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Abstract. Despite decades of development, Lagrangian hydrodynamics of strength-
free materials presents numerous open issues, even in one dimension. We focus on the
problem of closing a system of equations for a two-material cell under the assumption
of a single velocity model. There are several existing models and approaches, each
possessing different levels of fidelity to the underlying physics and each exhibiting
unique features in the computed solutions. We consider the case in which the change
in heat in the constituent materials in the mixed cell is assumed equal. An instanta-
neous pressure equilibration model for a mixed cell can be cast as four equations in
four unknowns, comprised of the updated values of the specific internal energy and
the specific volume for each of the two materials in the mixed cell. The unique con-
tribution of our approach is a physics-inspired, geometry-based model in which the
updated values of the sub-cell, relaxing-toward-equilibrium constituent pressures are
related to a local Riemann problem through an optimization principle. This approach
couples the modeling problem of assigning sub-cell pressures to the physics associ-
ated with the local, dynamic evolution. We package our approach in the framework
of a standard predictor-corrector time integration scheme. We evaluate our model us-
ing idealized, two material problems using either ideal-gas or stiffened-gas equations
of state and compare these results to those computed with the method of Tipton and
with corresponding pure-material calculations.
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1 Introduction

Multi-material Lagrangian hydrodynamics of strength-free materials continues to present
numerous open issues, even in one dimension. We focus on the problem of closing a sys-
tem of equations for a two-material cell under the assumption of a single velocity model.
We treat the constituents in these multi-material cells as distinct, i.e., we do not consider
so-called “mixture” models, often associated with multi-phase flow, in which the individ-
ual species in a computational zone are modeled as fully or partially intermingled. The
multi-material cells we consider invariably arise in multi-material Arbitrary Lagrangian-
Eulerian (ALE) methods [13, 23], where the results of Lagrangian hydrodynamics are
projected onto a new mesh during the remap phase, thereby making a Lagrangian step
with a mixed cell a necessity. We consider three main design principles that govern clo-
sure models of interest. The first principle is preservation of contacts; this implies that if
all materials in a mixed cell are initially at the same pressure, then that pressure does not
change due to the closure model. The second principle is that of pressure equilibration;
that is, after some transition time (possibly but not necessarily a single timestep), all pres-
sures in the mixed cell equilibrate. The third principle is the exact conservation of total
energy. We assume that a separate set of material properties is maintained for each ma-
terial in every multi-material cell, together with the materials” volume fractions, which
can be used to reconstruct material interfaces inside a mixed cell. The main challenge
is to accurately assign the thermodynamic states of the individual material components
together with the nodal forces that such a zone generates, pursuant to our design princi-
ples and despite a lack of detailed information about the velocity distribution within such
cells. In particular, for the calculation of both the equation of state (EOS) and the resulting
pressure forces, it is important that the calculation of the internal energy be accurate.

There are several existing models for this problem. In one class of methods (see, e.g.,
Barlow [4], Delov & Sadchikov [9], Goncharov & Yanilkin [11]), one estimates the velocity
normal to the interface between materials and then approximates the change in the vol-
ume for each material, with internal energy updated separately for each material from
its own pdV equation. A common pressure for a mixed cell, which is used in the mo-
mentum equation, is computed using the equation of total energy conservation. Delov &
Sadchikov [9] and Goncharov & Yanilkin [11] introduce an exchange of internal energy
between the materials inside a mixed cell, thereby allowing some freedom in the defini-
tion of the common pressure. Other multi-material models impose either instantaneous
pressure equilibration (such as that of Lagoutiére [18] and Després & Lagoutiéere [10]) or
ascribe an implicit mechanism for pressure relaxation (such as described by Tipton [30]
and summarized by Shashkov [28]).

We restrict our attention to the approach in which the change in heat in the constituent
materials in the mixed cell is posited to be equal, following Lagoutiere [18] and Després
& Lagoutiere [10]. Under this assumption, the mixed-cell model can be cast as four equa-
tions in four unknowns, consisting of the updated values of the specific internal energy
and the specific volume for each of the two materials in the mixed cell. A solution to this
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set of nonlinear equations can be obtained, e.g., with Newton’s method, which forms one
element of an overall predictor-corrector scheme for solving the governing conservation
laws.

An unsatisfactory aspect of this model, however, is the imposition of instantaneous
pressure equilibration among the mixed-cell constituents. We break this assumption us-
ing a sub-cell dynamics model based on a local Riemann problem. Specifically, the unique
contribution of our work is the development of this physics-inspired, geometry-based
approach, using an optimization framework, both (i) to break instantaneous pressure
equilibration by relaxing the individual sub-cell pressures to equilibrium and (ii) to de-
termine the single updated value of the relaxing-toward-equilibrium pressure assigned
to the overall mixed cell. This approach couples the problem of assigning a single mixed-
cell pressure to the physics associated with the local dynamical evolution. We discuss
several test problems, using either ideal-gas or stiffened-gas equations of state, on which
we exercise this method, providing complete details of the setup for each problem to-
gether with qualitative and quantitative results of our approach on these problems.

This paper is structured as follows. Section 2 describes the basic 1-D Lagrangian
hydrodynamics equations and the predictor-corrector scheme we employ to obtain solu-
tions. We describe details of the two-material model, based on the work of Lagoutiere [18]
and Després & Lagoutiere [10], in Section 3. Extensions of this model to account for re-
laxation through the dynamics of a sub-cell Riemann problem are discussed in Section
4, which also contains a brief description of Tipton’s method. A specification of test
problems and results for this method is provided in Section 5, which also contains com-
parisons with results for Tipton’s method and pure-material calculations. We summarize
our findings and conclude in Section 6.

2 One-dimensional Lagrangian hydrodynamics

In this section, we describe the basic predictor-corrector algorithm that we use to obtain
numerical solutions to the governing equations discussed in the previous section. We
first restrict our attention to the single-material case, then discuss where modifications
for multi-material cells are required.

The partial differential equations governing the conservation of momentum and in-
ternal energy, written in the Lagrangian frame of reference, are (discussed, e.g., by Cara-
mana et al. [7]):

du

pE +VP=0, (2.1)
de

pa-l-PV-u—O. (2.2)

In these equations, u is the velocity and P=P(7,¢) is the thermodynamic pressure, where
e is the specific internal energy (SIE) and 7 is the specific volume, which is given by the
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inverse of the mass density p of the fluid. In standard Lagrangian methods, the mass of
a fluid parcel is constant, so that T can be expressed as the volume of that parcel divided
by its mass. In this section, subscripts denote spatial position and superscripts indicate
temporal indexing. In our staggered-mesh discretization, cell-centers (at index i+1/2)
are associated with cell masses M; 1,7, cell volumes V;;1,,, and thermodynamic state
variables of the cell, such as density p;1,2, specific volume 7,15, SIE €;,1,5, pressure
pi+1/2, and sound speed cs;;1,/2. The vertices of cell i are associated with edge positions
x; and x;1, edge velocities u; and u;1, and node-centered control volume masses m; and
m;1. The volumes are determined from the edge positions, which evolve according to
the trajectory equation,
% =U;. (23)
We assume that we have all the necessary information to completely specify the val-

ues of all state variables at time #" and seek to update the solution to time "1 =" +-6t,
where 4t is the timestep chosen to satisfy necessary stability requirements (e.g., the CFL
condition). The following set of coupled, implicit equations captures the dynamics of the
one-dimensional conservation equations by linking the updated values of the flow field
with the current state:

T pl4pitl
P |\ i i , 24
M5 ( 2 24
1
w2 =2 (), 25)
x?“ =x] +5t-u?+1/2, (2.6)
+1 _ n+l +1
Vi p=xiy =X, (2.7)
+1 _yntl
= in+1/z/Mi+1/2f (2.8)
gl _en Pl A+ttt
+1/2 +1/2 +1/2 +1/2 1/2
Mii1/2— &l =< l 5 l A*”?Il/z, (2.9)
+1 +1 +1
P2 =Pt 20 2)- (2.10)

Here, P is the relation that gives the pressure as a function of the density and SIE. Also,
the operator A and its adjoint A* are defined on the appropriate discrete function spaces
as:

AGi=Civ1/2—Gi-1/2, (2.11)
AN Niy1/2= i1~ i (2.12)
We propose the following iterative scheme by which to obtain a solution for the variables

at #"*1 in Egs. (2.4)-(2.10):
Set

0.
P?jl/z =Pit1/2 (2.13)
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and iterate fors=1,---:

n+1,s n n n+1,5s—1
u. =y p; +p‘
L S—" iy S S & SE—— 214
1
ARG (u?+u?“f5), (2.15)
VS =yl ot T2, (2.16)
n+l,s _ n+ls n+1,s
V=% =% (2.17)
n+l,s _ ym+ls
T A=Y/ Miv1y2, (2.18)
Si?+l,s e pn + pfl+1,sfl
i+1/2 i+1/2 i+1/2 i+1/2 +1/2,
Mi1/2 5F =— > Nl (2.19)
n+ls _ n+l,s n+l,s
pi+1/2—77(ri+1/2,si+1/2). (2.20)

As shown by Bauer et al. [5], this iteration is stable under the usual constraints, e.g., CFL
number between zero and one. Moreover, this scheme is nominally second order accurate
in both space and time for sufficiently smooth initial conditions and sufficiently short
times; the method invariably degenerates to first order as discontinuous flow features
develop.

