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Abstract. Electrowetting has been proposed as a technique for manipulating droplets
surrounded by air or oil. In this paper, we discuss the modeling and simulation of the
droplet fission process between two parallel plates inside an electrowetting on dielec-
tric (EWOD) device. Since the gap between the plates is small, we use the two-phase
Hele-Shaw flow as a model. While there are several high order methods around, such
as the immersed interface methods [1, 2], we decide to use two first-order methods for
simplicity. A ghost-fluid (GF) method is employed to solve the governing equations
and a local level set method is used to track the drop interface. For comparison pur-
poses, the same set of two-phase Hele-Shaw equations are also solved directly using
the immersed boundary (IB) method. Numerical results are consistent with experi-
mental observations reported in the literature.
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1 Introduction

Lab-on-a-chip devices involve miniaturization of many chemical processes onto a single
chip. Droplets, as the most common carrier for bio-chemical agents, have been found a
growing importance in lab-on-a-chip design. Numerous papers which were centered on
droplet operations have been published, c.f. [3–5] and references therein, and droplet-
based lab-on-a-chip has been referred to as digital microfluidics. The basic operations
include droplet generation; droplet translocation; droplet fusion and droplet fission.
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Amongst the different digital microfluidic systems, electrowetting on dielectric (EWOD)
is one of the most promising technique to achieve these goals, because it manipulates
discrete droplets rather than a continuous flow.

On the micro-scale, the surface tension forces play a dominate role in the hydrody-
namics of a droplet. When a droplet contacts solid electrodes, a wetting force acts on the
tri-phase contact line due to electrowetting (changes in the contact angle), and this can be
utilized to manipulate the droplet. To avoid electrolysis, an insulating layer is usually in-
serted between the droplet and electrodes [6–8]. The applications of EWOD devices were
discussed extensively in the literature, including microfluid transport [9], tunable optical
fiber devices [10], rotating liquid micromotor [11], micro-injection [12], particle separa-
tion and concentration control [13]. Other studies focusing on the modeling of EWOD
devices can be found in [5, 7, 14–17].

In this paper we investigate the droplet fission process using a two-phase Hele-Shaw
model where the dynamics of both the droplet and the ambient flow is included. We
present a ghost fluid (GF) method [19, 20] as well as an immersed boundary (IB) method
[18] to solve the Hele-Shaw equations. A local level set method [21] is used to track
the interface. Our numerical results show that the de-ionized water droplet pinches off
without explicit tracking of the interface, contrary to [17] where value of the level set
function needs to be artificially reduced to split the droplet.

The rest of the paper is organized as follows. Section 2 explains the basic principle of
EWOD and provides a description of the parallel-plate EWOD device and relevant phys-
ical parameters. Section 3 presents the Hele-Shaw model for EWOD. Section 4 describes
the numerical methods while numerical results are presented in Section 5. Discussion
and conclusion are given in Section 6.

2 Basic principle of EWOD

It is well known that a droplet on a solid surface spreads or contracts until it has reached
the state of minimum free energy, which is determined by cohesive forces in the liq-
uid and the adhesion force between the liquid and the surface. At the tri-phase contact
line, the relationship between contact angle θ and interfacial tensions is given by Young’s
equation

cosθ =
γSA−γSL

γLA
, (2.1)

where γSA is the solid-ambient fluid surface tension, γSL is solid-droplet liquid surface
tension and γLA is the droplet liquid-ambient fluid interfacial tension.

When an electric voltage is applied, the change of electric charge distribution at the
solid-liquid interface alters the free energy on the surface, inducing a change in wetta-
bility of the surface and the contact angle of the droplet [22], which is expressed by the
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(a) (b)

Figure 1: (a) Schematic of a parallel-plate EWOD device; (b) Cross-sectional view, reproduced from [5].

Lippmann’s equation† [23]

γSL(V)=γSL(0)−
c

2
V2, (2.2)

where c is the specific capacitance of the dielectric layer and V is the applied voltage.
Combining (2.1) and (2.2) yields the Lippmann-Young equation

cos(θV)=cos(θ0)−
1

2

cV2

γLA
, (2.3)

where θ0 is the contact angle without voltage while θV is the contact angle with applied
voltage V. This is known as electrowetting [24]. An insulating layer is usually inserted
between the droplet and electrodes to avoid electrolysis.

