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Abstract. In this paper, we propose a weighted Runge-Kutta (WRK) method to solve
the 2D acoustic and elastic wave equations. This method successfully suppresses the
numerical dispersion resulted from discretizing the wave equations. In this method,
the partial differential wave equation is first transformed into a system of ordinary
differential equations (ODEs), then a third-order Runge-Kutta method is proposed
to solve the ODEs. Like the conventional third-order RK scheme, this new method
includes three stages. By introducing a weight to estimate the displacement and its
gradients in every stage, we obtain a weighted RK (WRK) method. In this paper, we
investigate the theoretical properties of the WRK method, including the stability cri-
teria, numerical error, and the numerical dispersion in solving the 1D and 2D scalar
wave equations. We also compare it against other methods such as the high-order
compact or so-called Lax-Wendroff correction (LWC) and the staggered-grid schemes.
To validate the efficiency and accuracy of the method, we simulate wave fields in the
2D homogeneous transversely isotropic and heterogeneous isotropic media. We con-
clude that the WRK method can effectively suppress numerical dispersions and source
noises caused in using coarse grids and can further improve the original RK method
in terms of the numerical dispersion and stability condition.

AMS subject classifications: 65M06, 65M12, 86-08, 86A15

Key words: WRK method, seismic wavefield modeling, anisotropy, numerical dispersion.

1 Introduction

Finite difference (FD) is the most widely used numerical scheme in solving the wave
equation for wave propagation in seismology. The two most widely used ”families” of
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FD methods are the compact schemes or so-called LWC methods and the staggered-grid
schemes. To reduce the computation and memory usage, the high-order compact FD
scheme was proposed [1] and widely applied (e.g., [6, 10, 19]). The staggered-grid FD
scheme was first developed by Madariaga [12] to model an expanding circular crack in
an elastic space. Virieux [17, 18] developed a velocity-stress staggered-grid FD scheme
to simulate wave propagating in heterogeneous media. To improve the accuracy and
increase the efficiency, Levander [11] developed a fourth-order staggered-grid scheme,
and this FD method was later extended to different cases (e.g., [3–5, 13, 16]).

A main reason that the above two kinds FD schemes are so popular is that they
can reduce the numerical dispersion resulted from the discretization of wave equations.
However, numerical dispersion may still exist when too few samples per wavelength
are used [15, 22]. The nearly analytic discrete method (NADM) [25] proposed recently
and its improved version (INADM) [21] are much superior with regard to suppress-
ing the numerical dispersion. These methods, based on the truncated Taylor expansion
and the local interpolation compensation for the truncated Taylor series, use the wave
displacement-, the velocity- and their gradient-fields to reconstruct the wave displace-
ment fields. Thus they can effectively suppress the numerical dispersion, as compared to
the compact FD methods [21, 24, 25].

In this paper, we develop an alternate weighted RK method to further suppress the
numerical dispersion. In this method, we first use the high-order interpolation approxi-
mations to approximate the high-order spatial derivatives and convert the wave equation
into a system of ordinary differential equations (ODEs), and then we solve the converted
ODEs by using the explicit third-order RK method [7,14] that is similar to the RK method
developed by Yang et al. [20]. Due to the multistage property of the RK method, we intro-
duce a weight to evaluate the displacement and its gradients in every stage, which results
in the method called the weighted Runge-Kutta (WRK) method. Since the method not
only uses the wave displacement and the particle velocity but also their gradient-fields to
reconstruct the wave displacement fields, the WRK method can suppress effectively the
numerical dispersion like our previous RK method [20]. But the weight introduced here
makes the WRK method much more effective in suppressing the numerical dispersion
and in enhancing the stability condition by comparing with the original third-order RK
method. However, it should be mentioned that the weight may reduce the accuracy in
time.

2 Theory of the WRK method

Third-order Runge-Kutta method

Consider the following differential equation

du

dt
= L(u). (2.1)
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If L(u) is a known function at each spatial point (i, j) for the 2D case, then we can solve
Eq. (2.1) as an ordinary equation using the following third-order Runge-Kutta method
[14]



























u(1) =un+
1

3
∆tL(un),

u(2) =un+
2

3
∆tL(u(1)),

un+1 =
1

4
un+

3

4
u(1)+

3

4
∆tL(u(2)).

(2.2)

Of course, we can also use the fourth-order Runge-Kutta method to solve Eq. (2.1). How-
ever, it will obviously increase the computational cost and storage space.

Transforms of wave equations

In 2D anisotropic media, the wave equation describing the elastic wave propagation can
be written as

∂σij

∂xj
+ fi =ρ

∂2ui

∂t2
, i=1,2,3, (2.3)

where subscript j takes the values of 1 and 3, ρ=ρ(x,z) is the density, ui and fi denote the
displacement component and the force-source component in the i-th direction, and (σij)
is the stress tensor.