One can interpret the first two iterations of this algorithm as a predictor-corrector
method. Indeed, each of these steps conserves momentum and total energy. We write the
resulting numerical scheme as follows:

Predictor
ur}+l,*_ n
M ——s——=—Apj, (2.21)
ot
+1%_
=y *_”?*E(P?ﬂ/z*ig?—l/z)f (2.22)
+1/2% _ 1 I
uy —E(M?Jru? ) (2.23)
X =yt T2, (2.24)
n+lx__ n+1x n+1,x
Vi =% =%, (2.25)
n+1lx __ yn+1%
T A=Vis / Miviy2, (2.26)
n+1,%
M £i+1/2_£?+1/2_ n A* n+1/2,x 2.27
i+1/2 5t =~Piy128 Uig12 (2.27)
ot
n+lx n+1/2,% n+1/2,%
= €i+1/2—8?+1/2*mp?+1/2 (”i+1 —u; ), (2.28)
n+1x __ n+1x n+1,%
Piz1/2=P(Ti2Ei1)0)- (2.29)
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Corrector
yhtl_yn pf’+p'.1+1'*
P S— N S S , 2.30
LT ( 2 230)
= n+l__ n_lﬁ n + n+lx . n _ntlx (2.31)
up T =y 2m; Piv1/2TPiv1/2— Pi-1/2= Pi—1/2) - :
1
w12 = = (w4, (2.32)
x?“:x?—i-étu?ﬂ/z, (2.33)
+1 _ .n+l +1
Vifip=xiy =X, (2.34)
+1 _ymtl
Tin—&-l/Z_Vir-lH/Z/MHl/Z / (2.35)
gl _gn p —|—pr.’+l’*
1/2 1/2 1/2 1/2
M1/ i+1/ 5 i+1/ :< i+1/ 5 i+1/ A*u?_:_ll//zz/ (2.36)
- n+l _.n 71 ot n + n+1,% n+1/2 _ n+1/2 (2.37)
€ir1/2=¢i+1/2 2 M1 Piv1/2FPis1/2) \Mina u; , .
+1 +1 +1
Pitn =Pt 0 ) (2.38)

This predictor-corrector scheme can be made more efficient and equally as accurate (at
least formally) by replacing the EOS call in Eq. (2.29) with a predictor pressure assign-
ment based on an adiabatic relation among pressure, density, and SIE. In this case, we
replace Eq. (2.29) by:

n+lx _ _n (CS?+1/2)2 (S‘/l?-l‘y:g}’; 2.39
Piv1/2=Piv1/27 v (2.39)
i+1/2 i+1/2

where ¢ VZT{}Z* = V:{}Z* — Vl’fH /2 One must, however, retain the full EOS call in the cor-
rector step of Eq. (2.38), to ensure thermodynamic consistency and conservation at the
updated time.

To decrease non-physical results for problems with discontinuous solutions (e.g.,
shockwaves), the pressure in these expressions can be augmented by an artificial vis-
cosity to provide additional numerical dissipation. In practice, we modify each occur-
rence of the pressure p in the above approach by adding an additional term g: notionally,
Pit+1/2 < Pi+1/2+qi+1/2 in Egs. (2.4), (2.9), etc. For example, to calculate the artificial
viscosity g7, ; ,, at cell centers at ", used in Egs. (2.22) and (2.28), the classical linear-plus-
quadratic model of von Neumann & Richtmyer [24] (see also Landshoff [19]), active only
in compression, is evaluated as:

1 n n

g :{ ’ . (2.40)
i+1/2 —V10}, 1 o €Sty o (Ul —ul )+ 120}, o (U] —ul)?, otherwise,
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Figure 1: Schematic of the idealized mixed cell, which has material 1 (to the left) separated from material 2
(to the right).

where v; (numerically, nominally ~1) and v» (~0.1) are the coefficients of the linear and
quadratic contributions, respectively, and p}', ; , =1/, /,. Similar expressions apply to
predictor values of artificial viscosity, used, e.g., in Egs. (2.31) and (2.37). While more
sophisticated artificial viscosity models are available (as described, e.g., by Campbell &
Shashkov [6]), the simple linear-plus-quadratic model is sufficient to demonstrate the
efficacy of the numerical methods for the 1-D gasdynamics problems discussed here.

3 Two-material instantaneous equilibrium model

We now examine a specific instantaneous pressure equilibrium model for a two-material
mixed cell. We make the fundamental assumption that the fluids are not intermingled;
that is, we assume that there is a scale on which the two fluids are separated. We first
review the model based on the work of Lagoutiere [18] and Després & Lagoutiere [10], in
which the overall specific volume and SIE in a mixed cell are distributed to the separate
materials, and discuss how to use this model with the above algorithm.

A schematic of the mixed cell is shown in Fig. 1, which indicates material 1 to the left
of an idealized (massless) interface, which separates it from material 2 to the right. In
the following discussion, we largely suppress the subscript index of the mixed cell, imix;
instead, subscripts refer to the two materials in the multi-material cell. In keeping with
the single-material algorithm discussed in the previous section, assume that we have the
following quantities, consistently updated to time #"*!:

1. T"*1: the updated value of the overall specific volume of the mixed cell, from
Egs. (2.26) and (2.35); and

2. ¢"1: the updated value of the overall SIE of the mixed cell, from Egs. (2.28) and
(2.37).

We also know a common pressure at the previous timestep, p", for the mixed cell; we dis-
cuss later how to update this common pressure from the constituent materials” updated
pressures. In addition to those values, we know the specific volume and SIE of the mixed
cell’s constituent materials at the previous timestep, i.e., T/, T}/, €}, €5.

The quantities that we seek are the updated values of these properties, viz.,

1. TI”“, TZ"H: the updated specific volumes of materials 1 and 2, and

2. et ¢t the updated SIEs of materials 1 and 2,
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to be apportioned in some conservative fashion. With these values, the individual mate-
rials” EOSs define the associated thermodynamic variables. In the mixed cell, denote the
mass fractions (“concentrations”) by c¢; and ¢, for materials 1 and 2, respectively:

C1=mn /Mimix and Cr= mz/Mimix’ (31)

where in the mixed cell
m1 =mass of material 1, my =mass of material 2, (3.2)
M; . =total mass =m+my. (3.3)

Since the masses in the Lagrangian cells are fixed, the mass fractions ¢; and c; do not vary
with time.

The governing equations of the closure model discussed by Lagoutiére [18] and De-
sprés & Lagoutiere [10] are the following.

e Conservation of mass (expressed with the specific volume):

at M +on =1, (3.4)

e Conservation of internal energy (expressed with the SIE):

cre Tl opelitl = gntl, 35
1¢1 2

e Equality of change in heat of the two materials: with dQy =dej + P, dV, this require-
ment implies:

el Py (T ) =T — e+ P (T T 1Y), (3.6)

e Equality of thermodynamic pressure Py (,¢) of the two materials (k=1,2):"

p=pi"=p" = P LT -Pa( ) =0. (3.7)
The four relations (3.4), (3.5),} (3.6), and (3.7) form a set of four nonlinear equations in
four unknowns: 7™, €1, T/t and i T

A choice must be made in how to model the pressure in Eq. (3.6). Among the obvious
options are the following (where k=1,2 for the two materials):

e “Fully Implicit”: P, = p,’:“, the pressure at the updated time;

e “Fully Explicit”: P, = p}, the pressure at the previous time; or

e “Thermodynamically Consistent”: Py = %(p,’j-l—p,’j“), the arithmetic mean of the

previous-time and updated-time pressures.

This relation explicitly specifies the common pressure of the mixed cell.
As explained by Després & Lagoutiere [10], Eqs. (3.4) and (3.5) are consistent with the assumption that the
fluids are separated at some scale.
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For a polytropic gas, closed-form solutions of this set of equations can be obtained in each
of these three cases. Kamm & Shashkov [17] provide explicit expressions for these solu-
tions, which, though algebraically complicated, can be used to verify the software imple-
mentation of this algorithm. For general EOSs, Egs. (3.4)-(3.7) do not admit a closed-form
solution, whether one considers the fully implicit, fully explicit, or thermodynamically
consistent closure models. In this case, Newton’s method can be used to obtain numerical
solution to this set of coupled nonlinear equations.

4 Two-material Riemann problem/pressure relaxation model

The model of the previous section provides an approach in which the pressures of the
constituents of a two-material cell are equilibrated at the end of each timestep. In this
section, we describe a sub-cell dynamics model that leads to schemes by which to relax
the constituent pressures to equilibrium. That is, given an initial state with a discrep-
ancy between the pressures of material 1 and material 2, we seek a model with which to
update material pressures p?“ and pi™! such that the difference between these values
approaches zero as time increases.S We do so with a purely dynamical model that does
not appeal to any explicit dissipation terms, per se.

Conceptually, we posit a relaxation operator R that takes as input the thermodynamic
states of the constituent materials at time " together with values for the overall specific
volume and SIE at time #"*1. On output, this operator returns the thermodynamic states
of the individual materials updated to time #"*! and an estimate of an updated common
cell pressure. Schematically, we write this as:

R (T?,sq,Tg,Sg;Tn+l,8n+l> —_ {T{1+1,€T+1,T;+1,€g+1;pn+l} ) (4.1)
In this section we describe in detail the relaxation operator R.

4.1 Two-material Riemann-problem/relaxation model: equations

The foundation of this approach is to consider the evolution of the multi-material cell
over one timestep to be related to a local Riemann problem. This cell is identified by
the index iqix, with the states of the two materials assumed to be available at time #".
The location of the interface between the materials at this time is determined by the local
volume fraction of, say, material 1, given by fi:

Imix Imix mix” " imix 1]

e = 1 1~ €[22 42)

8This idealized picture is for the special case of stationary flow, i.e., in the absence of external flow per-
turbations. More generally, when there are persistent external flow effects one should not expect pressure
equilibration in a mixed cell to necessarily obtain.
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xi mix xi mixJrl

Figure 2: Schematic of the pressure associated with the 1-D Riemann problem used to model the dynamics of
the two-material mixed cell. The bottom shows the initial pressure, i.e., at time ", of materials 1 (left) and

2 (right), while the top figure is the updated solution, i.e., at time t"*t1 The "1 state exhibits, from left to
right, the left " value, the leading left-most Riemann wave (WL, in this case corresponding to a rarefaction
fan), the contact discontinuity (W*), the leading right-most Riemann wave (WX, in this case corresponding to
a shock), and the right " quantity.

In higher dimensions, the interface configuration must be estimated with an interface
reconstruction technique. Specifically, the two states in this cell at t" are given by:

(Pl;elrplrul) s if x?mix <x< xﬁ\tfc’ (4 3)
(02,82, p2,u2) , i Xjgy <X <X} 5.