A schematic of an EWOD device is given in Fig. 1. It consists of a glass cover, a top
electrode (transparent plate) with hydrophobic Teflon coating (∼200 Å), spacers on each
side of the droplet which assures the gap between the two plates is uniform (∼70µm), a
solid dielectric silicon dioxide (∼1000 Å) with Teflon coating (∼200 Å), control electrodes
(bottom plate) and a glass substrate. Three different size of the control electrodes (1.4
mm × 1.4 mm, 1.0 mm × 1.0 mm, 0.7 mm × 0.7 mm) are used in [5]. By adjusting the
voltages of the electrodes, the droplets can be moved or split due to the change of wetting
property of the two plates. This is the basic principle of the EWOD device.

†This equation is only valid under low and medium electric potentials. For higher voltages, experiments
show that this relation is no longer valid. There exists a critical voltage beyond which the contact angle does
not change any more. This is known as the contact angle saturation phenomena [24, 25].
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3 Mathematical model

We assume that both droplet and ambient fluids are incompressible and their motion is
governed by the incompressible Navier-Stokes equations

∇·~u=0, (3.1)

ρ(~ut+~u·∇~u)=−∇p+µ∆~u (3.2)

in Ω
∗
+ and Ω

∗
−, where ~u=(u,v,w) is the velocity, p is the pressure, ρ and µ are the density

and dynamic viscosity, Ω
∗ = Ω×[0,H] is the whole domain, Ω

∗
+ and Ω

∗
− are the regions

of ambient fluid and droplet fluid respectively. Here Ω is the projection of Ω
∗ on to the

parallel plates, and H is the gap width between two plates. On the droplet liquid-ambient
liquid interface, the jump conditions must be satisfied [26]









~n
~t1

~t2



(pI−τ)~n



=





σLAκ
0
0



, (3.3)

where ~n is unit normal vector, ~t1 and ~t2 are orthogonal unit tangent vectors, I is the
identity matrix, κ is the local curvature of the interface, τ is the viscous stress tensor
for incompressible flow, σLA is the interfacial tension between droplet fluid and ambient
fluid, as stated earlier, and finally [ ·] denotes the jump across the interface.

3.1 Hele-Shaw equations

We non-dimensionalize the Navier-Stokes equation based on the following scalings

x∗=
x

L
, y∗=

y

L
, z∗=

z

H
, u∗=

u

U
, v∗=

v

U
, w∗=

w

V
, t∗=

t
L
U

, p∗=
p

µUL

H2

.

Substituting (3.1) into the mass conservation (3.1), we obtain

∂u∗

∂x∗
+

∂v∗

∂y∗
+

VL

UH

∂w∗

∂z∗
=0.

Thus V = HU
L = λU with λ = H

L . Non-dimensionalization for the momentum equations
(3.2), yields

Reλ

(

∂u∗

∂t∗
+u∗ ∂u∗

∂x∗
+v∗

∂u∗

∂y∗
+w∗ ∂u∗

∂z∗

)

=−
∂p∗

∂x∗
+λ2

(

∂2u∗

∂x∗2
+

∂2u∗

∂y∗2

)

+
∂2u∗

∂z∗2
,

Reλ

(

∂v∗

∂t∗
+u∗ ∂v∗

∂x∗
+v∗

∂v∗

∂y∗
+w∗ ∂v∗

∂z∗

)

=−
∂p∗

∂y∗
+λ2

(

∂2v∗

∂x∗2
+

∂2v∗

∂y∗2

)

+
∂2v∗

∂z∗2
,

Reλ3

(

∂w∗

∂t∗
+u∗ ∂w∗

∂x∗
+v∗

∂w∗

∂y∗
+w∗ ∂w∗

∂z∗

)

=−
∂p∗

∂z∗
+λ4

(

∂2w∗

∂x∗2
+

∂2w∗

∂y∗2

)

+λ2 ∂2w∗

∂z∗2
,
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where Re=ρUL/µ is the Reynolds number.
Since the gap width H∼100 µm and the length L∼1mm, we have λ∼0.1. In addition,

Re ∼ 0.1 is small. Dropping the higher order term of λ and Re yields (in dimensional
form)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
=0, (3.4)

µ
∂2u

∂z2
=

∂p

∂x
, (3.5)

µ
∂2v

∂z2
=

∂p

∂y
, (3.6)

