
of nodes and bonds, not by a discretization of a continuous field. Instead of computing
an equation over all elements, a minimum displacement chain is located in the network
for each transition from one steady state to another.

Altering the parameters may or may not have effect on the chains that are used, or
only on some of them. For a small change, the network may take an entirely different
path, or not be affected at all. There may be an effect on the aggregate of several realiza-
tions, but we cannot use the information from a single run alone.

Thus, the derivatives of the output with respect to the parameters tends to have
threshold effects, where derivatives by numerical differentiation are very sensitive to the
discretization. This may be countered by using several evaluations to approximate a gra-
dient, but the computation of a single partial derivative then becomes very expensive.

Global methods, such as genetic algorithms or simulated annealing, may to some
extent find global minimum of complex objective functions. However, such methods
typically require thousands of simulation runs, which often is not feasible.

3 Ensemble Kalman Filter

Instead of using several network evaluations to do a deterministic search for a mini-
mum, an alternative is to use the computer time to perform a statistical analysis of the
behaviour.

The Ensemble Kalman Filter (EnKF) is a sequential data assimilation method which
is designed for large-scale filtering problems [19–21, 25]. It is a Monte Carlo method
where the probability distribution is represented by an ensemble of model realizations.
Although it is based on a linearity assumption, it often works surprisingly well on prob-
lems with somewhat non-linear dynamics.

The method tries to minimize the mismatch between the measurements and the val-
ues computed by a simulator. The ensemble must be of a certain size to reduce sampling
errors, but at some point, it will be better to average multiple filter runs rather than in-
creasing the ensemble size [26].

The EnKF methodology consists of two steps; the forecast step and the assimilation
step. In the forecast step the simulator is run forward for each of the ensemble members
to the time of the next measurement. The assimilation step consists of updating the model
variables by applying the Kalman equations on the output of these runs together with the
measurements. In every time step one more measurement is matched, and the variation
in the distribution of the parameters will hopefully decrease as the prior is combined
with the likelihood calculated from this new information. Output from the method is
then distributions of the input parameters to the simulator.

Some modifications had to be done before we could apply EnKF to our problem.
Roughly said, what we have done is not to adjust the internal state of the model in each
step but rather re-run the simulator from scratch with the new set of parameters. We also
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introduce a sort of penalty term for results that are outside of the accepted domain.
A summary of the nomenclature used in the following paragraphs is provided in

Appendix A.

As in the original EnKF algorithm we start out with a number of measurements p
(t)
k

for the capillary pressures. Here k is the measurement type for a total of q types. In-
formally, a measurement type is also known as a graph, since its measurements can be
drawn as a such. We are trying to match three different types of measurements; the capil-
lary pressure between gas and oil Pcgo, the capillary pressure between oil and water Pcow

and the capillary pressure between mercury and nitrogen Pchg, so q is equal to three in
our case. The number of measurements for each type is ωk and t∈[1,ωk] denotes the time

step where the data point at saturation s
(t)
k is matched.

Errors stem from two parts: Model errors and measurement errors. As we don’t have
any assumption about the model error, we have opted to assume that the model error is
negligible and not attempted to quantify it nor bring it into the equations.

Comparable studies often report the error in a measurement to be within ±10% with
90% confidence. It is common to assume that the error follows a normal distribution,

which means that there should be a standard deviation σ
(t)
k of about 6% of the measured

value for each type.†

Furthermore, we assume that errors made in different measurements are independent
of each other, which gives us a diagonal covariance matrix E with elements:

ek,l =

{

σ2
k if k= l,

0 otherwise,
for k,l∈ [1,q]. (3.1)

EnKF requires that we perturb the measurements across the ensemble to get a correct
sampling [19–21]. This is done for each graph k by adding stochastic noise from the
measurement distribution. That is, with n being the ensemble size:

d
(t)
k,j = p

(t)
k +ξ

(t)
k,j , for k∈ [1,q], j∈ [1,n], (3.2)

where ξ
(t)
k,j ∼N (0,σ

(t)
k ) with new realizations for each timestep t. Perturbation must be

done even if our measurements stem from a synthetic example generated by a determin-
istic model.

The network simulator takes m input parameters. Let α be a vector of length m con-
taining these parameters, and let α(t) be the most updated estimate at timestep t. Without
much knowledge of the parameter space, we have chosen our a priori distributions to be
uniformly distributed between their lower limits ai and their upper limits bi, where each
parameter is indexed with i∈ [1,m].