To demonstrate our method, we transform Eq. (2.3) to the following vector equation
[25] using the stress-strain relation

ρ
∂2U

∂t2
= D ·U+ f , (2.4)

where U=(u1,u2,u3)T, f =( f1, f2, f3)T and D is the second-order partial differential oper-
ator. For example, for the 2D anisotropic case D is defined by

D=
∂

∂x

(

C1
∂

∂x
+C2

∂

∂z

)

+
∂

∂z

(

C3
∂

∂x
+C4

∂

∂z

)

,

where

C1 =





c11 c16 c15

c16 c66 c56

c15 c56 c55



, C2 =





c15 c14 c13

c56 c46 c36

c55 c45 c35



, C3 =





c15 c56 c55

c14 c46 c45

c13 c36 c35



, C4 =





c55 c45 c35

c45 c44 c34

c35 c34 c33



,

where cij(x,z) are the elastic constants.

Let wi =∂ui/∂t, i=1,2,3, and W =(w1,w2,w3)T. Then Eq. (2.4) can be rewritten as










∂W

∂t
=

1

ρ
D ·U+

1

ρ
f ,

∂U

∂t
=W.

(2.5)
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For the development of the 2D WRK method, we define the following notations

U =

[

U,
∂U

∂x
,
∂U

∂z

]T

, W =

[

W,
∂W

∂x
,
∂W

∂z

]T

,

P=
1

ρ
D ·U+

1

ρ
f , P=

[

P,
∂P

∂x
,
∂P

∂z

]T

.

Then Eq. (2.4) or Eq. (2.5) can be written as follows


















∂W

∂t
= P,

∂U

∂t
=W.

(2.6)

Obviously, from the definitions of U, P, P, and W, we can see that P and W in the right-
hand side of Eq. (2.6) include the high-order derivatives with respect to spatial coordinate
variables x and z.

Weighted Runge-Kutta method

We use the local interpolation method [9, 20, 25] to approximate the high-order spatial
derivatives in the right-hand side of Eq. (2.6) by using the values of the wave displace-
ment and its gradients at the grid point (i, j) and its neighboring grid points. These com-
putational formulae of approximating the second- and third-order derivatives are listed
in Appendix A. Under this condition, Eq. (2.6) is converted to a system of semi-discrete
ODEs with respect to variables W and U, and can be solved by the third-order RK method
(formulae (2.2)). In other words, we can apply formulae (2.2) to solve the semi-discrete
ODEs (2.6) as follows

W
(1)
i,j =W

n
i,j+

∆t

3
P

n
i,j, (2.7a)

U
(1)
i,j =U

n
i,j+

∆t

3
W

n
i,j, (2.7b)

W
(2)
i,j =W

n
i,j+

2∆t

3
P

(1)
i,j , (2.7c)

U
(2)
i,j =U

n
i,j+

2∆t

3
W

(1)
i,j , (2.7d)

W
n+1
i,j =

1

4
W

n
i,j+

3

4
W

(1)
i,j +

3∆t

4
P

(2)
i,j , (2.7e)

U
n+1
i,j =

1

4
U

n
i,j+

3

4
U

(1)
i,j +

3∆t

4
W

(2)
i,j . (2.7f)

In order to further suppress the numerical dispersion and relax the stability condition
of the third-order RK method, we introduce a weight η in the present work. Note that
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the third-order RK algorithm (2.7) above includes totally three stages and the particle-
velocity W is first computed in every stage. We take the first stage as an example to
demonstrate our modification of the RK algorithm (2.7). We notice that the new particle-

velocity field W
(1)
i,j has been calculated by formula (2.7a) and we use formula (2.7b) to

compute U
(1)
i,j . In other words, when we compute U

(1)
i,j using formula (2.7b), we can use

not only W
(n)
i,j computed in the former stage but also the new value W

(1)
i,j to compute the

displacement field U
(1)
i,j . For instance, we can rewrite Eqs. (2.7a) and (2.7b) as follows

W
(1)
i,j =W

n
i,j+

∆t

3
P

n
i,j, (2.8a)

U
(1)
i,j =U

n
i,j+

∆t

3

(

ηW
n
i,j+(1−η)W

(1)
i,j

)

. (2.8b)

Similarly, we can rewrite Eqs. (2.7c)-(2.7f) as follows

W
(2)
i,j =W

n
i,j+

2∆t

3
P

(1)
i,j , (2.8c)

U
(2)
i,j =U

n
i,j+

2∆t

3

(

ηW
(1)
i,j +(1−η)W

(2)
i,j

)

, (2.8d)
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i,j =

1

4
W

n
i,j+

3

4
W

(1)
i,j +

3∆t

4
P

(2)
i,j , (2.8e)

U
n+1
i,j =

1

4
U

n
i,j+

3

4
U

(1)
i,j +

3∆t

4

(

ηW
(2)
i,j +(1−η)W

n+1
i,j

)

. (2.8f)

Eqs. (2.8a)-(2.8f) are called weighted Runge-Kutta (WRK) method. The weight η should
be chosen from 0 to 1. Obviously, when η=1, the method becomes the original third-order
RK method. Comparing Eq. (2.7) with Eq. (2.8), we can easily find that the computational
cost of the WRK algorithm has slightly increased as compared with the RK method, but
the required storage space are the same for the two methods. However, from the numer-
ical tests in the next sections, we will conclude that the WRK method works much better
in suppressing the numerical dispersion and in enhancing the stability condition.