∂p

∂z
=0. (3.7)

We integrate the above equations in z and apply the no-slip condition‡ ~u|∂Ω∗ = 0. Since
(3.7) implies that p is independent of z, integrating Eqs. (3.4)-(3.7) respect to z yields the
two-dimensional classical Hele-Shaw equations

u=−
H2

12µ
px, (3.8)

v=−
H2

12µ
py, (3.9)

0=
∂u

∂x
+

∂v

∂y
, (3.10)

which are valid both inside and outside the droplet, and the problem is also time depen-
dent so that u = u(x,y,t), v = v(x,y,t), p = p(x,y,t). Meanwhile, the droplet interface is
moving with the fluid velocity as following equation.

d ~X(t)

dt
=~u(~X(t)) on ∂Ω, (3.11)

where ~X(t)=(x(t),y(t)) represents the droplet interface.
On the droplet and ambient fluid interface Γ, we apply the Young-Laplace relation

[p]=σLAκ, (3.12)

where the mean curvature of the interface κ is approximated by

κ =κxy+κz. (3.13)

‡It is well-known that the no-slip condition leads to an non-integrable singularity in the pressure at the
moving contact line. A popular remedy is to use a slip condition and we have also implemented the slip
condition. However, our numerical tests show that there is almost no difference between the two formula-
tions for the problem considered in this paper.
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Figure 2: EWOD device geometry. The above figure gives the top view while the bottom figure gives the side
view of the EWOD device.

Here κxy represents the curvature on the xy plane (parallel the plates) while κz represents
the curvature of a cross-sectional of the interface along z direction, assuming that it is a
circular arc as shown in Fig. 2.

After a simple calculation (see also [17]), we find that

κz =−
cos(θt)+cos(θb)

H
, (3.14)

where θt and θb are the contact angles on the top and bottom plates, respectively, c.f.
Fig. 2. For the device under consideration, we have θt=θ0 and θb given by the Lippmann-
Young equation (2.3). Our final condition at the interface is given by

[~u]=

[

−
H2

12µ
∇p

]

=0, (3.15)

where ~u=(u, v) is the two dimensional velocity vector. And no-penetration boundary
condition

~u·~n=0, on ∂Ω, (3.16)

is used here.

3.2 Immersed boundary formulation

We can re-cast the set of Hele-Shaw equations with the interface jump conditions into
a single set of equations valid in the entire domain, including the interface, using the
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immersed boundary formulation

~u=−
H2

12µ

(

∇p−σLA

∫

Γ

κ~nδ(~x−~xΓ)d~xΓ

)

, (3.17)

0=∇·~u. (3.18)

Here δ(~x) is the Dirac-delta function. Using the signed distance φ as the level-set function
for the interface, we can further simplify the immersed boundary formulation as

u=−
H2

12µ
(px−σLAκδ(φ)n1), (3.19)

v=−
H2

12µ
(py−σLAκδ(φ)n2), (3.20)

0=
∂u

∂x
+

∂v

∂y
, (3.21)

where n1 and n2 are the projections of the normal vector ~n on the x and y axes, respec-
tively.

4 Numerical methods

In this paper we use two numerical methods to solve the Hele-Shaw equations. In the
first approach we use a level-set based GF method by imposing the jump conditions
directly. We also implement the IB method based on the immersed boundary formulation
for comparison purposes. All the discretizations are based on the nondimensional form
of the Hele-Shaw equations using the following scalings

x∗=
x

L
, y∗=

y

L
, u∗=

u

U
, v∗ =

v

U
, p∗=

p
σLA

L

. (4.1)

The non-dimensional equations are, after dropping the superscript ∗,

~u= β∇p, (4.2)

∇·~u=0 (4.3)

for ~x in Ω
+ and Ω

− with jump conditions

[p]=κxy +
κz

λ
, (4.4)

[~u]= [β∇p]=0 (4.5)

on Γ where

β=















β+ ,−
λ2

12ηCa
, ~x∈Ω+,

β−,−
λ2

12Ca
, ~x∈Ω−.

(4.6)
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Here Ca=(µ−U)/σLA is the capillary number, λ=H/L as defined earlier, η=µ+/µ−, κxy

is the non-dimensional curvature in the xy plane and

κz =−cos(θt)−cos(θb). (4.7)

In the following, we first describe the discretization, which is followed by a discussion
of the local level-set method, the GF method, and finally the IB approach.