EnKF is based on the assumption that the parameters are Gaussian, or approximately
Gaussian, so we use the inverse normal cumulative distribution function g−1 — also

† 10%
−g−1( 1−90%

2 )
≈6%, assuming tails on both sides
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known as the quantile — to transform between uniformly distributed values to a set of
values θ in a Gaussian space with zero mean and unit standard deviation with elements:

θi = g−1

(

αi−ai

bi−ai

)

for i∈ [1,m]. (3.3)

Using Eq. (3.3), we can switch between actual parameters passed to the simulator and
parameters used in the EnKF update equations. Since we go both ways, mapping in and
out of the Gaussian space, the statistics of the filter does not change, but we get the effect
of having a uniformly distributed prior assumption about the parameters.

Some of the parameters are maximum or minimum values for distributions. For in-
stance, the radius for each pore in the network is internally drawn from a Rayleigh distri-
bution, and the minimum and maximum pore-size for this distribution are input param-
eters to the simulator. If their intervals given by [amin size,bmin size] and [amax size,bmax size]
overlap, it is possible that the minimum value drawn from the normal distribution cor-
responds to a value that is larger than the maximum value. This can also happen after an
update of the filter. Such parameter values will not make sense in the network model, so
this must be controlled for every time step. To fix it, both the maximum and the minimum
values are set to the mean of the two:

α′
max size =

αmax size+αmin size

2
,

α′
min size =

αmax size+αmin size

2
,

(3.4)

replacing α{min,max} size with α′
{min,max} size if αmax size <αmin size.

By this procedure the parameters will change in the direction that the filter wants
them to, but not so much that the maximum value becomes smaller than the minimum
value.

The forward simulation is given by

ψ
(t)
k = fk(α(t),s

(t)
k ) for k∈ [1,q], t∈ [1,ωk] (3.5)

where f returns primarily capillary pressure ψ for each measurement type k when the
simulator is run with the parameters α towards a target saturation s for that timestep t.

However, the simulator is not always able to attain the desired saturation. In practice
it only accepts certain saturation values, making this a partial function. This is due to the
nature of the process, not the accuracy of the simulator, and is a problem at the beginning
and in the end. The capillary pressure follows the behaviour of a power-law function
which is limited by asymptotes (on one side for gas-oil, on both sides for oil-water).
Outside of these asymptotes, the capillary pressure is not defined.

Let sL
k be the saturation value for the left asymptote in graph k. That is, this is the first

saturation value for which an output from the simulator could be obtained. Correspond-
ingly, sR

k is the saturation for the right asymptote.
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At the asymptote, the capillary pressure curve is almost vertical and an insignificant
change in saturation gives a huge change in pressure. Therefore, there is little meaning
in comparing the pressures at this point. Instead, we compare the saturations for the
asymptotes.

Simulations whose asymptotes are far apart from the goal will thus give results that
indicate that those parameters are incorrect. To avoid preference for curves that starts
earlier (or ends later), the condition is made symmetric to a distance on the other side of
the asymptote as well.

This test is always done on the first measurement since that corresponds to the asymp-
tote. Thereafter, the asymptote is checked at each timestep, but the pressure for that
timestep is used if the asymptote is found to be acceptable.

Hence, we introduce a vector y of modified pressure values, with an element for each
graph k∈ [1,q] given by:

y
(t)
k =















p
(t)
k +min

(

2
(s

(1)
k −sL

k

(t)
)

δ ,6
)

σ
(t)
k if t=1 or |s(1)

k −sL
k
(t)
|>δ, (left asymptote),

p
(t)
k −min

(

2
(s

(ωk)

k −sR
k

(t)
)

δ ,6
)

σ
(t)
k if t=ωk or |s(ωk)

k −sR
k

(t)
|>δ, (right asymptote),

ψ
(t)
k else,

(3.6)

where s
(1)
k is the measured asymptote and sL

k

(t)
is the simulated asymptote for the current

parameter values.
It is advisable to choose a δ that is less than the distance between the saturations of

two timesteps. Otherwise, one risks that the test does not trigger if a result is not defined
for the second timestep either. (The first is always checked anyway). This value must be
determined through some initial testing. We have used the value 0.05 for δ in this paper.

The EnKF is based on first running the forward model and then updating when new
measurements become available. This is done for each ensemble member. Update is
done with the standard Kalman filter update equations, combined with an ensemble ap-
proximation to the covariance matrices [20, 21]. Introducing the ensemble matrices Θ,Y
and D holding the n ensemble members of θ,y and d in each column, the EnKF update
equations may be written:

Θ
(t+1) =Θ

(t)+K(t)
(

D(t)−Y(t)
)

, (3.7)

where K(t) is the Kalman gain matrix given by:

K(t) =CΘY
(t)(CYY

(t)+E(t))−1. (3.8)

The covariances used above are given by the standard expressions:

CΘY =
1

n−1
(Θ−Θ)(Y−Y)T,

CYY =
1

n−1
(Y−Y)(Y−Y)T,



R. Holm et al. / Commun. Comput. Phys., 6 (2009), pp. 24-48 33

where Y and Θ are the matrices holding the ensemble means in each column:

Θ={θ,θ,···θ}=Θ·1n, (3.9a)

Y ={y,y,···y}=Y ·1n, (3.9b)

where 1n is the n times n matrix with all elements equal to 1/n.