(pepu)= {

There is an obvious choice for the velocities in 1-D, viz.,

251 and Uy = uimix+1 . (44)

- uimix
More sophisticated models that involve spatial variation of the velocity could be used,
but we use this piecewise-constant assumption in the following. The solution to this one-
cell Riemann problem at time #"*! can be computed for polytropic gases according to the
method of Gottlieb & Groth [12], for stiffened gases following Plohr [25], and for more
general equations of state as described by Colella & Glaz [8] and Quartapelle et al. [26].
A schematic of the initial conditions and idealized solution to this problem is shown
in Fig. 2, which depicts the pressure for the mixed cell at #" on the bottom and at t"*! on
the top, in the particular case of a rarefaction-contact-shock configuration. In this figure,
the top (¢"*!) diagram exhibits, from left to right, the left t" state, the leading left-most
Riemann wave (WL), the contact discontinuity (W*), the leading right-most Riemann
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wave (WR), and the right t" state. The states outside of the leading waves are unchanged
from their values at t" during the timestep Jt. If the left- or right-most wave is a shock,
then the precise location of this wave is unambiguous; if this wave is a rarefaction, how-
ever, then we do not use the exact solution but instead choose either the head or tail of the
rarefaction as defining the location of this wave (as in Fig. 2). In the domains delimited
by these waves, i.e., between the left-most wave and the contact, and between the contact
and the right-most wave, we assume the Riemann-problem pressure is constant in space
at time #"*1; outside these waves, we assume that the pressure retains its initial (i.e., at t")
values. Depending on the initial conditions of the Riemann problem, these assumptions
may not be strictly valid (e.g., when rarefactions are present); nonetheless, they can be
used in the optimization method that we describe below. T
Let the region to the left of the contact contain two sets ()1 and (),, defined as

le{x:x?+1<x<x5§t} and sz{x:xﬁﬁ<x<x§;t}, (4.5)

mix

where xR is the position of the left-most wave WX and xR, is the contact position,

both determined from the solution to the Riemann problem (identified by the superscript
“RP”). Denote similar subsets to the right of the contact as ()3 and (4:
O3 = {x:xf(};t <x< xﬁlgjht} and = {x:xﬁght <x< xl’.i:iiﬂ}, (4.6)

where xfight is the position of the right-most wave WX of the Riemann problem solution.

The key assumption of our approach is the following: we seek a single updated pres-
sure value for each material (i.e., on each side of the contact) that minimizes the dis-
crepancy between that value and the pressure given by the Riemann problem solution
in that domain. A mathematical expression of this statement replaces the instantaneous
pressure equilibration equation (i.e., Eq. (3.7)) while the other constraints of the model
(Egs. (3.4)-(3.6)) still apply.

We express this relation mathematically as the following optimization problem:

i n+1__ _RP||2 n+1__ RP||2
min (787 =PI 2P 47

n+1 o+l
(e g

subject to the constraints given by Egs. (3.4)-(3.6):

Fi=at M tontt -t =0, (4.8)
Fr=ciel et —e"tl =0, (4.9)
Fr=el —el+ P (r ! —1])

- eg+1—eg+P2(r;+1—r;)] ~0. (4.10)

TOne could utilize the entire non-piecewise-constant solution pressure when a rarefaction fan is present.
Such a model introduces additional complexity to the relaxation model presented below.
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In Eq. (4.7), pX¥ and pX* are the pressures, in materials 1 and 2, related to the solution of
the Riemann problem. These pressure values are constant on the subsets Q]-, j=1,-4
as described above, they differ from the exact Riemann problem solution only across a
rarefaction, through which a constant value is assumed.

Using the L, norm, the components of the expression in Eq. (4.7) can be written in
terms of the locally constant pressure values in each domain:

~ 2 2
P12 = (P = pf) +0a (P11 =p) (4.11)
~ 2 2
P = P52 = 0a (= pB" )+ O (=87 (412)

Here, the nondimensional quantity ); equals the measure of the set Q); divided by the

entire cell length, x"+1:
~ - 1 1).
Q= (gggf X — 21(1;} x> /(x?r:ierl - xZ:iX) ; (4.13)
with this definition,
4
Q;>0,Vj, and ) Q;=1. (4.14)
j=1

Outside of the leading waves, i.e., on sets (2; and ()4, the Riemann problem pressure
equals the pressure at the start of the timestep:

pRP=pt forxeQy and pX =p} for xcQy. (4.15)

Between the contact and these waves, we assign the pressure to be the so-called “star-
state” pressure of the Riemann problem solution, described, e.g., by Toro [31] and LeV-
eque [20]:

PP =p* forxeQ, and pX¥ =p* forxcQys. (4.16)
Therefore, Egs. (4.11) and (4.12) imply the following relations:
. 2 2
[1pi =PI =00 (P —pt ) +0a (P =), (4.17)
~ 2 2
ps+t =P =0 (= p7 )+ (p5*'—pt) (4.18)

We recast this constrained minimization problem as simple minimization through the
use of Lagrange multipliers. Specifically, to the expression to be minimized we add each
of the constraint terms multiplied by an unknown parameter (the Lagrange multiplier)
and then seek to minimize that composite function. The overall minimization statement
then becomes the following:

n+1 .n+1 n+1 _n+1
min G e, ey, A,A0,A3) 4.19)
{Tn+1 8n+1 Tzn+l 8;+1 /\] /\2 )\3}
1 7 1 7 7 r r 3



J. R. Kamm and M. J. Shashkov / Commun. Comput. Phys., 7 (2010), pp. 927-976 939

where
G= 1P =P P+ =Py I P+ M P+ A Fa A3 Fs. (4.20)

A possible extremum of the function G is obtained by finding a solution that corresponds
to a zero of the coupled set of nonlinear equations given by:

T
90G/0X;=0,i=1,---,7, where Xz[r{l“,87+1,T;+1,83+1,A1,A2,A3 . (4.21)

Since the derivative of G with respect to a Lagrange multipliers is just the corresponding
constraint equation, parameter values that satisfy 0G /9X;=0 perforce obey the constraint
equations. Numerical solutions to this problem can be sought with Newton’s method for
the system of equations given in Eq. (4.21).

In practice, the terms in the objective function G are nondimensionalized by local
representative values, so that the contributions to G are roughly comparable. One such
nondimensionalization is:

o= (17— 17417 17
w05 (py ) s (7 ) /P
Th [(ClTlnH +o1 ) —T"H} /T+Az [(cls’}“ +coel ™) —s”“} /&

+5{ [eq+1—eq+p1<rf+1—rf)] . [eg“ el Py(gH! —T;)] b2 (4.22)

where p, T, and ¢ are representative (non-zero) values of the pressure, specific volume,
and SIE, respectively, of the entire zone at t" (e.g., p?mix, etc.). The properties of the
individual constituents that result from this minimization process are used to define the
common cell pressure, which we discuss in the next section.

4.2 Relaxation to a single pressure

Unlike the instantaneous pressure equilibration model, this approach does not imply an
unambiguous value for the pressure of the mixed cell. Consistent with the solution of the
set of coupled model equations, one could assign the overall mixed-cell pressure value
as a spatial average of the two updated pressures:

P =T = (D + ) pi 1+ (Qs+ Q) p3 . (4.23)
Alternatively, one could use the information from the sub-cell dynamical evolution
model to assign a single pressure to the mixed cell pressure based on the extent of the
wave propagation in the associated Riemann problem:

M = 5= pi+ (o + Q) p* + Quph. (4.24)

pimix
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These values enter into the overall algorithm in Egs. (2.22), (2.28), (2.31), and (2.37). In the
results of Section 5, the common pressure given in Eq. (4.23) is used. For the test problems
examined, the difference in results between these two definitions of the common pressure
is minor.

To motivate heuristically why this approach leads to pressure equilibration with in-
creasing time, we consider the structure of the Riemann problem solutions. For poly-
tropic gases, the four non-degenerate Riemann problem solution configurations can be
denoted, following Gottlieb & Groth [12], as RCS, RCR, SCR, and SCS, where the order
corresponds to the wave family from left to right, and the letter identifies the particu-
lar wave: “R” means a rarefaction fan, “C” denotes a contact (across which the pressure
equals the star-state value and is continuous), and “S” indicates a shock.! There are two
cases: (1) the star-state pressure, p*, is bounded by the pressures on the left and right
(as happens, e.g, in the case of equal polytropic indices for the RCS and SCR solutions
with no initial velocity) and (2) p* exceeds the extremal left and right pressures (i.e., p* is
either less than the minimum pressure or greater than the maximum pressure, e.g., in the
case of equal polytropic indices for the RCR and SCS solutions with no initial velocity).

Consider the first case and assume that p} < p* < pj (the case with p} > p* > p} is
similar). For material 1, the result of the minimization process, p'f“, must be bounded
by p and p*: if it were not, then one could always find a value 7 *! that would give a
smaller value of the convex combination in Eq. (4.17). An analogous argument holds for

material 2. Thus, at the end of the timestep we have the ordering,

pl<pi™<p'<piti<ps.

Therefore, the pressure difference at the end of the timestep, |pf ™ —p4 ™|, is less than the

pressure difference at the start of the timestep, |p] —p5|, i.e., the pressures are relaxing
toward equilibrium.

Consider now the second case and assume, without loss of generality, that p* < pf,
ps; for the sake of argument, further assume that p} < p5. In material 1, the result of
the minimization process, p}*!, must again be bounded by p¥ and p*, and similarly for
material 2:

p<pii<pl and p'<pyti<p.
Considering possible values of the positive numbers Qj in Egs. (4.17) and (4.18), it is
conceivable that the pressure difference could increase during the timestep (not account-
ing for the effect of the other constraints). This analysis leads us to conclude that these
inequalities alone are insufficient to ensure that the pressures necessarily tend toward

equilibrium, i.e., one cannot immediately infer that

Ipi =Py < |pi =P

Iwe ignore the vacuum boundary case. Additionally, the fifth case of the polytropic gas Riemann solutions
is the degenerate situation in which a vacuum region develops between the opposing rarefaction waves, i.e.,
RCVCR, in the above notation. The consequences of this situation with respect to pressure equilibration are
comparable to those of the RCR case.



J. R. Kamm and M. J. Shashkov / Commun. Comput. Phys., 7 (2010), pp. 927-976 941

Additional special cases are those of a uniformly translating contact and a uniformly
propagating shock. The former perforce obeys pressure equilibrium from #* to t**!, while
the latter necessarily maintains pressure non-equilibrium through the timestep.

Therefore, while it is plausible that some initial (i.e., ") mixed-cell conditions lead to
a decrease in pressure difference over the course of a timestep with our model (i.e., relax
toward pressure equilibrium), other initial conditions in the mixed-cell lead to the pres-
sure difference between materials 1 and 2 increasing, at least temporarily. This (local)
increase in the pressure difference between materials 1 and 2 is evident in some of the
mixed-cell pressure time history results of Section 5; see, e.g., Fig. 19. All of the test prob-
lems we consider in Section 5, however, lead to pressure equilibrium in the multi-material
cell at late times. We speculate that the constituent pressures are driven, at late time, to
the star-state pressure of a Riemann problem toward which the mixed cell evolves over
many cycles. This speculation assumes that there are no other perturbations that enter
the cell and drive it from equilibrium (such as occurs, e.g., in the problem of Section 5.4
and evident in Fig. 24). In future work, we plan to perform more rigorous tests of this
hypothesis.