4.1 Discretization

We use uniform spatial mesh size ∆x=∆y=h in the domain Ω and ∆t is the time step. Set
N=1/∆x=1/∆y and use xi to denote the i-th point in x direction, i=0,··· ,N, and yj and
tn are used in a similar manner. Following [27], we use a staggered grid shown in Fig. 3,
with the values of pressure p and level set function φ stored at the center of each cell
while the velocity components u and v stored on the face of the cells. The discretization
is done as follows

φn
i,j =φ(xi−1/2,yj−1/2,tn), pn

i,j = p(xi−1/2,yj−1/2,tn),

ui−1/2,j =u(xi−1,yj−1/2), ui+1/2,j =u(xi,yj−1/2),

vi,j−1/2 =v(xi−1/2,yj−1), vi,j+1/2 =v(xi−1/2,yj).

Here xi−1/2 = xi−h/2 and yj−1/2 =yj−h/2 for i, j=1,2,··· ,N.

4.2 Interface capturing using a local level set method

The level set technique is used to capture the moving interface in this paper. We define
the a level set function φ which takes negative values inside and positive ones outside
the droplet and the droplet interface corresponds to the zero level set. The evolution of φ
is given by the transport equation [28]

φt+uφx+vφy =0. (4.8)

Initially, the level set function is set to be a signed distance function, cf. Fig. 4(a) on the
whole computation domain Ω defined as

φ(x,y,0)=







d((x,y),Γ(0)), if (x,y)∈Ω
+,

0, if (x,y)∈Γ(0),
−d((x,y),Γ(0)), if (x,y)∈Ω

−,
(4.9)

where Γ(t) = {(x,y) : φ((x,y),t) = 0} represents the droplet fluid-ambient fluid interface
which is initially a circle on the xy plane in our problem as shown in Fig. 4(b).

Eq. (4.8) is a first-order advection equation. We use a fifth-order upwind HJ WENO
scheme [29] to discretize the spatial derivatives, and a third-order TVD Runge-Kutta
scheme [30] for the time derivative of φ. However, Eq. (4.8) is not a conservation form,
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(a) (b)

(c) (d)

Figure 3: (a) Schematics of the stagger grids; (b) Definitions of interior and interfacial points. The interface is
given by the 0-level set. (c) Standard 5-point stencil for the interior points; (d) The configuration of a typical
interfacial point (i, j).
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Figure 4: (a) Initial level set function; (b) Initial droplet interface.
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numerical results show that the mass of the droplet losses (also see [31]). In order to min-
imize the lose of mass, we combine Eqs. (4.8) and (4.3) together and obtain the following
conservation law

φt+∇·(~uφ)=0. (4.10)

In our computation, we also use an upwind HJ WENO scheme to calculate the spatial
derivatives of uφ and vφ and a third-order TVD Runge-Kutta scheme to calculate the
time derivative of φ, results show that the mass loss is reduced.

After applying the evolution equation, the level set function is no longer a signed dis-
tance function, one normally needs to reinitialize φ, e.g., using a Hamilton-Jacobi equa-
tion

{

φt+s(φ)HG(φ,∇φ)=0,
φ(x,y,0)=φ0(x,y),

(4.11)

with

HG(∇φ)= |∇φ|−1 and s(φ)=
φ

√

φ2+∆x2
. (4.12)

In the computation, HG(∇φ) is approximated by the Godunov formula [29, 31]

HG(φ+
x ,φ−

x ,φ+
y ,φ−

y )

=







√

(max((φ+
x )−,(φ−

x )+))2+(max((φ+
y )−,(φ−

y )+))2−1, if φi,j≥0,
√

(max((φ+
x )+,(φ−

x )−))2+(max((φ+
y )+,(φ−

y )−))2−1, otherwise.
(4.13)

Here (a)+ =max(a,0), (a)−=−min(a,0), φ+
x ,φ−

x ,φ+
y and φ−

y are spatial derivatives calcu-
lated using the HJ WENO scheme. The reinitialization process is achieved by solving the
following equation to steady state

φn+1
i,j =φn

i,j−s(φn
i,j)ĤG(φn

i,j,∇φn
i,j)∆t. (4.14)

The above method is relatively expensive to implement since the reinitialization is
done on the entire domain. In order to reduce the computation cost, we use a local level
set method [21] in this paper. In all our calculation, we update the level set function in
the tube of width 6∆x around interface and reinitialize the level set function in the tube
of width 9∆x. We use reinitialization every 5 time steps, and solve Eq. (4.11) for 100
iterations in each reinitialization.