Initial (prior) ensemble of parameters is set up by drawing i.i.d. values θ
(1)
i,j ∼N (0,1).

If the residual is large, there will be large changes in the parameters. Exactly how large
the changes will be is determined by the Kalman gain. If the distributions of parameters
θ and capillary pressures y are wide, the covariance matrix CΘY will have large entries.
If the entries in the matrices CYY and E are large, this will have the opposite effect. E has
large entries if we consider the uncertainties in the measurements to be large. The Kalman
gain will therefore depend on the distributions of the parameters and the measurements.

The final solution parameters are taken as the mean of the last ensemble after update.
The capillary pressure curve made by the network model with these parameters should
match all the measurements according to the given standard deviation.

4 Anchoring capillary pressure curves to two-phase

measurements

Measurements are developed in a laboratory with tests done at core plugs from a North
Sea reservoir. The measurements are from injection of mercury into a core plug filled with
nitrogen, injection of gas into a core plug filled with oil and residual water, and injection
of water into a core plug filled with oil and residual water. From these experiments the
capillary pressure between mercury and nitrogen, between gas and oil and between oil
and water are used to determine the properties of the core plug. The experiments are
done to different cores, but they are from the same area, such that their properties are
assumed to be almost the same.

The injection of mercury and the injection of gas are both drainage processes, because
a non-wetting phase is displacing a wetting phase. In a drainage process the injected
fluid starts to go into the largest pores, where the capillary pressure needed to invade is
the lowest. This capillary pressure is given by the Young-Laplace equation,

Pc=
2σcos(θ)

r
, (4.1)

where r is the radius of the pore, σ is the interfacial tension between the phases and θ is
now the wetting angle between the phases. As smaller and smaller pores are filled, the
capillary pressure needed to fill the next pore increases. The small pores decide how large
the capillary pressure must be, such that drainage processes give an indication of the
distribution of small pores. Similarly, in an imbibition process the injected fluid invades
the smallest pores first, such that the distribution of the largest pores will be determined.
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The input parameters to the network model can be categorised into three groups de-
scribing the fluid properties, geometry of the pore network and the wettability of the
pores. The fluid properties are interfacial tensions between fluids, and can be found in
the literature. The wettability properties for mercury and nitrogen are also known, such
that only the pore properties are unknown in simulations with mercury and nitrogen.

Therefore this process is used to find the pore properties. The curve arising from injec-
tion of water into a core plug filled with oil and residual water and the curve arising from
injection of gas into a core plug filled with oil and residual water depends on unknown
wettability properties and is more complicated to match.

The pore parameters describe the geometry of the network. Maximum and mini-
mum pore radii must be given. The sample of radii are distributed between these two
bounds by the power law distribution, f (r)=rn, where n is the power law exponent. The
coordination number describes how many pores each node is connected to on average.
Since pores in the stone in a reservoir are not necessarily circular, the volume exponent
is introduced. The volume in a pore with radius r is V(r) ∝ rν, where ν is the volume
exponent. For pores with circular cross sections the volume exponent will be equal to
two. An exponent less than two indicate that the pores are squeezed together and have
smaller volume than if they were circular. The seed used to initialize the random number
generator is also included amongst the input parameters so that the exact same network
can be recreated.

The wettability parameters describe how the different fluids in the network relate to
each other. To mimic the state in a reservoir, an ageing option is used. Before the oil took
form, the reservoir was water-filled and the pores were water-wet. Then oil streamed into
the reservoir and influenced the wettability-state. In the oil-filled pores the wettability is
now mixed-wet-large, that is the pores with largest radius are oil-wet, while the pores
with smallest radius are water-wet.

To describe the wettability state before ageing, a lower and upper bound for a uni-
form distribution of the cosines to the wettability angle between oil and water, cos(θow), is
given. After ageing the pores have different wettability depending on which phase they
were filled with during the ageing. The pores that were water-filled will be described
as before ageing, with a lower and upper bound for the cosines, but the values for the
bounds are not necessarily the same as earlier. The pores that were oil-filled during age-
ing have a more complex wettability. They are mixed-wet large, and the minimum radius
for oil-wet pores and maximum radius for water-wet pores must be given. A lower and
upper bound for cosines for both the oil-wet region and the water-wet region must also
be given. What makes it a bit confusing is that the oil-wet region can also contain water
wet pores, and the water-wet region can contain oil-wet pores, such that the radii sep-
arating them are only radii separating two regions. But since the medium is supposed
to be mixed-wet large, the largest pores are mainly oil-wet and the smallest are mainly
water-wet.