3 Stability criteria

In order to keep numerical calculation stable, we must consider how to choose the ap-
propriate time and the space grid sizes, ∆t and ∆x. As we know, mathematically, the
Courant number defined by α = c∆t/∆x gives the relationship among the velocity c and
the two grid sizes, we need to determine the range of α. Following the analyses process
presented in Yang et al. [23], after some mathematical derivations, we obtain the stability
conditions of the WRK method with the weight η changing from 0 to 1 for 1D and 2D
cases (see Appendix B and Fig. 1).
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Figure 1: The approximate maximum Courant number αmax changes with the weight η increasing from 0 to 1
for the WRK method for 1D (dashed line) and 2D (solid line) cases.

Fig. 1 shows that the maximum Courant number αmax changes rapidly and reaches its
minimal value when η =1. In other words, the WRK method has more relaxed stability
condition than the original third-order RK method can do. In the following sections, we
will choose η = 0.8 in computation. Here we give the detailed stability condition of the
WRK method with this weight. For the 1D homogeneous case, the stability condition of
the WRK method with η =0.8 is given by

∆t6αmax
h

c
≈0.588

h

c
, (3.1)

where h denotes the spatial grid size.
For a 2D homogeneous case, the stability condition of the WRK method with the

weight η =0.8 under the condition ∆x=∆z=h is given by

∆t6αmax
h

c
≈0.523

h

c
. (3.2)

For comparison, here we also give the detailed stability condition of the third-order
RK method (namely the WRK method with weight η=1). For the 1D homogeneous case,
the stability condition is given by

∆t6αmax
h

c
≈0.447

h

c
, (3.3)

and for the 2D homogeneous case, the stability condition is given by

∆t6αmax
h

c
≈0.397

h

c
. (3.4)
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Comparing the stability conditions (3.1) and (3.2) with (3.3) and (3.4) for 1D and 2D cases,
respectively, we can see the stability conditions of the WRK method with weight η =0.8
are more relaxed than those of the original RK method.

The stability condition for a heterogeneous medium cannot be directly determined
but could be approximated by using a local homogeneous case. Our conjecture is that
Eqs. (3.1)-(3.4) are approximately correct for a heterogeneous medium if the maximal
value of the wave velocity c is used.

4 Error analysis

Theoretical analysis

Using the Taylor series expansion, the errors of ∂m+lU
∂xm∂zl (2 6 m+l 6 3) are O(∆x4+∆z4)

by using the interpolation formulae presented in Appendix A. In other words, the WRK
method is a fourth-order accuracy scheme in space. But because only the third-order
Runge-Kutta method is used to solve the ODEs (2.6), the temporal derivative error should
be O(∆t3). However, the weight affects the temporal error. For example, when η = 0.8,
the temporal accuracy is lower than third-order, which can be seen from the numerical
experiments presented in the following subsection.

Numerical errors

Now we investigate the numerical errors of the WRK method. Consider the following
2D initial problem











































∂2u

∂x2
+

∂2u

∂z2
=

1

α2

∂2u

∂t2
,

u(0,x,z)=cos

(

−
2π f0

α
xcosθ0−

2π f0

α
zsinθ0

)

,

∂u(0,x,z)

∂t
=−2π f0sin

(

−
2π f0

α
xcosθ0−

2π f0

α
zsinθ0

)

,

(4.1)

where α is the velocity of the plane wave, θ0 is the incident angle at time t = 0 and f0 is
the frequency. The exact solution of this initial problem is

u(t,x,z)=cos
[

2π f0

(

t−
x

α
cosθ0−

z

α
sinθ0

)]

.

In the first numerical example, we choose the number of grid points N = 200, the
frequency f0=30Hz, the wave velocity α=4000m/sec and the angle θ0=π/4. The relative
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Figure 2: The relative errors of the SG method with accuracy of O(∆t2,∆x4), the LWC method with accuracy

of O(∆t4,∆x4), and the WRK method measured by Er (formula (4.2)) are shown in a semilog scale for the 2D
initial problem (4.1). The spatial and temporal increments are 30m and 0.5ms, respectively.

error (Er) for the 2D case is defined by

Er(%)=



















1
N

∑
i=1

N

∑
j=1

[u(tn,xi,zj)]2

N

∑
i=1

N

∑
j=1

[un
i,j−u(tn,xi,zj)]

2



















1
2

×100. (4.2)

Fig. 2 shows the computational results of the relative error Er at different times under
the condition of ∆x=∆z, where three lines of Er are shown in a semilog scale correspond-
ing to the staggered-grid (SG) method with accuracy of O(∆t2,∆x4), the LWC method
with accuracy of O(∆t4,∆x4), and the WRK method, respectively. In the calculations, we
choose the same time and spatial grid sizes of ∆t=5×10−4sec and ∆x=∆z=30m. From
the figure, we can observe that the error of the WRK method is the smallest among of the
three for the chosen computational parameters. And it also numerically illustrates that
the WRK method has fourth-order accuracy in space.