4.3 GF method

We start from the local mass conservation, ie, for each cell (i, j) the local conservation of
mass gives

ui+1/2,j−ui−1/2,j

△x
+

vi,j+1/2−vi,j−1/2

△y
=0. (4.15)
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For interior points, we use the standard central difference to approximate the velocity
at each cell face. If φi,j≤0 and φi+1,j≤0, we have

ui+1/2,j =
β−(pi+1,j−pi,j)

∆x
. (4.16)

And if both φi,j >0 and φi+1,j >0, then

ui+1/2,j =
β+(pi+1,j−pi,j)

∆x
. (4.17)

Velocity ui−1/2,j, vi,j+1/2 and vi,j−1/2 are obtained similarly. Substituting these formulas
into (4.15), we obtain the standard five-point difference equation for pressure on cell (i, j),
that is for φi,j >0,

β+

△x2
pi−1,j+

β+

△x2
pi+1,j+

β+

△y2
pi,j−1+

β+

△y2
pi,j+1−

(

2β+

△x2
+

2β+

△y2

)

pi,j =0 (4.18)

and for φi,j≤0,

β−

△x2
pi−1,j+

β−

△x2
pi+1,j+

β−

△y2
pi,j−1+

β−

△y2
pi,j+1−

(

2β−

△x2
+

2β−

△y2

)

pi,j =0. (4.19)

For interfacial points, special attention is needed. The key of the GF method is to
incorporate the pressure jump condition into the discrete Poisson equation for pressure.
On a typical interfacial point (i, j), cf. Fig. 3(d), denote the pressure at the interface and
inside the droplet as pΓ and

α=
|φi,j|

|φi,j|+|φi+1,j|
. (4.20)

Since φi,j≤0 and φi+1,j >0, the jump conditions at the interface (3.15) gives

β− pΓ−pi,j

α△x
= β+ pi+1,j−(pΓ+[p]Γ)

(1−α)△x
. (4.21)

We obtain pΓ from the above equation as

pΓ =
β+α(pi+1,j−[p]Γ)+β−(1−α)pi,j

β+α+β−(1−α)
. (4.22)

From (4.2), we can use the following formula to compute the cell face velocity ui+1/2,j:

ui+1/2,j =
β−(pΓ−pi,j)

α∆x
=

β+β−

β+α+β−(1−α)

pi+1,j−pi,j−[p]Γ
∆x

. (4.23)
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The formula for velocity ui−1/2,j, vi,j+1/2 and vi,j−1/2 are similar and the pressure equation
at (i, j) can be obtained by substituting these velocity formulas into (4.15). To find pressure
jump [p]Γ, we note that

[p]Γ =κxy+
κz

λ
, a(~xΓ) (4.24)

and approximate a(~xΓ) by linear interpolation from the value ai,j and ai+1,j. More specif-

ically, we use central finite difference method§ to compute κxy, which gives

κxy =∇·
∇φ

|∇φ|

=
φ2

xφyy−2φxφyφxy+φ2
yφxx

|∇φ|3

≈
(D0

xφi,j)
2D+

y D−
y φi,j−2D0

xφi,jD
0
yφi,jD

0
yD0

xφi,j+(D0
yφi,j)

2D+
x D−

x φi,j
√

((D0
xφi,j)2+(D0

yφi,j)2)3
. (4.25)

To compute kz, we first use the use the contact angle obtained from the Lippmann-
Young’s equation (2.3) in the region of side electrodes, however, the contact angles in the
middle electrode area also change due to the appearance of a varying electric field [6],
linear interpretation is used in our computation (more detail will be given in the next
section).

Symbolically, we obtain the pressure Poisson equation for cell (i, j)

βi−1/2,j

h2
pi−1,j+

βi+1/2,j

h2
pi+1,j+

βi,j−1/2

h2
pi,j−1+

βi,j+1/2

h2
pi,j+1

−
βi−1/2,j+βi+1/2,j+βi,j−1/2+βi,j+1/2

h2
pi,j = Fx +Fy. (4.26)

A more detailed discussion can be found in [20].