4.3 2-material Riemann-problem/relaxation model: numerical
implementation

The (single) pressure of a (two-material) mixed cell, p?mix, where inx is the index of the

mixed cell, enters into the overall algorithm, influencing the updated velocities at the
edges of the mixed cell. Therefore, the manner in which an overall pressure for the multi-
material mixed cell is assigned will have a direct impact on the overall results. In the
predictor phase, this value enters in the evaluation of the predictor velocity u?“’* in
Eq. (2.22), which influences the cell edges positions in Eq. (2.24), cell volumes in Eq. (2.25),
etc., as well as in the predictor SIE in Eq. (2.28). Similarly, in the corrector phase, the cell
velocities, edges, volumes, etc., are affected by the predictor value of the sole mixed-cell
pressure in Egs. (2.31)-(2.37). The pressures of the individual constituents in a multi-
material cell are used to generate a single, overall pressure for the entire cell. In addition
to this value, the updated values of the state of the two materials (viz., the specific vol-
umes and SIEs) must be carried along into the next computational cycle.

We now describe an algorithmic implementation of the mixed cell model. As men-
tioned earlier, assume that we have, at time ", a common pressure value, p?mix, for the
mixed cell as well as the thermodynamic variables for the individual constituents, 77,
e, 7}, €. In the predictor phase, the steps listed in Egs. (2.21)-(2.28) are followed ex-
actly, where the common pressure value from the previous timestep, p?mix, is used for the
mixed cell. After the step in Eq. (2.28), predictor values for the overall mixed cell specific
volume and SIE are generated. Instead of the single-material pressure evaluation given
in Eq. (2.29), one invokes the mixed-cell model.

The full evaluation of the predictor values for the mixed cell is as follows.
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1. Starting with the initial conditions specified by the mixed-cell state at t", solve the mixed-cell pre-
dictor Riemann problem over the timestep Jt, which we represent notionally as R(t{,€f,7},€4;t).

2. Use those results to determine the star-state pressure and the extent of wave propagation:
R(t' e}, 1),€5;0t) = p* and O, j=1,---,4 (see Eq. (4.13)); these quantities are used in the
evaluation of the pressure-difference expressions in Eqs. (4.17) and (4.18).

3. Obtain a solution of the associated minimization problem, given in Egs. (4.19) and (4.20), for

predictor values of the thermodynamic state of the individual constituents, T{'H’*, e'{“'*, T2n+1’*,
i "1™ using the values at " as an initial guess.
4. Evaluate the predictor component pressures with EOS calls: p" P\ =P (¢ H1* %) k=1, 2.
P k k

5. Evaluate the predictor common pressure, p"+1*, according to either Eq. (4.23) or Eq. (4.24).

For the corrector phase, the steps listed in Egs. (2.30)-(2.37) are followed, where the
predictor common pressure value, p" "1, is now used for the mixed cell. Instead of the
single-material pressure evaluation given in Eq. (2.38), the corrector phase of the mixed-
cell model is evaluated.

1. Starting with the initial conditions specified by the mixed-cell state at t", solve the mixed-cell
Riemann problem over the timestep 0t: R(t{,€,75,€5;0t).

2. Use the results of this problem to determirle the star-state pressure and the extent of wave
propagation: (], €], 1),€5;0t) = p* and Q);, j=1,---,4 (see Eq. (4.13)), with which one can
evaluate terms of the pressure-difference expressions in Egs. (4.17) and (4.18).

3. Solve the associated minimization problem, given in Egs. (4.19) and (4.20), for updated values
of the thermodynamic state of the individual constituents, T1”+1, s'{“, T;“, ng; here, the
predictor values of these quantities can be used as an initial guess.

4. Evaluate the corrector component pressures with EOS calls: pZH ZP(T]?H,S’ZH), k=1, 2.

5. Model the final common pressure, p"*!, according to either Eq. (4.23) or Eq. (4.24).

4.4 Tipton’s method for pressure relaxation

In this section, we describe the assumptions and implementation of Tipton’s method for
pressure relaxation [28,30]. In Section 5 we compare the results of our approach with
those based on Tipton’s method. The underlying integrator for our implementation of
Tipton’s approach is based on a two-step method, in which certain quantities are first
updated to the half-timestep level, and then all flow field quantities are updated to the fi-
nal time. More specifically, half-timestep updates are made for node positions (using the
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trajectory equation), as well as cell volumes and cell densities (both based on updated
node positions); the half-timestep pressure is evaluated using an adiabatic approxima-
tion. The final timestep updates begin with the velocity (updated from the momentum
equation using the half-timestep pressures), followed by the position (using the trajectory
equation with time-centered velocities), cell volumes and densities (using updated node
positions), and the SIE (using the updated pdV work); for consistency, the final pressure
is obtained with a full EOS call.
Specifically, this algorithm can be written as follows for pure material cells.

Half-timestep Update

X2y (5t/2) ul, (4.25)
+1/2 _ .n+1/2 +1/2
Visa =xin tmxs, (4.26)
1/2 1/2
T =V  Miga s, (4.27)
2 n+1/2
w12 (st 0)" Vi), 428
Pit1/2 =Pit1/2~ vn . (4.28)
i+1/2 i+1/2

Full-timestep Update

m; W - A (p;l“/z) ) (4.29)

= uftl=ul - i_tl (p?:ll//zz_ p?jll//zz) ’ (4.30)
Wi/ = % (rvurt), 4.31)
x?H —x! +5t~u?+1/2, (4.32)
Vﬁl/zZX?If —xt (4.33)
Tirfll/z = Vz‘iﬁll/z/MiH /21 (4.34)
Miy1/2 (s?j11/2*€?+1/2) = *P?jll//zz ‘5‘4‘1451/2 (4.35)

= &=l =P Vi My, (4.36)
P?ﬂl/z = P(Tirﬁl/zrf?jll /2)s (4.37)

where 5VZT1]/2 = V;ﬁ]/z — Vi1, with j=1/2 or 1.

Tipton’s multi-material model is based on this two-step scheme. In the following
presentation of the multi-material model, subscripts indicate the material identifier, not
the cell index. For this algorithm with two materials, there are three unknowns, the first
two of which consist of the volume changes of the two materials in the mixed cell at

the half-timestep, 5Vlf+1/ 2 k=1,2. The next assumption of the model introduces the
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third unknown as the overall half-timestep pressure, p"*1/2, which is the same for all
materials and is assumed equal to the sum of the half-timestep pressure for each material
and a half-timestep relaxation term for that material:

p”“/z:pzﬂ/z-l-RZH/zr k=1,2. (4.38)

The first term on the RHS of this equation, the half-timestep pressure of the kth mate-
rial, is evaluated with an adiabatic approximation (as in the pure-material half-timestep
update of Eq. (4.28)) that includes this material’s unknown volume change:

2 n+1/2
n+1/2 _ n (csg)” Vi

Px pk—T—]? VI?

(4.39)

The second term on the RHS of Eq. (4.38), the relaxation term for the kth material, is
posited to be of a form evocative of a traditional linear artificial viscosity that also is
based this material’s unknown volume change:

n n+1/2
_ s LMoy

Rn+1/2:
k I TR

(4.40)

where L" is a characteristic length for the mixed cell (typically the overall cell size). To
close this model, one enforces that the sum of the (unknown) volume changes of all ma-
terials must equal the overall volume change of the mixed cell, V1 t1/2 which is known
from a standard the half-timestep update (using the expression in Eq. (4.26) and the over-
all volume at t"):

(SVl’r1+1/2_|_5V2n+1/2:5Vn+1/2_ (4.41)

As was done for the single-material cells in the rest of the half-timestep update, the
new volumes and corresponding volume changes can now be computed for each mate-
rial. To achieve this for a multiple-material cell, one combines the above expressions and
writes the governing relations for the mixed cell as the following set of linear equations
in the unknowns (5\/1”“/2, 5V2”+1/2, and p"*+1/2;

pi— By (oVi A v ) =g, k=12, eV syt g2 )

where
By =p) [(cs)? /7| [14+L7/ (csot)], k=12 (4.43)

This linear system of equations has the solution:

_syntl/2 \Val _ Syntl/2
p i/ 2=p"—B" and 5V,;1+1/2:B—’;[(p2—;5”)+B” o |- k=12, (444)
k
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where the barred values are the volume-fraction-averaged quantities given by:

R () E(E) = [E(E)] o

with fy=Vy/V representing the volume fraction of the kth material. Eq. (4.44) for ¢ VIfH/ 2
indicates that two factors contribute to the volume change in the kth material. The first
component is the difference between the pressure in the kth material and the “averaged”
pressure given by p", while the second factor is related to the overall volume change of
the entire mixed cell.

The volume of the kth material is related to the overall cell volume V via the volume
fraction f, i.e., Vx = f¢ V. Thus, one can derive the following equation for the change in
the volume fraction at the end of the half-timestep:

= =) /B LB/ B =] (Vi) ade)

These relations provide the necessary information at the half-timestep to update val-
ues to the end of the timestep. To do so, we invoke the last assumption of this model,
namely, that the individual materials’ volume changes at "1 = "+t = t"+2-(6t/2)
equal twice the half-timestep values:

Sfutl=25f111/2, (4.47)
The individual volume fractions are updated according to:
n+l fn+(sfn+l. (448)

Using these values, the corresponding volumes of each material in the mixed cell are
evaluated (using the updated overall cell volume from Eq. (4.33)) :

Vk71+1 :f]i7+1 Vn+1, (449)
along with each material’s density and volume change:
Pt =M /V! and SV =V -V (4.50)

As in the overall cell case, the SIE for each material is obtained from the updated pdV
work:

et =ef—p" 25V My, (4.51)
Lastly, the individual pressures are consistently evaluated with full EOS calls:
Pt =P(0 e, (4.52)

In the actual implementation, one adds an artificial viscosity term (e.g., to Eq. (4.30)),
the specific form of which will affect the computed results. Furthermore, one can con-
ceive of modifications to this method, e.g., by altering the relative contribution of the
terms in Eq. (4.46) in order to account, say, for the sub-cell interaction of materials having
disparate properties (e.g., small volume fractions). Such modifications may change the
results for Tipton’s method on the test problems, to which we now turn.
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5 Test problems and results

We examine several different test problems found in the compressible flow literature in
order to evaluate the methods described above. We focus on problems with exact so-
lutions, so that we can rigorously compare the quantitative errors associated with dif-
ferent methods. While several test problems exist and are used by the single-material
compressible flow algorithm development community (see, e.g., the overview by Liska
& Wendroff [21]), fewer problems are available for code verification of multifluid com-
pressible flow (see, e.g., [14,32,33]).