Next, we discuss the order of convergence for the WRK method. In this case, we
similarly consider the 2D initial problem (4.1), and choose the computational domain as
0 < x 6 4 km, 0 < z 6 4 km and the propagation time T = 1.0s. The same computational
parameters are chosen as those used in the first numerical experiment. In Table 1, we
show the numerical errors of the variable u. For the fixed spatial grid size h = ∆x = ∆z,
the error of the numerical solution uh with respect to the exact solution u is measured in
the discrete L1, L2 norms

ELk =‖uh−u‖Lk =

(

h2
N

∑
i=1

N

∑
j=1

∣

∣uh(xi,zj,T)−u(xi,zj,T)
∣

∣

k

) 1
k

, k=1,2. (4.3)
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Table 1: Numerical errors and convergence orders of the WRK method with weight η =0.8.

h EL1 EL2 OL1 OL2

5.000E-02 1.959E-02 7.191E-03 — —
4.000E-02 9.982E-03 3.616E-03 3.022 3.081
3.125E-02 4.969E-03 1.777E-03 2.826 2.858
2.000E-02 1.581E-03 5.569E-04 2.566 2.600

So if we choose two different spatial increments hs−1 and hs for the same computational
domain, we can use (4.3) to get two Lk errors Es−1

Lk and Es
Lk . Then the orders of numerical

convergence can be defined by Dumbser et al. [2]

OLk = log

(

Es
Lk

Es−1
Lk

)/

log

(

hs

hs−1

)

, k=1,2. (4.4)

Table 1 shows the numerical errors and the convergence orders. In Table 1 the first
column shows the spatial increment h, and the following four columns show L1 and L2

errors and their corresponding to convergence orders OL1 and OL2 . From Table 1 we can
find that the errors EL1 and EL2 decrease as the spatial grid size h decreases, which implies
that the WRK method is convergent.

5 Dispersion analysis

As we all know, the numerical dispersion is the major artifact when we use finite differ-
ence schemes to model acoustic and elastic wave-fields. Although the higher-order FD
schemes have less dispersion, more grid points in a direction are required for a higher-
order scheme. In this section, we investigate the dispersion relation of the WRK method
for the 1D case. Its detailed analysis is presented in Appendix C.

Figs. 3-5 plot the dispersion relations of the WRK method and the high-order LWC
with accuracies of O(∆t4,∆x6) and O(∆t4,∆x8) for the 1D acoustic wave equation, corre-
sponding to different values of the Courant number α(= c∆t/∆x). From Figs. 3-5 we can
observe that the dispersion error of the WRK method with the weight 0.8 is the smallest
among these three schemes for the same Courant number. Fig. 3 also shows that the nu-
merical velocity of the WRK method gradually approximates the exact wave velocity as
the Courant number α increases. When α is 0.5, the numerical velocity is closest to the
exact velocity c. It suggests that the WRK method has the smallest numerical dispersion
when the Courant number is about 0.5 for the 1D case.

In the following, we further investigate the numerical dispersion of the WRK method
by modeling waveforms. For this case, we consider the following 2D acoustic wave equa-
tion in a homogenous medium

∂2u

∂t2
=

µ

ρ

(

∂2u

∂x2
+

∂2u

∂z2

)

+ f , (5.1)
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=0.1

=0.3

=0.5

=0.588

Figure 3: The ratio R of the numerical velocity to the phase velocity versus wave-number k∆x for the WRK
method with weight η =0.8 for different Courant numbers α= c∆t/∆x, where four lines correspond to α=0.1,
0.3, 0.5 and 0.588, respectively.

=0.1

=0.3

=0.5

=0.9

Figure 4: The ratio R of the numerical velocity to the phase velocity versus wave-number k∆x for the sixth-order
LWC method for different Courant numbers α = c∆t/∆x, where four lines correspond to α =0.1, 0.3, 0.5 and
0.9, respectively.

where µ is the Lamé parameter, and ρ is density. In this numerical experiment, we choose
µ =72GPa and ρ=2.0g/cm3. The source, which is located at the center of the computa-
tional domain, is a Ricker wavelet

f =−5.76 f 2
0 [1−16(0.6 f0t−1)2]exp[−8(0.6 f0t−1)2], (5.2)

where f0 denotes the peak frequency. The computational domain is 0≤x≤15 km, 0≤z≤15
km and the receiver is at R(7.5 km, 3.0 km).
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=0.1

=0.3

=0.5

=0.9

Figure 5: The ratio R of the numerical velocity to the phase velocity versus wave-number k∆x for the eighth-
order LWC method for different Courant numbers α= c∆t/∆x, where four lines correspond to α=0.1, 0.3, 0.5
and 0.9, respectively.