After the pressure is solved with the no-penetration boundary condition (3.16), we
can use (4.16), (4.17), and (4.23) to obtain the velocity at cell face. To find velocity (u,v) in
the cell center, we use simple averages as

ui,j =
ui−1/2,j+ui+1/2,j

2
(4.27)

and

vi,j =
vi,j−1/2+vi,j+1/2

2
. (4.28)

These velocity in term will be used in (4.8) to update the level set function.

§We should point out that we use one-sided finite difference to approximate κxy when the droplet is close to
pinch off.
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4.4 IB method

For numerical calculation based on the immersed boundary formulation, we first regu-
larize the delta function by replacing δ(φ) with

δǫ(φ)=















0, if φ<−ε,

1

2ε
+

1

2ε
cos

(

πφ

ε

)

, if −ε≤φ≤ ε,

0, if φ> ε.

(4.29)

We also use the regularized Heaviside function to approximate the viscosity

µ=µ−((1+(η−1))Hε(φ)), (4.30)

where

Hε(φ))=















0, if φ<−ε,

1

2
+

φ

2ε
+

1

2π
sin

(

πφ

ε

)

, if −ε≤φ≤ ε,

1, if φ> ε.

(4.31)

In numerical calculation, we use ε=1.5h, following [31].

Using Eqs. (4.1) and (3.19)-(3.21), we obtain the non-dimensional equations

∇·~u=0, (4.32)

~u= β(φ)(∇p−a(x,y)δε(φ)~n), (4.33)

with

β(φ)=−
λ2

12(1+(η−1))Hε(φ)Ca
, (4.34)

a(x,y)=κxy +
κz

λ
, (4.35)

~n=
∇φ

|∇φ|
, (n1,n2). (4.36)

We discretize the equations as

ui+1/2,j = β(φi+1/2,j)

(

pi+1,j−pi,j

h
−ai+1/2,jδε(φi+1/2,j)n1

i+1/2,j

)

, (4.37)

vi,j+1/2 = β(φi,j+1/2)

(

pi,j+1−pi,j

h
−ai,j+1/2δε(φi,j+1/2)n2

i,j+1/2

)

, (4.38)

where δε(φi+1/2,j) is obtained by (4.29), β(φi+1/2,j) by (4.31) and (4.34), and n1
i+1/2,j by

(4.36). To compute ai+1/2,j, we simply use interpolation from interpolation from ai,j and
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ai+1,j, which are the values of a(~x) at cell centers (i, j) and (i+1, j). Similarly, we can
calculate δε(φi,j+1/2), β(φi,j+1/2), n2

i,j+1/2, and ai,j+1/2.

Substitute these equations into (4.15), we obtain the pressure equation on the entire
domain

βi−1/2,j

h2
pi−1,j+

βi+1/2,j

h2
pi+1,j+

βi,j−1/2

h2
pi,j−1+

βi,j+1/2

h2
pi,j+1

−
βi−1/2,j+βi+1/2,j+βi,j−1/2+βi,j+1/2

h2
pi,j

=
βi+1/2,j

h
ai+1/2,jδε(φi+1/2,j)n1

i+1/2,j−
βi−1/2,j

h
ai−1/2,jδε(φi−1/2,j)n1

i−1/2,j

+
βi,j+1/2

h
ai,j+1/2δε(φi,j+1/2)n2

i,j+1/2−
βi,j−1/2

h
ai,j−1/2δε(φi,j−1/2)n2

i,j−1/2, (4.39)

where βi+1/2,j denotes β(φi+1/2,j).

We obtain the pressure by solving the above linear equation and use (4.37) and (4.38)
to find the velocity at cell face, and also (4.27), finally, (4.28) can be used to update the
level set function in Eq. (4.8).

5 Numerical results

Numerical simulations are carried out for a variety of parameter values using both the
GF and IB methods. In the following, we will present two sets of results. In the first set,
we compare the results from both methods with the experimental observation in [5] and
the parametric study on the effect of viscosity ratio using the GF method is presented in
the second set.