For results of both the Riemann-relaxation and Tipton’s methods on the test prob-
lems consider, the mesh consists of N, zones, each of identical dimension 1/(N,+1),
with the exception of a single multi-material zone, which is of width 2/(Ny+1). In that
multi-material zone, the mass and volume fractions are assigned to be consistent with
the initial conditions; also, the initial volume fractions are assigned to be consistent with
the initial interface between the two materials being located at the geometric center of
the cell. We also compare with a pure-material calculation, i.e., with no mixed cell, in
which all cells are initially the same width; these calculations contain one more cell than
the multi-material calculations, so that for pure-material calculations with N,+1 zones,
each zone is of width 1/(Ny+1), with the multi-material zone of the other methods ef-
fectively split into two pure-material zones of equal dimension. There is no need for our
method to be used exclusively either with mixed cells that are larger than the non-mixed
cells or with the interface in the middle of the mixed cell. We have set up the test prob-
lems in the manner described above in order to compare, as closely as possible, to the
corresponding pure-material calculations. All problems were run with the same value of
CFL constant, equal to 0.25. We have examined the modified Sod problem of Section 5.2
at several different CFL numbers. For values at or less than 0.5, the results appear to be
essentially insensitive to the particular CFL value. At some higher values of CFL number,
however, numerical instabilities were seen to develop. These instabilities were evident
both in calculations with the multi-material zones and in the pure-material calculations.
We suspect that the CFL threshold for instability, which may be problem-dependent, is
related to the underlying integrator and not an aspect of the multiple-material model.
The precise threshold for this instability and its root cause remain topics for further in-
vestigation. When Newton’s method is used, we imposed an absolute L; convergence
tolerance of at least 1071 in the nondimensional test cases and 10~ in the dimensional
water-air shock tube problem of Section 5.5. For the results presented here, we assign the
single mixed-cell pressure as the spatially averaged value of the two sub-cell pressures
of the constituent materials, i.e., as that given in Eq. (4.23). We present graphical results
consisting of snapshots of the computed and exact flow fields at the final time along with
time-histories of the material state properties of the two materials in the multi-material
cell or, in the pure-material calculation, adjacent to the interface. Additionally, we quan-
tify the error between the computed results and the exact solution.
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Figure 3: Computed results (solid line) for the Sod shock tube problem with the new method for 99 zones on
[0,1] at t=0.2. The difference (dotted line) between the computed and exact (dashed line) solutions is plotted
against the right ordinate. The values corresponding to the individual materials in the mixed cell are denoted
by the symbol e.

5.1 The Sod shock tube

The Sod shock tube problem [29] is defined as the behavior of a polytropic gas with the
following non-dimensional initial conditions:

(14,1, 25,1, 0), if 0 <x<05,

51
(1.4,0.125,2, 0.1,0), if 0.5<x<1, G1)

(7,08 p,1) :{

with a final time of ¢, =0.2. This single-material problem is run to verify our basic im-
plementation of the two-material algorithms. We refer to the material to the left of x=0.5
(“the interface”) as “material 1” and the material to the right as “material 2.” The initial
condition of the mixed cell, centered at x=0.5, consists of these two disparate states. The
developing structure consists of a rarefaction wave moving to the left, a contact discon-
tinuity (corresponding to the initial discontinuity between the two states) moving right,
and a shockwave moving right (faster than the contact). The exact solution to this prob-
lem is evaluated and used to quantify the error in the computed solution.

Results of our method on this problem are shown in Figs. 3-10. Shown in Fig. 3 are,
clockwise from the upper left, plots of the mass density, pressure, velocity, and SIE at
the final time. These plots contain the computed values (solid line) and exact solution
(dashed line) plotted against the left ordinate and the signed difference between the ex-
act and computed results (dotted line) plotted against the right ordinate. The values
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Figure 4: Computed results (solid line) for the Sod shock tube problem with Tipton's method for 99 zones on
[0,1] at £=0.2. The difference (dotted line) between the computed and exact (dashed line) solutions is plotted
against the right ordinate. The values corresponding to the individual materials in the mixed cell are denoted

by the symbol e.

0 0.2 0.4 0.6
X

(a) Density

3.5

Specific Internal Energy

0.8

0.2

(c) Specific Internal Energy

Velocity

0 02 04 06 08 1
X

(b) Pressure

0.8 -

0.4

(d) Velocity

Figure 5: Computed results (solid line) for the Sod shock tube problem with pure cells for 100 zones on [0,1] at
t=0.2. The difference (dotted line) between the computed and exact (dashed line) solutions is plotted against
the right ordinate. The values for the individual materials adjacent to the interface are denoted by the symbol e.
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Figure 6: Results for the Sod shock tube problem on [0,1] at +=0.2 for (from left to right) pressure, mass
density, and SIE, with (from top to bottom) the new method (99 zones), Tipton's method (99 zones), and the
pure-cell calculation (100 zones). The computed results are the solid line and the exact solution is the dashed
line.
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Figure 7: Plot of the L1 norm of the difference between the computed results and exact solution on [0,1] at +=0.2
for the Sod shock tube problem with the new method (left), Tipton's method (center) and the pure-material
calculations (right). The values of the norm for the 99-, 199-, 399-, and 799-zone multi-material calculations
and the 100-, 200-, 400- and 800-cell pure-material calculation are shown for the pressure (O), density (O), SIE
(©), and velocity (A). The curve fit parameters corresponding to these data are given in Table 1.



950 J. R. Kamm and M. J. Shashkov / Commun. Comput. Phys., 7 (2010), pp. 927-976

Table 1: Lj norms of the difference between exact and computed Sod problem results, computed pointwise at
t=0.2, for the given variables with the indicated number of points on the unit interval for, from top to bottom,
the new method, Tipton's method, and the pure-material calculation. The prefactor A and convergence rate

o are least-squares fits to the relation given in Eq. (5.2). The values of ¢ close to unity suggest first-order
convergence.

New Method
99 199 399 799 A o
p | 862x107° 432x10° 219x10°° 1.09x10° 0.83 0.99
p | 856x107% 4.30x107% 2.16x107% 1.09x107% 0.83 0.99
e | 248x1072 127x1072 621x1073 3.12x1073 252 1.00
u | 230x1072 1.16x1072 532x107° 271x107° 275 1.04
Tipton’s Method
99 199 399 799 A o
p | 946x1073 478x10°% 244x10°3 1.23x10°2 0.83 0.97
p | 928x107° 4.82x107% 245x10~% 1.23x10°% 0.87 0.98
e | 270x1072 146x1072 723x1073 3.63x1073 240 097
u | 216x1072 122x1072 567x107% 2.89x1073 2.04 098
Pure Material
100 200 400 800 A o
p | 633x107° 348x10°° 1.75x10°° 8.73x10°* 0.68 1.00
p | 692x107% 3.19x107% 1.61x1073 8.01x107* 0.62 0.99
e | 205x1072 1.05x1072 532x107% 254x107% 211 1.00
u | 205x1072 1.04x1072 529x10°% 2.39x10~% 237 1.03

corresponding to the individual material in the mixed cell are indicated with the sym-
bol . Errors are present at the usual locations, e.g., at the head and tail of the rarefaction
and at the shock, together with overshoots and undershoots at the contact. The SIE in
Fig. 3(c) exhibits obvious overshoot on the rarefaction-side of the contact. Correspond-
ing plots of results for the mixed-cell method of Tipton and the pure-cell calculation are
given in Figs. 4 and 5. Comparison of the three methods’ results (without the errors) for
the mass density, pressure, and SIE is provided in Fig. (6), which shows that the results
for all methods exhibit slight differences: the tail of the rarefaction is less accurate with
Tipton’s method, which also undershoots density and overshoots SIE at the contact most
significantly. Table 1 catalogues the L1 norm of the error between the computed results
and the exact solution for the same flow variables, for each of the three methods on all
meshes. Also included in that table is the outcome of fitting these results to the error
ansatz,

‘ ‘]/computed _]/exact‘ ‘1 =AAx7, (5.2)
where Ax is the initial, uniform mesh spacing of the problem (in all but the mixed cell).

These values are depicted graphically in Fig. 7. These results suggest overall first-order
convergence of the methods in all cases.
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Figure 8: Time-history plots for the Sod shock tube problem on [0,1] with the new method of the (from left to
right) pressure, the mass density, and SIE of the two materials in the mixed cell, for the (from top to bottom)
99-, 199-, 399-, and 799-cell results. The solid line indicates the left material (material 1) and a dotted line
represents the right material (material 2).

Fig. 8 contains time-history plots for the new method of the (from left to right) pres-
sure, the mass density, and SIE of the two materials in the mixed cell, for the (from top to
bottom) 99-, 199-, 399-, and 799-cell calculations. In these figures, the solid line indicates
the left material (material 1) and a dotted line represents the right material (material 2).
It is clear from these results that pressure equilibrium obtains for this problem by this
method. Note that relaxation to pressure equilibrium is not monotonic in time. More-
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Figure 9: Time-history plots for the Sod shock tube problem on [0,1] of the (from left to right) pressure, the
mass density, and SIE, with (from top to bottom) the new method (99 zones), Tipton's method (99 zones),
and the pure-cell calculation (100 zones): the top two rows are for the two materials in the mixed cell, while
the bottom row is for the cells immediately adjacent to the material interface. The solid line indicates the left
material (material 1), the dotted line represents the right material (material 2), and the bullets represent the
exact solution at the final time.

over, the zoning study shows that the effective relaxation effect is proportional to the
mesh spacing; this characteristic is the same in all test problems considered and, so, we
do not present the corresponding figures for the other problems. Fig. 9 contains plots
of these time-histories on the coarsest grid for the three methods. The relaxation time
is comparable for all methods, with Tipton’s method perhaps slightly slower. The ap-
proach to equilibrium differs among the methods, however, with the final values of the
new method closer to those of the pure-material calculation than to those of Tipton’s
method. Table 2 gives the values adjacent to the material interface at the final time on the
finest grid, together with the exact solution at the contact interface. The Tipton locations
and pressures are slightly closer to exact values, while the new method’s locations and
pressures are closer to the pure-material calculation; additionally, the density and SIE of
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on the coarsest mesh. The left plot shows the behavior for the entire simulation time, while the right plot shows
the early-time behavior. The solid line corresponds to the new method, the dashed line to Tipton’s method,
and the dotted line to the pure-material calculation.

the new method are closer to both the exact and pure-material values. Fig. 10 shows the
position of the material interface as a function of time. The methods’ results vary slightly
at early time (shown on the right), with the results of the new method very similar to
those of the pure-material calculation at late time.