Fig. 6 show the waveforms at the receiver R from t = 0.4sec to t = 1.2sec on the spa-
tial grid ∆x = ∆z = 50m, computed using the fourth-order LWC, the eighth-order LWC,
the third-order RK, and our present WRK method, respectively. In this experiment, we
choose the time increment ∆t = 2.3×10−3s and the peak frequency f0 = 30Hz. We can
observe that the waveforms in Figs. 6(b), 6(c) and 6(d) are almost identical, whereas the
fourth-order LWC method suffers from serious numerical dispersion (see Fig. 6(a)).

Fig. 7 also show the waveforms at receiver R on the same temporal and spatial in-
crements computed by these four methods. But the peak frequency f0 =60Hz is chosen
here. From Figs. 7(a) and 7(b) we can see that even the high-order LWC methods (eighth-
order) suffer from serious numerical dispersions. However, Figs. 7(c) and 7(d), generated
by the RK and the WRK methods, show clear waveforms and they do not show much nu-
merical dispersion for the higher frequency. Especially Fig. 7(d) computed by the WRK
method shows almost no visible numerical dispersion in such a high frequency case. It
demonstrates that the WRK is more efficient than the high-order LWC methods such as
the fourth-order and eighth-order methods in suppressing the numerical dispersion and
improves the third-order RK method.

To further investigate the effect of the spatial increment on the numerical dispersion,
we similarly define the spatial sampling number per minimum wavelength (Dablain [1])
as follows

G=
vmin

f0 ·∆x
, (5.3)

where vmin denotes the minimum acoustic wave-velocity and f0 is the peak frequency.
Using the definition (5.3), we have G = 4 for the case of ∆x = ∆z = 50m in generat-

ing Fig. 6 and G = 2 for generating Fig. 7 which show serious numerical dispersion for
these high-order LWC methods while the WRK has no visible numerical dispersion (see



1038 S. Chen, D. Yang and X. Deng / Commun. Comput. Phys., 7 (2010), pp. 1027-1048

(a)

(b)

(c)

(d)

Figure 6: The waveforms generated by the fourth-
order LWC method (a), and the eighth-order LWC
method (b), the RK method (c), the WRK method
(d) for the 2D homogeneous case and the Ricker
wavelet with the peak frequency f0 =30Hz.

(a)

(b)

(c)

numerical dispersion

(d)

Figure 7: The waveforms generated by the fourth-
order LWC method (a), and the eighth-order LWC
method (b), the RK method (c), the WRK method
(d) for the 2D homogeneous case and the Ricker
wavelet with the peak frequency f0 =60Hz.
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Fig. 7(d)). It indicates that the present method can use only 2 grid points per minimum
acoustic wavelength for nondispersive propagation while the fourth-order LWC method
should use more than 4. It implies that the WRK can increase the computational effi-
ciency of wave-field simulation significantly, especially for high dimensional problems.
We will confirm this conclusion in the numerical experiments below. Meanwhile, we can
see small numerical dispersion around the wave from peak in Fig. 7(c) computed by us-
ing the third-order RK method, whereas Fig. 7(d) generated by the WRK shows almost
no visible numerical dispersion. It illustrates that the weighted RK method can further
suppress the numerical dispersion as compared with the original RK method.

6 Wave-field simulation

In this section, we present more computational results and investigate the computational
efficiency of the WRK method for seismic waves propagating in the 2D homogeneous
transversely isotropic (TI) medium and the 2D heterogeneous isotropic medium.

2D homogeneous TI case

For this case, we consider the following elastic-wave equations in a 2D homogeneous TI
medium:















ρ
∂2u

∂t2
= c11

∂2u

∂x2
+(c13+c44)

∂2w

∂x∂z
+c44

∂2u

∂z2
+ f1,

ρ
∂2w

∂t2
=(c13+c44)

∂2u

∂x∂z
+c44

∂2w

∂x2
+c33

∂2w

∂z2
+ f2,

(6.1)

where u and w denote the displacement components in the x- and z-directions, respec-
tively. c11, c13, c33, and c44 are elastic constants, ρ is the medium density, f1 and f2 are the
force source components in the x- and z-directions.