Films and spreading layers can be present in the network. The presence of films
has a large impact on the residual saturations, because a phase that is not connected to
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the outlet now can escape through films of the same phase along the pore walls. The
parameters in the network describing the films are lower or upper thresholds for oil film
around water, oil film or spreading layer around gas, water film around oil, and water
film around gas.

All the parameters in the network model are described in Appendix B.

The matching of the parameters can be done both in parallel or sequentially. It seems
natural first to determine the geometry of the network by fitting the capillary pressure
curve for mercury and nitrogen, before the wettability is estimated by matching the capil-
lary pressure curve for water and oil and the capillary pressure for gas and oil in parallel.

It is possible that some of the parameters do not have an impact on two-phase flow,
but will have a large impact when three phases are flowing. These parameters will of
course not be estimated correctly when using a scheme that is based on a two-phase
anchoring, and tests should therefore be done afterwards to determine the sensitivity of
parameters in the presence of three phases.

4.1 Results using EnKF

To be able to evaluate how close the parameters we find by EnKF is to the true ones, we
construct a synthetic case. A match to the capillary pressure measurements from a North
Sea oil field have already been found by trial and error with the network model, and we
choose to use these parameters to create the synthetic case. The same parameters are used
to create measurements for the capillary pressure between gas and oil, and water and
oil. Since the wettability for mercury and nitrogen is different, some parameters must
be modified before creating the measurements for capillary pressure between mercury
and nitrogen. The same geometry parameters are used, but the interfacial tension and
contact angle between the phases were changed to the value for mercury and nitrogen,
and the threshold for films were changed such that there would be films of nitrogen
around mercury in all the pores. Also, the ageing option was deactivated.

With this approach we know that there exists a set of parameters that match all three
curves perfectly. The output saturations and capillary pressures from these simulations
are used as measurements in the following examples. If all the measurements were used,
the matching would be very time consuming, and the result would not necessarily be bet-
ter. Therefor 25 measurements in the case with mercury and nitrogen, 12 measurements
in the case with oil and water and the case with gas and oil are used.

Since the wettability for mercury and nitrogen is known, the only unknown parame-
ters in this case are the geometry parameters. The wettability for the other two cases are
more complex, and the matching would be easier if the geometry parameters are deter-
mined first. Therefore we start with finding the geometry parameters by matching the
capillary pressure curve between mercury and nitrogen and then use these in the last two
cases.
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4.1.1 Capillary pressure between mercury and nitrogen

For each of the five geometry parameters, we select an interval where we assume that the
correct parameter value is inside. It is possible to find an estimate of the maximum and
minimum pore radii by using the capillary pressures for the lowest and highest satura-
tion of mercury, respectively, and calculate the radii from the Young Laplace equation,
Eq. (4.1). For all the parameters we choose the intervals to be so large that we are sure
they will contain the correct values, even for real cases where we do not have much infor-
mation about the properties. We have found that taking the mean of 10 ensembles with
100 members each, is suitable when matching the geometry parameters.
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Figure 2: Distributions of the ge-
ometry parameters: maxRadius,
minRadius, powerLawExp, coord-
Number and volumeExp. The
mean for each parameter is indi-
cated by a vertical dotted line.

Fig. 2 shows the distributions of each parameter after transforming them back to the
uniform distribution in the last time step. The figure contains histograms with the in-
tervals [a,b] along the x-axis for each of the parameters. The figure also says something
about the uncertainties in the estimated parameter values. If the distribution is wide, it
means that parameter values from a large interval can make good matches to the capil-
lary pressure curve. If the distribution is narrow, the interval for the parameter is smaller,
and therefore the estimate for the parameter is probably better.

The variance in the distributions of the parameters for different time steps can be
seen in Fig. 3.‡ To also be able to get an impression of the parameters that have very

‡Using the law of total variance to construct the variance from a set of ensembles.
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Figure 3: Variance in the distribution of each of the parameters θi from section 3, against the number of time
steps. (All of these parameters started out in the standard normal distribution with unit variance).

small values, the parameters are transformed to the standard normal distribution. The
variances are decreasing as the match becomes better and better. This is shown in Fig. 4.
The figure to the left contains the capillary pressure curves from simulations with the
parameters in the initial ensemble. The initial ensemble contain parameter values from
the whole interval [a,b], and the variation in the parameters is reflected in the variation in
the capillary pressure curves. The figure to the right shows the capillary pressure curves
from simulations with the last ensemble. Here the curves match the measurements quite
well.