Table 2: Sod problem at +=0.2: the top two rows give the contact location for the exact solution and the
material-centered positions adjacent to the interface for the computed results on the finest grid (new method
in the mixed cell, Tipton’s method in the mixed cell, and the pure-material calculation), while the subsequent
rows contain the corresponding flow field values for the various approaches.

Exact New Tipton Pure
x1 _, 6.83852x1071 6.83688x101 6.83962x 10!
X2 685491107 ( 85764x10! 6.85635x10°!  6.85745x 10!
p1 | 3.03130 <1071 3.03123x10~! 3.03128x10~! 3.03119x 10!
pa | 3.03130x10~1  3.03123x10~! 3.03128x10~! 3.03119x 107!
p1 | 426319x10°1  3.89645x10~! 3.89070x10~! 4.25102x107!
P2 | 2.65574x1071 2534511071 2.29711x10~! 249489 x 10!
er | 1.77760 1.94487 1.94777 1.78263
ey | 2.85354 2.98996 3.29902 3.03740

5.2 The modified Sod shock tube

Various authors have proposed modifications to the standard Sod shock tube problem
discussed in the previous section. We consider the variant introduced by Barlow [4] and
described by Shashkov [28], with the following non-dimensional initial conditions:

(2/ 1/ 2/ 2/ O)/
(1.4,0.125,2, 0.1, 0),

if 0<x<0.5,

. (5:3)
if0.5<x<1,

(7,0.8p,1) :{
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Figure 11: Computed results (solid line) for the modified Sod shock tube problem with the new method for 99
zones on [0,1] at t=0.2. The difference (dotted line) between the computed and exact (dashed line) solutions
is plotted against the right ordinate. The values corresponding to the individual materials in the mixed cell are
denoted by the symbol e.

with a final time of £, =0.2. As for the standard Sod case, the initial condition of the
mixed cell, again centered at x =0.5, contains both of these two distinct states; unlike the
that case, however, this is a genuine two-material problem. The solution structure is the
same as the standard Sod case; however, this modified problem allows one to test the
truly multi-material aspects of our algorithm.

Results of our method on this problem are shown in Figs. 11-15. Shown in Fig. 11
are, clockwise from the upper left, plots of the mass density, pressure, velocity, and SIE
at the final time. These plots contain the computed values (solid line) and exact solution
(dashed line) plotted against the left ordinate and the signed difference between the exact
and computed results (dotted line) plotted against the right ordinate. The values corre-
sponding to the individual material in the mixed cell are indicated with the symbol e. The
stronger initial pressure difference of this problem leads to greater over- and undershoot
at the shock than the standard Sod problem; as in the standard Sod results, overshoot
in the rarefaction-side SIE is seen. Fig. 12 contains results for all three methods. The re-
sults are similar to those for the standard Sod problem, with the Tipton method results
standing out by having the least accurate rarefaction tail as well as the greatest density
undershoot and SIE overshoot at the contact.
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Figure 12: Results for the modified Sod shock tube problem on [0,1] at +=0.2 for (from left to right) pressure,
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Figure 13: Plot of the L1 norm of the difference between the computed results and exact solution on [0,1] at
t=0.2 for the modified Sod shock tube problem with the new method (left), Tipton's method (center) and the
pure-material calculations (right). The values of the norm for the 99-, 199-, 399-, and 799-zone multi-material
calculations and the 100-, 200-, 400- and 800-cell pure-material calculation are shown for the pressure (O),
density (O), SIE (<), and velocity (A). The curve fit parameters corresponding to these data are given in
Table 3.
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Table 3: Lj norms of the difference between exact and computed modified Sod problem results, computed
pointwise at t=0.2, for the given variables with the indicated number of points on the unit interval for, from
top to bottom, the new method, Tipton's method, and the pure-material calculation. The prefactor A and
convergence rate o are least-squares fits to the relation given in Eq. (5.2). The values of ¢ close to unity suggest
first-order convergence.

New Method
99 199 399 799 A o
p | 1.70x1072 823x10°3 4.12x10~3 213x10~3 1.66 1.00
p | 1.07x1072 522x107% 2.61x107% 1.35x107% 1.04 1.00
e | 437x1072 3.07x1072 1.03x1072 549x10~% 422 1.00
u | 312x1072 142x1072 7.00x1073 391x10~3 299 1.00
Tipton’s Method
99 199 399 799 A o
p | 1.98x1072 9.82x10°° 4.93x10° 254x10° 1.86 0.99
p | 1.18x1072 582x107% 292x1073 151x1073 1.11 0.9
e | 431x1072 2.09x1072 1.04x1072 556x10~3 398 0.99
u | 337x1072 158x1072 7.80x10~3 432x1073 3.11 0.99
Pure Material
100 200 400 800 A o
p | 1.17x1072 584x10°° 293x10° 147x10° 1.15 1.00
p | 592x107% 298x107% 1.50x107% 7.49x107* 058 0.99
e | 233x1072 121x1072 6.01x10~% 295x10~% 232 1.00
u | 211x1072 1.13x1072 555x1073 267x1073 2.15 1.00

Table 3 shows the L; norm of the error between the computed results and the exact
solution for these flow variables, for each of the three methods on all meshes, together
with the fit of those results to the ansatz in Eq. (5.2). The convergence results are slightly
more uniform for this problem than for the standard Sod problem. These values are
plotted in Fig. 13.

Plots of time-histories on the coarsest grid for all three methods are shown in Fig. 14.
The nature of the pressure-equilibration varies among the three methods. The final val-
ues of density and SIE differ slightly among methods, with those of the new and pure-
material calculation being more similar to each other than to the Tipton values. The
time-history results under mesh resolution are qualitatively very similar to those of the
standard Sod problem.

Table 4 gives the values adjacent to the material interface at the final time on the finest
grid, together with the exact solution at the contact interface. The results for the new
method are, in general, closer to the corresponding values for both the exact and pure-
material calculations. Fig. 15 shows the position of the material interface as a function of
time. These results are similar to the standard Sod problem results, with the results of the
new method similar to those of the pure-material calculation at all but the earliest times.
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Figure 14: Time-history plots for the modified Sod shock tube problem of the (from left to right) pressure, the
mass density, and SIE, with (from top to bottom) the new method (99 zones), Tipton's method (99 zones),
and the pure-cell calculation (100 zones): the top two rows are for the two materials in the mixed cell, while
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exact solution at the final time.
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Figure 15: Plot of the position of the material interface as a function of time for the modified Sod shock tube
problem on the coarsest mesh. The left plot shows the behavior for the entire simulation time, while the right
plot shows the early-time behavior. The solid line corresponds to the new method, the dashed line to Tipton's
method, and the dotted line to the pure-material calculation.
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Table 4: Modified Sod problem at t=0.2: the top two rows give the contact location for the exact solution
and the material-centered positions adjacent to the interface for the computed results on the finest grid (new
method in the mixed cell, Tipton's method in the mixed cell, and the pure-material calculation), while the

subsequent rows contain the corresponding flow field values for the various approaches.

Exact New Tipton Pure

x1 _1 7.53723x10°1 7.53528x10°1 7.53760x 10!
X7 7:55142>10 7.55615x 1071 7.55485x10"!1 7.55384 x 107!
p1 | 4.30332x1071  4.30325x 10~ 4.30329x 10! 4.30323x10~!
pa | 4.30332x1071  4.30325x10°!  4.30329x 10! 4.30323x 10!
p1 | 4.63860x 1071 3.84173x10~!1 3.79078 x 10~  4.60497 x 10!
p2 | 3.25380x 1071 2.94700x 1071 2.54108x10~' 2.92835x 107!
er | 9.27720x10°1  1.12013 1.13520 9.34476 x 101
e, | 3.30638 3.65053 423372 3.67377

5.3 Moving shock problem

Like the first Sod problem, the moving shock problem is a single-material test, but of a
fundamentally different phenomenon. This problem tests the steady propagation of a
shock wave in a uniform material and is used to assesses the impact of the multi-material
algorithm on the otherwise uniform flow. The non-dimensional initial conditions are:

(5/3,4, 05, 4/3, 1), if—1<x<0,

5.4
(5/3,1,107%, 2/3x107%,0), if0<x<1, 64

(v.p.epu)= {
with a final time of #;,, =0.5. These initial conditions approximate an infinitely strong
shock wave moving into quiescent gas at speed us; =4/3. The default mesh for this
problem contains 255 cells on —1 <x<1. The mixed cell is initially centered at x=0.0 and
contains the two states indicated above.

Results of our method on this problem are shown in Figs. 16-20. Shown in Fig. 16 are,
clockwise from the upper left, plots of the mass density, pressure, velocity, and SIE at the
final time; again, the computed values (solid line) and exact solution (dashed line) are
plotted against the left ordinate and the signed differences between these values (dotted
line) are plotted against the right ordinate, with the mixed-cell values indicated by the
symbol e. The perturbation in the results to the right of the origin in these plots is a
residual of the start-up error associated with the initial shock location at the origin.**
The additional discrepancies in the solutions are associated with the original interface (at
x=0.5) and the shock (at x =2/3), where, again, over- and under-shoots occur, with the
density overshoot being most pronounced. Comparison of coarse-grid results for these
quantities in Fig. 17 indicates that both the new method and Tipton’s method produce the
most significant discrepancies near the contact in mass density and SIE. Table 5 shows the
Li norm of the error between the computed results and the exact solution for these flow

**Evocative of this phenomenon are post-shock oscillations, as discussed by Arora & Roe [2] and LeV-
eque [20] for Eulerian shock capturing schemes.
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Figure 16: Computed results (solid line) for the moving shock with the new method for 255 zones on [—1,1] at
t=0.5. The difference (dotted line) between the computed and exact (dashed line) solutions is plotted against
the right ordinate. The values corresponding to the individual materials in the mixed cell are denoted by the
symbol e.

variables, for each of the three methods on all meshes, together with the fit of those results
to the ansatz in Eq. (5.2). These values are depicted graphically in Fig. 18. These results
again suggest overall first-order convergence of the methods.