In this experiment, we choose c11 = 45, c13 = 9.6, c33 = 37.5, c44 = 12 (GPa), and ρ =
1.0g/cm3. The number of grid points is 301×301, the spatial grid increments are ∆x=∆z=
50m, and the time increment is ∆t=3.5×10−3s. The source, which is located at the center
of the computation domain, is a Ricker wavelet with dominant frequency of f0 = 30Hz.
The time variation of the source function is the same as that of the 2D homogeneous
acoustic case in the section for dispersion analysis above.

Figs. 8 and 9 show the x- and z-component snapshots at t = 1.0sec on a coarse grid
(∆x=∆z=50m), generated respectively by the WRK method and the fourth-order LWC
method [1], whereas Fig. 10 shows the x- and z-component snapshots at t=1.0sec under
the same Courant number and on a fine grid (∆x=∆z=15m) chosen for eliminating the
numerical dispersion, generated by the fourth-order LWC method. From Figs. 8 and 9
we can see that the wavefronts of seismic waves simulated by these two methods are
basically identical, though the computational cost of the WRK method is more expensive
than the fourth-order LWC method for the same number of grid points because more
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Figure 8: Snapshots of seismic
wave fields at time 1.6s on the
coarse grid ∆x=∆z=50m, gener-
ated by the WRK method in the
TI medium. (a) u component;
(b) w component.
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Figure 9: Snapshots of seismic
wave fields at time 1.6s on the
coarse grid ∆x = ∆z = 50m, gen-
erated by the fourth-order LWC
method in the TI medium. (a) u
component; (b) w component.
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Figure 10: Snapshots of seismic
wave fields at time 1.6s on the
fine grid ∆x = ∆z = 15m, gen-
erated by the fourth-order LWC
method in the TI medium. (a) u
component; (b) w component.

variables including displacement, particle-velocity, and their gradients are simultane-
ously computed in this WRK method. However, the snapshots generated by the WRK
method have much less numerical dispersion even though the spatial grid size is 50m,
whereas the fourth-order LWC method suffers from serious numerical dispersions. It
suggests that the WRK method can be used to simulate large-scale models with coarse
grids. Moreover, we can clearly see the cusps and the anisotropy of velocity of wave
propagating from Fig. 8.

Comparison between Fig. 8 and Fig. 10 demonstrates that our present method can
provide the same accuracy as the fourth-order LWC method on a fine grid under the
same Courant number. But their computational costs are quite different. It took the WRK
method about 1.9 min to generate Fig. 8, whereas it took the fourth-order LWC method
about 22.2 min to generate Fig. 10. It suggests that the computational efficiency of the
WRK is roughly 11.7 times of that of the fourth-order LWC method on a fine grid to
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achieve the same accuracy with no visible wave-field dispersion. Note that these numer-
ical experiments are performed on a 2-core Pentium 4 computer with 1G memory.

2D heterogeneous case

In the final experiment, we choose the following 2D heterogeneous wave equation

∂2u

∂t2
=

1

ρ(x,z)

[

∂

∂x

(

µ(x,z)
∂u

∂x

)

+
∂

∂z

(

µ(x,z)
∂u

∂z

)]

+
f

ρ(x,z)
, (6.2)

where ρ(x,z) is the density, µ(x,z) is the elastic parameter, f is the source function with
the same time variation as that of the 2D homogeneous case. We choose the model of
three-layer media, which is shown in Fig. 11. The computational domain is 0≤x≤20 km,
0≤ z≤16 km. The first interface is governed by the following subsection function

z=























6, 06x<3;
x+3, 36x<5;
8, 56x<12;

12−
√

25−(x−15)2, 126x<18;
8, 186x620,

(6.3)

and the second interface is horizontally straight line at z=10km. The medium parameters
are chosen by µ1(x,z) = 36.8GPa, ρ1(x,z) = 2.3g/cm3, and µ2(x,z) = 8.0GPa, ρ2(x,z) =
2.0g/cm3, and µ3(x,z) = 36.8GPa, ρ3(x,z) = 2.3g/cm3 in the three layers, respectively,
resulting in the velocity contrast between adjacent layers reaches twice. We choose the
spatial increments ∆x = ∆z = 40m, and the number of grid points 501×401. The source
is an explosive source that is at coordinate (xs,zs) =(10km, 0.04km) and has a Ricker
wavelet with a peak frequency being f0 = 20Hz. In this numerical experiment, the 2-
times absorbing boundary condition suggested by Yang et al. [22] is used to absorb the
reflected waves from the artificial boundaries.

Figs. 12 and 13 show the snapshots at t=2.8sec and t=3.8sec on the spatial increments
of ∆x=∆z=40m, generated by the WRK method and the fourth-order LWC method, re-
spectively. In these two figures we can see that the wavefronts of transmitted waves
and reflected waves from the first and second interface simulated by these two methods
are basically identical. However, the LWC method suffers from serious numerical dis-
persion, whereas the WRK method gives much better wave-field that shows clearly nu-
merous phases such as direct qP-wave, direct qS-wave, and their reflected, transmitted,
converted phases, and so on (Fig. 12). Fig. 14 shows the synthetic seismogram generated
by the WRK method. In this figure, the waveforms of the reflected waves are clear and
there is no visible numerical dispersion. These results imply that the WRK method is ef-
fective to model the large-scale seismic wave-fields in heterogeneous cases even though
the velocity contrast between adjacent layers is twice.
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Figure 11: Two-dimensional medium model with two inner interfaces, s denotes the explosive source, which is
located at (xs,zs)=(10km, 0.04km).