Table 1: Table showing the lower and upper bound, true value, estimated value and standard deviation for each
of the parameters. See Appendix B for description of the parameters.

Parameter a b true value est. value std. dev.

maxRadius 0.1×10−5 5.0×10−5 1.50×10−5 2.30×10−5 0.73×10−5

minRadius 0.1×10−7 5.0×10−7 1.00×10−7 1.07×10−7 0.20×10−7

powerLawExp −9.0×10−1 −2.0×10−1 −6.00×10−1 −7.32×10−1 1.17×10−1

coordNumber 2.5 5.0 3.50 3.47 0.53

volumeExp 0.0 1.0 1.00×10−1 1.62×10−1 0.92×10−1

Table 1 shows the lower bound a and the upper bound b for each of the parameters,
together with the true and the estimated value of the parameters and the standard devi-
ation for the ensemble of parameters in the last time step. The estimated parameters are
close to the true ones and the standard deviations are small. If more measurements were
used, the standard deviations would be smaller and the estimated parameters closer to
the true ones.
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Figure 4: Capillary pressure curves for the parameters in the initial and final ensemble, with the measurements
as crosses.
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Figure 5: Capillary pressure curve from the mean
of the parameters in the final ensemble (solid line),
with the measurements as crosses. The curve arising
from the mean over the initial ensemble is shown as a
dashed line.

The capillary pressure curve arising from the estimated parameters is shown in Fig. 5.
The measurements are shown as crosses. The solid curve is made with the estimated
parameters, and the dashed curve is made with the mean over the initial ensemble of
parameters. The figure shows that all measurements are matched very accurately.

4.1.2 Capillary pressures between oil/water and gas/oil

In the matching of the capillary pressure curves between oil and water, Pcow, and gas and
oil, Pcgo, the geometry parameters are locked to the mean values found in the matching
of the capillary pressure curve between mercury and nitrogen, Pchg. We have used 150
members in each of 10 ensembles in the following examples.

The capillary pressure curve between mercury and nitrogen, Pchg, is defined for all
saturations of mercury. For a reservoir with oil and residual water the capillary pressure
curve between water and oil is not defined for water saturations less than the residual
water saturation and oil saturations less than the residual oil saturation. Similarly, the
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capillary pressure curve between gas and oil is not defined for high gas saturations, be-
cause of residual water and oil. Near these saturations the amount of fluid possible to
inject becomes smaller and smaller, even if the capillary pressure increases a lot, and the
capillary pressure curve will have asymptotic behaviour. The asymptotes are important
indications of the wettability state in the medium, such that the matching of these are im-
portant for finding the wettability parameters. In oil recovery asymptotes tell how much
residual oil is left.

First we try to find only five of the wettability parameters: cosLimitFilm 1, cosLim-
itFilm 2, cosineOFWW2, cosineOFOW2 and rWet1OF. These are the parameters that in
our experience are the most sensitive to changes (amongst those we are interested in) and
should therefore respond well to filtering. For the rest of the parameters we use the true
values. (A description of the parameters is given in Appendix B). For each of the five
parameters a lower and upper bound for the parameter values are set. Four of the pa-
rameters are cosines, and the intervals for these parameters are all set to [−1,1]. The last
parameter, rWet1OF, is a radius separating two regions with different wettability, such
that the interval for this parameter should cover all pore sizes that are present in the net-
work. If we had some information about the parameter values, the intervals could be
smaller.

Table 2: Example with five unknown wettability parameters: Table showing the lower and upper bound, true
value, estimated value and standard deviation for each of the parameters. See Appendix B for the description
of the parameters.

Parameter a b true value est. value std. dev.

cosLimitFilm 1 −1 1 0.84 0.8181 0.0312

cosLimitFilm 2 −1 1 0.98 0.9981 0.0025

cosineOFWW2 −1 1 −0.96 −0.9236 0.0563

cosineOFOW2 −1 1 −0.20 −0.2679 0.0237

rWet1OF 1×10−8 4×10−5 7.00×10−6 8.78×10−6 0.417×10−6

Table 2 shows the interval chosen for each of the parameters, the true value of the
parameter, the estimated value of the parameter and the standard deviation for each of
the parameters. The estimated mean parameters are quite close to the true ones, and the
standard deviations are small compared to the length of the interval [a,b]. The capillary
pressure curves that the network simulator produces with the estimated mean parameter
values are shown in Fig. 6 as solid lines. The measurements are shown as crosses, and the
curves made from the initial mean of the parameters are shown as dashed lines. Figs. 6(a)
and (c) show the capillary pressure curves between oil and water, while Figs. 6(b) and (d)
show the capillary pressure curves between gas and oil.