Time-histories on the coarsest grid for the three methods are given in Fig. 19. The
results for the new method here present a clear example of the pressure difference de-
creasing at early time, increasing at intermediate time, and then relaxing to zero at late
times. The pressure histories for this problem support the contention posited in Sec-
tion 4.2, that the pressures computed with this model do relax to equilibrium, but in a
possibly non-monotonic manner. Comparison of these calculations shows notable differ-
ences in behavior. While the pressure for each method equilibrates to approximately the
same value, the time-dependence of that relaxation clearly differs among the methods.
The mass density and SIE show notably different behavior: the new method and pure-
material calculation give final values that are more similar than the Tipton values, which
are of reversed order. Table 6 gives the values adjacent to the material interface at the
final time on the finest grid, together with the exact solution at the contact interface. For
both Tipton and the pure-material calculation, the interface is slightly to the left of (be-
hind) where it should be; however, the new method gives slightly greater (resp., smaller)
point-wise error in material 1 (resp., 2) than Tipton and the pure-material result. Fig. 20
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Figure 17: Results for the moving shock problem on [—1,1] at t=0.5 with (from left to right) the new method
(255 zones), Tipton's method (255 zones), and the pure-cell calculation (256 zones), for (from top to bottom)
density, pressure, SIE, and velocity. The computed results are the solid line and the exact solution is the dashed
line.
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Figure 18: Plot of the L1 norm of the difference between the computed results and exact solution for the moving
shock problem on [—1,1] at £=0.5 with the new method (left), Tipton's method (center) and the pure-material
calculations (right). The values of the norm for the 255-, 511-, and 1023-zone multi-material calculations and
the 256-, 512-, and 1024-cell pure-material calculation are shown for the pressure (O), density (O), SIE (<),
and velocity (A). The curve fit parameters corresponding to these data are given in Table 5.
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Table 5: L; norms of the difference between exact and computed moving shock problem results, computed
pointwise at t=0.5, for the given variables with the indicated number of points on the unit interval for, from
top to bottom, the new method, Tipton's method, and the pure-material calculation. The prefactor A and
convergence rate o are least-squares fits to the relation given in Eq. (5.2). The values of ¢ close to unity suggest
first-order convergence.

New Method
255 511 1023 A o
p | 677x107° 334x107° 1.80x10~° 0.69 0.96
p | 212x107%2 1.09x1072 555x1073 230 0.97
e | 229%x1073 122x1073 598x107%* 025 0.97
u | 3.83%x1073 2.05x1073 9.89x10~* 045 0.98
Tipton’s Method
255 511 1023 A o
p | 639x10° 321x10° 1.70x10°° 0.65 0.96
p | 1.98x1072 1.04x1072 526x107% 2.09 0.95
e | 213x1073 1.15x1073 561x107%* 023 0.96
u | 3.80x1073 198x1073 9.84x10~* 043 0.97
Pure Material
256 512 1024 A o
p |993x107° 6.99x107° 259x10°° 1.22 097
p | 256x1072 1.67x1072 6.73x1073 298 0.96
e | 253x1073 2.03x1073 6.69x10%* 0.31 0.96
u | 470x1073 2.62x1073 1.20x1073 0.58 0.99

Table 6: Moving shock problem at t=0.5: the top two rows give the contact location for the exact solution
and the material-centered positions adjacent to the interface for the computed results on the finest grid (new
method in the mixed cell, Tipton's method in the mixed cell, and the pure-material calculation), while the
subsequent rows contain the corresponding flow field values for the various approaches.

Exact New Tipton Pure
X1 _, 4.98560x10°!1 4.98419x 10~ ! 4.98302x10~!
X2 4.9998710 5.00058 x10~1  4.99900x 101 4.99676 x10!
p1 | 1.33341 1.33338 1.33338 1.33336
pa | 1.33341 1.33338 1.33338 1.33336
p1 | 4.00014 3.10224 3.47524 3.50964
P2 | 3.99925 4.09120 2.73574 3.73359
e; | 5.00012x10"!  6.44716 x10~1 5.75520x10~! 5.69870x 101
ep | 5.00123x10~!1  4.88870x10~1 7.31090x10~! 5.35687 x 101

shows the position of the material interface as a function of time. The methods’ results
differ slightly, even at early time (shown on the right): the pure-material calculation and
Tipton’s method have a similar time-history, with the interface slightly behind that of the
new method at all times.
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Figure 19: Time-history plots for the moving shock problem for (from left to right) pressure, mass density, and
SIE with (from top to bottom) the new method (255 zones), Tipton's method (255 zones), and the pure-cell
calculation (256 zones). The solid line indicates the left material (material 1), the dotted line represents the
right material (material 2), and the bullets represent the exact solution at the final time.
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Table 7: High-precision initial conditions for the shock-contact problem. This configuration corresponds to a
Mach number of 2.0 and an initial shock speed of ug=2.32379000772, so that the shock hits the material
interface at t=0.172132593165.

0<x<0.1 0.1<x<0.5 05<x<1
v 1.35 1.35 5.0
p | 444680851064 1.0 1.0
o | 2.76470588235 1.0 1.9
e | 4.59548599884 2.85714285714 0.131578947368
u | 1.48327021770 0.0 0.0

Table 8: High-precision solution for the shock-contact problem at t =0.25. Here, the reflected shock po-
sition is xrg = 0.472708981241754, the contact position is xc = 0.572446778128859, and the transmitted
shock position is x7g = 0.775299530851478. The speed of the reflected shock in the laboratory frame is
uRrs = —0.350480642253781, and the speed of the transmitted shock is uTg=3.53549118996649.

0<x<xgs XRs <X <XC Xc <x<XTs xg<x<1
1.35 1.35 5.0 5.0
4.44680851064 7.24980870307  7.24980870307 1.0
2.76470588235 3.95808583566  2.57856549437 1.9
459548599884 5.23327184191  0.702891658064 0.131578947368
1.48327021770  0.930386423194 0.930386423195 0.0

N N T

5.4 Shock-contact problem

This problem tests the transmission and reflection of a Mach 2 shock through an initially
stationary contact discontinuity between two materials with disparate adiabatic indices.
This problem was used by Banks et al. [3] to evaluate high-resolution Godunov algo-
rithms for multi-material, compressible flow in the Eulerian frame. To three significant
figures, the non-dimensional initial conditions are given by:

(1.35,2.76, 4.60, 4.45,1.48), if0<x<0.1,
(.6 p,u) =< (1.35,1.0, 2.86, 1.0, 0.0), if0.1<x<0.5, (5.5)
(5.0, 19, 0.132,1.0, 0.0), if05<x<1,

with a final time of #;,, = 0.25. The default mesh for this problem has 274 cells on the
initial domain —0.37 <x <1. In the calculations we use high-precision initial conditions,
given in Table 7, corresponding to a Mach number of two with to a shock speed of u; =
2.32. The mixed cell is initially centered at x =0.5 and contains the quiescent states of
the materials with differing adiabatic indices. The shock meets this material interface at
t=0.172. The numerical solution for the flow state at any time can be obtained using
standard shock relations (see, e.g., the report by Hurricane & Miller [15]); high-precision
results for the final time are given in Table 8.

Results of our method on this problem are shown in Figs. 21-25. Shown in Fig. 21
are, clockwise from the upper left, plots of the computed (solid line) and exact (dashed
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Figure 21: Computed results (solid line) for the shock-contact problem with the new method at t=0.25 for
274 zones initially on [—0.37,1]. The difference (dotted line) between the computed and exact (dashed line)
solutions is plotted against the right ordinate. The values corresponding to the individual materials in the mixed
cell are denoted by the symbol e.

line) mass density, pressure, velocity, and SIE at the final time, together with the signed
difference between these values (dashed lines), as well as the mixed-cell values (e). The
residual of the start-up error is evident near the origin. The reflected shock is somewhat
noisier in both density and SIE than the transmitted shock, while the contact exhibits a
notable undershoot in the constituent density. Comparison of coarse-grid results for all
methods in Fig. 22 shows that, near the contact in this problem, the new method has
slightly greater undershoot in mass density than Tipton’s method (the pure-material cal-
culation has none). Also at the contact, the overshoot in SIE of Tipton’s method is greater
than either the new method or pure-material calculation. Table 9 catalogues the L; norm
of the error between the computed results and the exact solution for these same flow vari-
ables, for each of the three methods on all meshes, together with the fit of those results to
the ansatz in Eq. 5.2. These values are plotted in Fig. 23. These results again suggest ap-
proximately first-order convergence overall for this problem, although the convergence
results for SIE are uniformly lower than for other quantities.

Fig. 24 contains time-histories on the coarsest grid for all three methods. For all meth-
ods, the approach to equilibrium is roughly similar; however, the pressure equilibration
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Figure 22: Results for the shock-contact problem at t=0.25 with (from left to right) the new method (274
zones), Tipton's method (274 zones), and the pure-cell calculation (275 zones), for (from top to bottom)
density, pressure, SIE, and velocity. The computed results are the solid line and the exact solution is the dashed
line.
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Figure 23: Plot of the Ly norm of the difference between the computed results and exact solution at t=0.25
for the shock-contact problem with the new method (left), Tipton's method (center) and the pure-material
calculations (right). The values of the norm for the 274-, 549-, 1099-, and 2199-zone multi-material calculations
and the 275-, 550-, 1100-, and 2200-cell pure-material calculation are shown for the pressure (O), density (O),
SIE (©), and velocity (A). The curve fit parameters corresponding to these data are given in Table 9.
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Figure 25: Plot of the position of the material interface as a function of time for the shock-contact problem on
the coarsest mesh. The left plot shows the behavior for the entire simulation time, while the right plot shows
the early-time behavior. The solid line corresponds to the new method, the dashed line to Tipton’s method,
and the dotted line to the pure-material calculation.
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Table 9: L{ norms of the difference between exact and computed shock-contact problem results, computed
pointwise at t =0.25, for the given variables with the indicated number of points on the unit interval for, from
top to bottom, the new method, Tipton's method, and the pure-material calculation. The prefactor A and
convergence rate o are least-squares fits to the relation given in Eq. (5.2). The values of ¢ close to unity suggest
first-order convergence.

New Method
274 549 1099 2199 A o
p | 6.89x1072 3.09x1072 1.61x10"2 8.05x10~° 150 1.02
p | 197x1072 1.05x1072 585x107% 271x107% 297 094
e | 143%x1072 6.76x1073 4.84x1073 1.99x10~3 1.66 0.80
u | 1.22x1072 7.01x1073 3.71x107% 1.74x1073 1.79 0.93
Tipton’s Method
274 549 1099 2199 A o
p | 734x107% 3.13x10°2 1.61x10> 8.09x10° 182 1.05
p | 204x1072 1.10x1072 5.64x107% 2.88x1073 3.09 0.94
e | 1.56x1072 1.02x1072 5.12x1073 2.87x10~3 134 0.83
u | 1.24x1072 6.83x1073 3.60%x1073 1.68x1073 2.06 0.96
Pure Material
275 550 1100 2200 A o
p | 707x1072 3.08x10°2 159x10°2 794x10° 168 1.04
p | 1.76x1072 1.00x1072 520x107% 2.62x1073 238 0.92
e | 1.37x1072 9.29x1073 4.70x1073 2.68x10~3 1.05 0.81
u | 1.20x1072 6.82x1073 3.60x1073 1.70x1073 1.93 0.94

Table 10: Shock-contact problem at t=0.25: the top two rows give the contact location for the exact solution
and the material-centered positions adjacent to the interface for the computed results on the finest grid (new
method in the mixed cell, Tipton's method in the mixed cell, and the pure-material calculation), while the
subsequent rows contain the corresponding flow field values for the various approaches.