(a)

(b)

Figure 12: Snapshots of seismic
wave fields at time 2.8s (a) and
3.8s (b), generated by the WRK
method for the 2D model shown
in Fig. 11.

(a)

(b)

Figure 13: Snapshots of seismic
wave fields at time t =2.8s (a)
and t=3.8s (b), generated by the
fourth-order LWC method for the
2D model shown in Fig. 11.

Figure 14: The synthetic seismo-
gram on the surface, generated
by the WRK method for the 2D
model shown in Fig. 11.

7 Discussion and conclusions

In this paper, we present a weighted method called WRK method which extends the con-
ventional third-order RK method [7, 14]. In determining the high-order spatial deriva-
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tives, the WRK method not only uses the values of the displacement U and the particle-
velocity W at the grid point and its neighboring grid points (see Eqs. (A.1)-(A.7)), it also
uses the values of the gradients of U and W, which follows the fourth-order RK method
suggested by Yang et al. [20]. Based on such a structure, the WRK method retains more
wave-field information included in the displacement function, the particle-velocity, and
their gradients. As a result, the WRK method can effectively suppress the numerical
dispersion caused by discretizing the wave equations when too-coarse grids are used or
models have large velocity contrast in adjacent layers, and has higher spatial accuracy
though it only uses a local difference-operator of three grid points in a spatial direction.
Numerical results illustrate that the weighted method can still effectively suppress the
numerical dispersion even though the number of grid points per minimum wavelength
is only 2. It implies that the WRK has faster computational speed.

In addition, the introduction of the weight factor is another important skill used in
this WRK method. It has almost no additional computational cost and storage. Secondly,
through introducing the weight, the WRK method has two remarkable improvements: (1)
the WRK further improves the RK method in suppressing the numerical dispersion; (2)
the stability condition of the WRK method is also relaxed as compared to the original RK
method. Both of these two properties imply that for the same problem, the WRK method
can use coarser time and spatial grid size as compared to the original RK method, which
makes the WRK method to be computationally more efficient and save the storage space.
Numerical tests for wave-field snapshots and synthetic seismograms in various media
have demonstrated that the WRK method may have more attractive applications to the
seismic wave propagation problems, seismic migration based on the wave equations, and
the seismic tomography.
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A Evaluation of high-order derivatives

To get the high-order derivatives of the displacement, following Konddoh [9] and Yang
et al. [25], we can obtain the approximation formulae by using the local interpolation
method, which have similar expressions as in [21]. For convenience, we present the ap-
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proximation formulae as follows

∂2xVn
i,j =

2

∆x2
δ2

xVn
i,j−

1

2∆x

(

E1
x−E−1

x

)

∂xVn
i,j, (A.1)

∂xzVn
i,j =

1

2∆x

(

E1
x−E−1

x

)

∂zVn
i,j+

1

2∆z

(

E1
z −E−1

z

)

∂xVn
i,j
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1

4∆x∆z

(

E1
xE1

z −E1
xE−1
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x E1
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∂2zVn
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δ2
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1
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E1
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z
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∂zVn
i,j, (A.3)
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where
δ2

xVn
i,j =Vn

i+1,j−2Vn
i,j+Vn

i−1,j, E1
xVn

i,j =Vn
i+1,j, E−1

x Vn
i,j =Vn

i−1,j.

Notice that the vector V is defined by V = (U,W)T, where U and W are the displace-
ment and the particle-velocity, respectively. The notations δ2

z and Ez can be similarly
defined. ∆x and ∆z are the spatial increments in the x- and z-axis directions. And Vn

i,j,

∂xVn
i,j, ∂zVn

i,j, and ∂mxkzVn
i,j denote V(i∆x, j∆z,n∆t), ∂

∂x V(i∆x, j∆z,n∆t), ∂
∂z V(i∆x, j∆z,n∆t),

and
(

∂m+kV/∂xm∂zk
)n

i,j
, respectively.