Because the values of the capillary pressure at the asymptotes are so much larger
than for the rest of the measurements, it is not possible to get an impression of how well
the measurements between the asymptotes are matched. In Figs. 6(c) and (d) the range
is smaller to make it possible to evaluate the match also between the asymptotes. The
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Figure 6: Example with five unknown wettability parameters: The measurements are shown as crosses, and
the capillary pressure curves arising from the initial and last ensembles are shown as dashed and solid lines,
respectively.

curves match quite well, especially if they are compared to the initial ones. The asymptote
in the capillary pressure curve between gas and oil is not placed exactly where it should
be, and from Fig. 6(d) we see that the capillary pressures are too small. This could be
attributed to the difference in geometry parameters from the true values.

In general it is harder to match the right asymptote than the left one, because the left
asymptote is controlled at every time step. If this should be done for the right one as well,
the network model would have to run towards the highest saturation for every time step,
and this would make the filtering more time consuming. Note that the conditioning is
not a property of the EnKF in general, but stems from the penalty term introduced in
Eq. (3.6).

In the following example all fourteen wettability parameters are unknown. As in the
previous example, all the cosines are set to be between −1 and 1, and the two param-
eters separating different wettability regions are set to cover all the radii present in the
network.

Table 3 shows the interval, true value, estimated value and standard deviation for
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Table 3: Example with fourteen unknown wettability parameters: Table showing the lower and upper bound,
true value, estimated value and standard deviation in the ensemble of parameters for each of the parameters.

Parameter a b true value est. value std. dev.
cosLimitFilm 0 −1 1 −0.02 0.0371 0.0756
cosLimitFilm 1 −1 1 0.84 0.8133 0.0433
cosLimitFilm 2 −1 1 0.98 0.9369 0.0470
cosLimitFilm 3 −1 1 1.00 0.8975 0.0561
cosineWW1 −1 1 1.00 0.8622 0.0656
cosineWW2 −1 1 0.75 0.7627 0.0501
cosineWF1 −1 1 1.00 0.8885 0.0688
cosineWF2 −1 1 0.80 0.7799 0.0531
cosineOFWW1 −1 1 0.50 0.4871 0.0556
cosineOFWW2 −1 1 −0.96 −0.9168 0.0557
cosineOFOW1 −1 1 0.00 −0.0127 0.0313
cosineOFOW2 −1 1 −0.20 −0.2194 0.0471
rWet1OF 1×10−8 4×10−5 7×10−6 6.540×10−6 0.965×10−6

rWet2OF 1×10−8 4×10−5 7×10−6 7.968×10−6 0.806×10−6

each of the parameters. Some of them match quite well, while others are not close to
the true parameters. Also, the standard deviations are larger in this example than in
the previous. Fig. 7 shows the capillary pressure curves for the measured parameters,
together with the measurements and the initial capillary pressure curves. From Figs. 7(a)
and (b) we see that the curves match the measurements quite well even for 14 unknown
parameters. The match to the measurements between the asymptotes, shown in Figs. 7(c)
and (d), is also similar to the previous example with only 5 unknowns.

Since this problem has more unknowns, the filter was expected to get more problems.
It seems like even small variations in the parameters can make a large difference to the
capillary pressure curves, especially the asymptotes. Adding more parameters makes the
problem even more non-linear and non-Gaussian, increasing the chance that the EnKF
will not be able to update the posterior distribution correctly.

Every time the left asymptote has a deviation more than δ, the parameters are up-
dated based on this mismatch and not the mismatch to the present measurement. If this
happens often, the measurements between the asymptotes will not be matched very well.
In general, if the asymptotes do not match well, this can lead to large changes in the pa-
rameters.

The way the network model is built can also be a reason why the parameters do
not match. One problem is with the parameters that determine the wettability in pores
that are oil-filled during ageing. These pores are divided into two regions with different
distributions of contact angles. For one of them the smallest pore radius is given through
the parameter rWet1OF, while for the other the largest radius present is given through
rWet2OF. It is clear that the filter is not able to separate these two regions from each
other. In some cases it seems like they are switched, and the parameters for the first
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(c) Pcow (zoomed in) (d) Pcgo (zoomed in)

Figure 7: Example with fourteen unknown wettability parameters: The measurements are crosses, and the
capillary pressure curves arising from mean of the initial and final ensembles are shown as dashed and solid lines,
respectively.

region match the parameters for the other region instead. This make the matching of the
radii separating them, rWet1OF and rWet2OF, difficult as well.