5.1 Experimental observations and numerical results

Our first set of computations is based on the device used in a sealed air environment [5]
where the voltages of the three electrodes from left to the right are 25, 0, 25, respectively.
We assume that the air is incompressible so that the two-phase flow model discussed
as above can be used. The relevant physical parameters are listed in Table 1. In our
computations, we use the 80×80 grid and Eq. (4.10) to update the level set function. In
addition, we assume that the voltage varies linearly between the electrodes, which is used
in Eq. (2.3) to calculate the contact angle. In Fig. 5, the drop splitting process simulated
by the IB and GF methods is presented. These results show that the droplet pinches off
using both methods, consistent with the experimental observation in Fig. 6.

The total area diagram of both methods is given by Fig. 7, we can see that the IB
method loss about 16% of mass while GF method loss about 8% of mass. This may be
caused by the numerical error during the reinitialization process, and we refer interested
readers to [31, 32] for more in-depth discussions.
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Figure 5: Numerical simulation by GF (a-c) and IB (d-f) methods.

(a) initial drop shape (b) before splitting (c) after splitting

Figure 6: Experimental observation of a splitting droplet in EWOD device, reproduced from [5].
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Figure 7: Plot of total drop area using IB and GF methods. The exact area is 0.1745.
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Table 1: Physical parameter values used in the computation, corresponding to the experiment done in [5].

Physical Parameters Values Units
Channel Height H 70 µm
Electrode Length Scale Leletrode 1. 4 mm
Computational Domain Length Scale L 1. 4×3 =4. 2 mm
Dynamic Viscosity Of Air µ+ 0.0000183 Pa· s
Dynamic Viscosity Of Water µ− 0.00089 Pa· s

Interfacial Tension Of Water and Air γLA 71.99 mJ/m2

Teflon Layer Height 200 Å
Dielectric Constant Of Teflon 2
Silicon Dioxide Layer Height 1000 Å
Dielectric Constant Of Silicon Dioxide 3. 8
Droplet contact angle in air at zero voltage θ0 117 ◦

Applied Voltage 25 V

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) initial profile

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) t=2.2 ms

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c) t=4.8 ms

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(d) initial profile

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(e) t=28.3 ms

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(f) t=81.1 ms

Figure 8: Numerical simulation by the GF method for η =0.1 (a-c) and η =10 (d-f).

5.2 Numerical results for different viscosities ratios

In order to demonstrate that the method developed in this paper is capable of capturing
the droplet fission process in more general two-phase environments, we provide addi-
tional computational results with two different viscosity ratio (η) values, for η =0.1 and
10 in Fig. 8.

From these results, we can see that the droplet pinches off for both viscosities ratios.
In our calculation, the droplet’s splitting time for η=0.1 is much less than that for η=10.
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Table 2:

Computational Parameters Values Units
Channel height scale H 70 µm
Electrode length scale Leletrode 1. 4 mm
Applied Voltage 20 V
Computational domain length scale L 1. 4×3 =4. 2 mm
Droplet contact angle in ambient environment flow at zero voltage θ0 165 ◦

Velocity scale U0 0.001 m/s

Ratio of the device height and length λ= H
L 0.0167

Ratio of the viscosity of ambient flow and droplet η I(0.1), II(10)
Capillary Number Ca 0.00003

Additionally, we found that the droplet’s splitting time is strongly correlated to the ratio
of the viscosities. This results are consistent with the physical rules as the time scale of
the physical problem is determined by capillarity (including wettability) and viscosity.

6 Discussion and conclusions

This paper discusses EWOD modeling and simulation based on the two-dimensional
two-phase Hele-Shaw equations. The ghost-fluid and immersed boundary methods, cou-
pled with a local level-set method, are employed for comparison purposes. Our results
show that both the GF and IB methods are capable of producing numerical results which
mimic experimental observations. Our tests also show that the splitting of droplets slows
down as the ratio of viscosities the droplets increases, as expected. Our simulations pro-
duce a qualitative picture and useful insights into the understanding of the fission pro-
cess.

We note that both methods suffer loss of mass (area). This could be caused by the
reinitialization procedure of the local level-set method, or the discrete error of the GF
and IB methods. Reducing mass loss and increasing the accuracy of the methods are the
subjects of a future study. Finally, we would like to point out that there are several ways
to improve the model used in this study. For example, one could use a more accurate
approach to compute the electrical field and related contact angle values by solving a
Poisson equation for the electric field. In addition, one can also improve the accuracy by
employing the Navier-Stokes equations instead of the Hele-Shaw model.
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