B Derivation of stability criteria

We use the Fourier method to obtain the stability conditions of WRK method. Firstly, we
consider the scalar wave equation in a homogeneous medium for the 1D case. Substitut-
ing the harmonic solution

V
n
j =









un

wn

un
x

wn
x









exp(i(kjh)) (B.1)

into the WRK method, we can obtain the following equation

(

un+1,wn+1,un+1
x ,wn+1

x

)T
=G(un,wn,un

x,wn
x)

T , (B.2)
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where w=∂u/∂t and the amplification matrix G is

G=









g11 g12 g13 g14

g21 g22 g23 g24

g31 g32 g33 g34

g41 g42 g43 g44









, (B.3)

with

g11 =1−
2

3
(5−2η)α2(1−cosθ)+

1

144
(18−23η+5η2)α4(63−64cosθ+cos2θ)

−
1

144
(1−η)3α6(1240−1035cosθ−216cos2θ+11cos3θ),

g12 =
ih

144

[

−12(5−2η)α2sinθ +(18−23η+5η2)α4(4sinθ−sin2θ)

−(1−η)3α6(444sinθ+8sin2θ−2sin3θ)
]

,

g13 =
τ

24

[

24−4(9−5η)α2(1−cosθ)+(1−η)2α4(63−64cosθ+cos2θ)
]

,

g14 =
iτh

24

[

(9−5η)α2sinθ−(1−η)2α4(32sinθ−sin2θ)
]

,

g21 =
5i

48h

[

12(5−2η)α2sinθ −(18−23η+5η2)α4(4sinθ−sin2θ)

+(1−η)3α6(444sinθ+8sin2θ−2sin3θ)
]

,
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(
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1

2
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)
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6
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1
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)

−(1−η)3α6

(
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3
+
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cosθ−

4

3
cos2θ−cos3θ

)

,
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5iτ

8h

[

(9−5η)α2sinθ−(1−η)2α4(32sinθ−sin2θ)
]

,

g24 =τ−
τ

8

[

(9−5η)α2(4+cosθ)+(1−η)2α4(208+48cosθ−2cos2θ)
]

,

g31 =
1−cosθ

54τ

[

−216α2+(2−η)α4(279−9cosθ)−(1−η)2α6(717+194cosθ−11cos2θ)
]

,

g32 =
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108τ

[

−108α2sinθ+(2−η) α4(288sinθ+9sin2θ)

−(1−η)2α6(888sinθ−8sin2θ+2sin3θ)
]

,

g33 =1−2α2(1−cosθ)+
1

18
(1−η)α4(63−64cosθ+cos2θ),

g34 =
ih

18

[

−9α2sinθ+(1−η)α4(32sinθ−sin2θ)
]

,
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5i

36hτ

[

108α2sinθ−(2−η) α4(288sinθ+9sin2θ)
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,
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g42 =
1

36τ

[

−α2(432+108cosθ)+(2−η)α4(8+432cosθ−18cos2θ)

−(1−η)2α6(2800+1765cosθ−64cos2θ+cos3θ)
]

,

g43 =
5i

6h

[

−9α2 sinθ+(1−η)α4(32sinθ−sin2θ)
]

,

g44 =1−3α2

(

2+
1

2
cosθ

)

+
1

3
(1−η)α4(52+24cosθ−cos2θ),

where θ=kh, h=∆x, and τ=∆t is the time step, and the Courant number [1,15] is defined
by α = cτ/h. From the matrix G, we can obtain numerically the stability condition with
different weights η (0 ≤ η ≤ 1) by solving the eigenvalue problem |λ(G)|6 1, for any
θ ∈ [−π,π]. As an example, we give the following stability condition numerically when
the weight η =0.8:

α6αmax≈0.588, (B.4a)

or

∆t6αmax
h

c
≈0.588

h

c
, (B.4b)

where αmax denotes the maximum Courant number that keeps the numerical calculation
stable. We also give a plot of how αmax changes with the weight η, see the dashed line in
Fig. 1.

Following the same steps as discussed in the 1D case, we can obtain the stability
condition of the WRK method with different weights η (0≤η≤1) for the 2D homogeneous
case. The solid line in Fig. 1 shows how αmax changes with the weight η. Here we still
give the stability condition of the WRK method for the 2D case when the weight η =0.8:

α6αmax≈0.523. (B.5)

C Derivation of the dispersion relation

To investigate and optimize the dispersion error, we derive the dispersion relation of the
WRK method. For this, following the analysis methods presented in Dablain [1] and Yang
et al. [23], we consider the harmonic solution of Eq. (2.6) for the 1D case and substitute
the solution

V
n
j =









u0

w0

(u0)x

(w0)x









exp[i(ωnumn∆t+kjh)] (C.1)

into Eqs. (2.8a)-(2.8f), where k is the wave number, then we can obtain the dispersion
equation as follows:

det(M)=0. (C.2)
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Due to the complexity of elements of the amplification matrix M, we omit the detail ex-
pressions of the matrix M here.

Using the dispersion relation (C.2), we obtain the ratio of the numerical velocity cnum

to the phase velocity c as follows:

R=
cnum

c
=

ωnum∆t

αθ
=

γ

αθ
, (C.3)

where α is the Courant number, θ = kh, h=∆x, γ=ωnum∆t and γ satisfies the dispersion
equation (C.2).
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