The parameters for films are thresholds of the cosine of the wettability angle. If this
threshold is smaller or larger than all the cosines of the wettability angles distributed in
the network, the specific value of the threshold has nothing to say.

From earlier testing of the network model we found that different combinations of
parameter values can make quite similar capillary pressure curves. Even if parameter
values near both boundaries of the interval [a,b] make good matches to the capillary
pressure curve, the mean of these does not necessarily make a good match.

A test with smaller intervals [a,b] has also been performed. Of course, the measure-
ments were easier to match in this case. But even when taking into account that the length
of the intervals are smaller now, the filter still did a better job in estimating the parameter
values relative to the length of the search intervals. When the initial values of the param-
eters are closer to the true ones, non-unique solutions are avoided, and the filter has an
easier job in decreasing the standard deviation for the parameters. If we had information
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about the wettability state, this could be used to decrease the interval for some of the
parameters.

5 Three-phase surface

Anchoring the three-phase capillary pressures to two-phase gives us a set of values for
each parameter, sampled according to the likelihood assigned by the filter for a match
with this value. Note that this is a distribution of how well the various values matched
the measurements, not necessarily the true distribution of the parameters.

Unless the model is linear, the forward simulation of the mean values will not yield
exactly the same result as the mean values indicated by the forward realizations in the
ensemble. We thus use the means of the parameter samples as a model of the entire,
anchored network, and run simulations with these. To generate values for the three-
phase surface, we simulate first an injection of one phase to a certain saturation level
before switching to injecting another. This gives us values for different saturation paths,
which we in turn afterwards stich together to a surface.

Interpolation must be used to generate a regular surface graph, since the raw paths
returned from the network will be somewhat skewed as the injection of for instance gas,
will cause drainage of both water and oil simultaneously. If two saturation paths from
different injection schemes overlap, we may risk getting slightly inconsistent reading of
capillary pressure. These cases are resolved by taking the mean as the representative
value, and this does not seem to deteriorate the result.

Not all parts of the three-phase region will be covered, as we are limited to those that
can be covered through our injection schemes. For practical purposes these are sufficient,
as the points outside of the injections schemes – for instance below residual saturation –
are not likely to be encountered in a Darcy-scale simulation anyway.

As imbibition and drainage are two different processes, we need to generate a surface
for each of these situations. We have restricted ourselves to one-stage WAG, meaning
that only one change of injecting phase takes place. In principle, if more than one change
is done, new surfaces should be generated for each combination.

Having three phases means that there are two bilateral capillary pressures; one be-
tween oil and water and one between oil and gas. The difference between the pressures
in the water and the gas phases can then be inferred from these two.

Therefore, we end up with four graphs for each setup. As can be seen from Fig. 8,
the capillary pressure becomes more extreme as one moves from the edges and into the
surface, which is consistent with having a lower relative permeability in this area from
the presence of another phase.

From these figures, it can also be seen that the amount of residual oil (i.e., oil that
cannot be extracted) is decreasing as the gas saturation goes up.

We have confidence that these figures reflect the physical nature of capillary pres-
sure with three phases present [27], thus giving the correct impression of such a surface.
Although they are most likely not exact, we hold them to be sufficient approximations.
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Figure 8: Capillary pressure surfaces for oil/water and gas/oil, made with injection of water or gas into a network
filled with oil and residual water.

6 Conclusions and further work

In summary, we have identified that the adapted Ensemble Kalman filter may success-
fully be used to anchor a pore-scale lattice network model to known two-phase data.
This inverse problem can give us parameters for running the network model for three-
phase flow, resulting in a capillary pressure surface that can be used in continuum-scale
reservoir simulations.

The geometry parameters found by matching the capillary pressure between mercury
and nitrogen were acceptable. This is also the case when trying to determine a number of
unknown wettability parameters by matching the capillary pressure curves from oil and
water, and gas and oil flow.

A clear limitation of this method is of course that some parameters can be ambiguous
in a two-phase setup, i.e. give the same curves for several combinations, but still have an
effect in a three-phase setup and thus result in different surfaces.

The statistics behind the filter assumes a linear model based on Gaussian variables.
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The further away from these assumptions the model is, the less reliant the results from
the filter will be. Thus, the method is not applicable to every problem.

The accuracy of our results depends mainly on three topics:

• The quality of the two phase data.
• The quality and ability of the network simulator to model the complex physical and

chemical mechanisms involved in the dynamical process.

• The quality and generality of our EnKF algorithm to handle the problem studied.

All these represent challenging topics for further research.
An in-house multiphase flow simulator ATHENA [28] has the possibilities of using

both two-phase and three-phase capillary pressure and relative permeability tables as
input. Several runs have been done to compare production results when using three-
phase capillary pressure tables and two-phase capillary pressure tables for an oil/water
mixed-wet synthetic reservoir. At the moment three-phase relative permeabilities are
not available, so two-phase relative permeabilities have been used in the simulations.
We know from theory and experimental works that these parameters are very important
for the multiphase flow dynamics. A systematic testing of the sensitivity of three-phase
parameters will be performed in later works.

A Nomenclature for EnKF

q Number of different measurement types,like Pcow, Pcgo and
Pchg

k ∈ [1,q] Subscript for measurement type
m Number of input parameters to the network model
i ∈ [1,m] Subscript for parameter number

n Number of ensemble members
j ∈ [1,n] Subscript for ensemble member

ωk Number of time steps for measurement type k
t Superscript for time step
s ∈R

q ={sk} Saturation at time step t for each measurement type k
p ∈R

q ={pk} Measured capillary pressure at time step t for each measure-
ment type k

D ∈R
q×n ={dk,j} Capillary pressure in ensemble member j at time step t for

each measurement type k
E ∈R

q×q ={ek,k} Covariance matrix for the error in measurements
α ∈R

m ={αi} Input parameters to network model in their natural domain
f ∈ (α,sk)→ψk Simulator producing a pressure for a given saturation

ψ ∈R
q ={ψk} Simulation output

sL ∈R
q ={sL

k } Saturation for the left asymptote in the output from the net-
work model for each measurement type k (only if the curve
has a left asymptote)
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sR ∈R
q ={sR

k } Saturation for the right asymptote in the output from the
network model for each measurement type k (only if the
curve has a right asymptote)

Y ∈R
q×n ={yk,j} Capillary pressure value representing member j

Θ ∈R
m×n ={θi,j} Parameter i for member j in Gaussian mapping

g−1 ∈u→θ Quantile function (i.e. inverse of cumulative) for univariate
Gaussian distribution

a ∈R
m ={ai} Lower boundary of search space for each parameter

b ∈R
m ={bi} Upper boundary of search space for each parameter

K ∈R
m×q Kalman gain

CXY ∈R
m×q Partial covariance matrix.

Θ ∈R
m×n Mean for each parameter. All columns are equal.

Y ∈R
q×n Mean for each simulated pressure. All columns are equal.

δ The mismatch that we allow for an asymptote
Ξ ∈R

q×n ={ξk,j} Noise added to pertube the measurements
σ ∈R

q ={σk} Standard-deviation for error measurements in graph k at
timestep t

B Input parameters to network model

θxy contact angle between phases x and y §

maxRadius Maximum pore radius [m] in network
minRadius Minimum pore radius [m] in network

powerLawExp Exponent n in power law distribution f (r)= rn of pore radii r
coordNumber Average number of connections to pores from each node

volumeExp Exponent ν in the volume distribution V(r)∝ rν

cosLimitFilm 0 Oil films around water will be present for values of cos(θow) lower
than this threshold

cosLimitFilm 1 Oil films and spreading layers around gas will be present for value
of cos(θgo) larger than this threshold

cosLimitFilm 2 Water films around oil will be present for values of cos(θow) larger
than this threshold

cosLimitFilm 3 Water films around gas will be present for values cos(θgw) larger than
this threshold

cosineWW1 Maximum value for cos(θ) in the uniform distribution of contact an-
gles before ageing, where θ is the contact angle θhgN between mer-
cury and nitrogen in mercury experiments and θow between oil and
water in experiments with oil, gas and water
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cosineWW2 Minimum value for cos(θ) in the uniform distribution of contact an-
gles before ageing, where θ is the contact angle θhgN between mer-
cury and nitrogen in mercury experiments and θow between oil and
water in experiments with oil, gas and water

cosineWF1 Maximum value for cos(θow) for water-filled pores after ageing
cosineWF2 Minimum value for cos(θow) for water-filled pores after ageing

rWet1OF Minimum radius for pores in the part of the network that is most
oil-wet. The wettability is mixed-wet large after ageing.

rWet2OF Maximum radius for pores in the part of the network that is most
water-wet. The wettability is mixed-wet large after ageing.

cosineOFWW1 Maximum value for cos(θow) in the fraction of the network that is
most water-wet for oil-filled pores after ageing

cosineOFWW2 Minimum value for cos(θow) in the fraction of the network that is
most water-wet for oil-filled pores after ageing

cosineOFOW1 Maximum value for cos(θow) in the fraction of the network that is
most oil-wet for oil-filled pores after ageing

cosineOFOW2 Minimum value for cos(θow) in the fraction of the network that is
most oil-wet for oil-filled pores after ageing

References
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