Exact New Tipton Pure
X1 _, 5.72245x107 1 5.72284x10"!1 5.72286x 10"
X2 57228010 5.72597x1071  5.72623x10"!1 5.72595x 10!
p1 | 7.24981 7.24972 7.24978 7.24969
pa | 7.24981 7.24972 7.24978 7.24969
p1 | 3.95809 3.97299 3.53063 3.78162
P2 | 2.57857 2.16434 2.36322 2.61504
e1 | 5.23327 5.21358 5.86685 5.47739
er | 7.02892x1071  8.37405x 1071 7.66939x10"! 6.93077 x 101

for the new method and pure-material calculation bear greater similarity to each other
than to Tipton’s method, which exhibits a longer relaxation time and notably different
time-dependence. Table 10 gives the values adjacent to the material interface at the final
time on the finest grid, together with the exact solution at the contact interface. For both
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Tipton and the pure-material calculation, the interface is slightly to the right (ahead) of
where it should be; however, the new method gives slightly smaller (resp., larger) point-
wise error for density and SIE in material 1 (resp., 2) than Tipton and the pure-material
result. Fig. 25 shows the position of the material interface as a function of time. The re-
sults for all methods are similar, although, unlike the other problems, the pure-material
interface (dashed line) and that of Tipton’s method (dotted line) are slightly ahead of the
interface of the new method (solid line).

5.5 Water-air shock tube

The water-air shock tube has become a standard test problem in the multi-material com-
pressible flow community, as it tests inherently compressible flow features, uses a slightly
more complicated and stiffer EOS than the standard polytropic gas, and possesses a di-
rectly computable solution. Variations of this problem have been evaluated by several
researchers, including, e.g., Andrianov [1], Johnson & Colonius [16], Luo et al. [22], and
Saurel & Abgrall [27].

The thermodynamic properties of water in this problem are given by the stiffened-gas
EOS:

p=(v—1)pe—7pw, (5.6)

for which the square of the sound speed is given by

CSZ:W(W-U(E—%’) =7(p+p)/p- (5.7)
The initial conditions for this problem, in mks units, are:

(4.4, 6x108, 10%, 1.07x10%, 10%, 0), if 0<x<0.7,

5.8
(14,0, 50, 5x10%, 10%,0), if0.7<x<1, )

(7, PoorP,€, P 1) = {

with a final time of # ;) =2.2 X 10~* s. The multi-material cell is initially centered at x=0.7
and contains the two materials specified above. The exact solution we use here is based
on the solver described by Plohr [25].

Results of our method on this problem are shown in Figs. 26-30. Shown in Fig. 26 are,
clockwise from the upper left, plots of the computed (solid line) and exact (dashed line)
mass density, pressure, velocity, and SIE at the final time, together with the signed dif-
ference between these values (dashed lines), as well as the mixed-cell values (o). Notable
are the undershoot in density and overshoot in SIE at the contact; the strong rarefaction
is reasonably well captured. Fig. 27 shows results for all methods: the new method re-
sults are, again, closer to the pure-material calculation, while Tipton’s method has greater
under- and overshoots at the contact in mass density and SIE, respectively, together with
a slight “bump” in pressure at the tail of the rarefaction. Table 11 gives the L; norm of
the error between the computed results and the exact solution for these flow variables,
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Figure 26: Computed results (solid line) for the water-air shock tube problem with the new method for 249

zones on [0,1] at t=2.2x10"%. The difference (dotted line) between the computed and exact (dashed line)
solutions is plotted against the right ordinate. The values corresponding to the individual materials in the mixed
cell are denoted by the symbol e.

for each of the three methods on all meshes, together with the fit of those results to the
ansatz in Eq. (5.2). These values are depicted graphically in Fig. 28, showing that the
magnitude of the errors for Tipton’s method are notably greater than the other two ap-
proaches. Overall, these results imply first-order convergence of the methods for this
problem.

Plots of time-histories for the three methods on the coarsest grid are shown in Fig. 29.
The new method equilibrates monotonically in all quantities, while both Tipton’s method
and the pure-material calculation exhibit pressure undershoot (including negative pres-
sure values) before equilibration. The new method and pure-material calculation are
monotonic in material 2 (air), while the Tipton results are not. Also, the new method re-
laxes to final values that are closer to those of the pure-material calculation than to those
of Tipton’s method. Table 12 gives the values adjacent to the material interface at the fi-
nal time on the finest grid, together with the exact solution at the contact interface. These
point-wise values for the new method are closer to both the exact results and the pure-
material calculations for all field quantities. Fig. 30 shows the position of the material
interface as a function of time. In this case, the position of the material interface is very
similar for all methods at all times.
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Figure 27: Results for the water-air shock tube problem on [0,1] at t=2.2x10~* for (from left to right) pressure,
mass density, and SIE with (from top to bottom) the new method (249 zones), Tipton's method (249 zones),
and the pure-cell calculation (250 zones). The computed results are the solid line and the exact solution is the
dashed line.
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Figure 28: Plot of the L1 norm of the difference between the computed results and exact solution on [0,1] at
t=2.2x10"* for the water-air shock tube problem with the new method (left), Tipton's method (center) and
the pure-material calculations (right). The values of the norm for the 249-, 499-, and 999-zone multi-material
calculations and the 250-, 500-, and 1000-cell pure-material calculation are shown for the pressure (O), density
(3O), SIE (©), and velocity (A). The curve fit parameters corresponding to these data are given in Table 11.
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Figure 30: Plot of the position of the material interface as a function of time for the water-air shock tube
problem on the coarsest mesh. The left plot shows the behavior for the entire simulation time, while the right
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method, and the dotted line to the pure-material calculation.
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Table 11: L1 norms of the difference between exact and computed water-air problem results, computed pointwise
at t=2.2x 1074, for the given variables with the indicated number of points on the unit interval for, from top to
bottom, the new method, Tipton's method, and the pure-material calculation. The prefactor A and convergence

rate o are least-squares fits to the relation given in Eq. (5.2). The values of ¢ close to unity suggest first-order
convergence.

New Method
249 499 999 A(x1072) o
p(x1070) [ 290 146 7.33x10°! 6.95 0.99
o 143 684 353x107! 3.63 1.01
e(x1073) | 1.20 5.62 2.96x107! 3.09 1.01
u 281 125 6.75x10°! 7.98 1.03
Tipton’s Method
249 499 999 A(x1072) o
p(x107%) [ 477 242 123 10.7 0.98
0 347 1.68 8.65x107! 8.67 1.00
e(x107%) | 3.72 1.83 9.31x10°! 9.17 1.00
u 6.23 293 153 16.4 1.01
Pure Material
250 500 1000 A(x1072) ¢
p (x107°) | 3.18 1.60 8.03x10°1 7.65 0.99
o 1.04 521x1071 2.71x107! 2.18 0.97
e(x1073) | 5.00x1071 2.61x1071 1.44x107! 0.70 0.90
u 2.60 1.35 7.29x 1071 4.12 0.92

Table 12: Water-air shock tube problem at t=2.2x10"%: the top two rows give the contact location for the
exact solution and the material-centered positions adjacent to the interface for the computed results on the
finest grid (new method in the mixed cell, Tipton's method in the mixed cell, and the pure-material calculation),
while the subsequent rows contain the corresponding flow field values for the various approaches.

Exact New Tipton Pure
x1 _, 8.05311x10°! 8.05284x10~! 8.05300x10~!
X2 8.05906>10 8.06174x10~1 8.06390x10~1 8.06076x 10!
p1 | 1.59868x107  1.59876 x107  1.59817x107  1.59867 x 107
pa | 1.59868 x107  1.59876x107  1.59834x 107  1.59867 x 107
p1 | 8.04979x10%  7.35249x10%>  7.31464x 10>  7.98342x10?
p2 | 220407 x10%  1.36417x10> 590643 x 10"  1.66948 x 10?
e1 | 9.70426x10°  1.06246x10°  1.06796x10°  9.78494 x 10°
ep | 1.81333%x10° 292991 x10°  6.76523x10°  2.39395x 10°

6 Summary and conclusions

We have considered the problem of closing the system of equations for a two-material
cell under the single velocity, single pressure assumption in one dimensional Lagrangian
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hydrodynamics with mixed cells. We treat the constituents in these multi-material cells as
distinct, which presents the problem of how to assign the thermodynamic states of the in-
dividual material components together with the nodal forces that such a zone generates,
despite a lack of detailed information within such cells. Our approach is motivated by
the work of Lagoutiere [18] and Després & Lagoutiere [10], in which the change in heat in
the constituent materials in the mixed cell is assumed to be equal. Their mixed-cell model
can be described by a set of four nonlinear equations in four unknowns consisting of the
updated values of the specific internal energy and the specific volume for each of the
two materials in the mixed cell. A solution to this set of nonlinear equations comprises
one part of an overall predictor-corrector scheme for solving the governing conservation
laws.

We break the assumption of instantaneous pressure equilibration among the mixed-
cell constituents in the work of Lagoutiere [18] and Després & Lagoutiere [10] by impos-
ing a sub-cell dynamics model that uses a minimization approach based on a local Rie-
mann problem. The unique contribution of our work is the use of this physics-inspired,
geometry-based approach both (i) to break instantaneous pressure equilibration by re-
laxing the individual sub-cell pressures to equilibrium and (ii) to determine the single
updated value of the relaxing-toward-equilibrium pressure assigned to the overall mixed
cell. We have provided the full equations for our method as well as a description of the
algorithmic implementation.

We present results of our method for several test problems, each having a directly
computable solution with either ideal-gas or stiffened-gas equations of state, together
with complete details of the initial conditions for each problem. These results are com-
pared with outcome of a pure-material (i.e., no mixed-cell) calculation (with two pure-
material cells in place of the single multi-material cell) and with the results based on a
standard implementation of Tipton’s method [28,30]. Quantitative evaluation of the dif-
ference between our computed results and the exact solutions demonstrates very nearly
first-order convergence on each of these five problems. The mixed cell pressures in all
problems evolve smoothly—but not necessarily monotonically—toward equilibrium on
a timescale that decreases approximately linearly with mesh size. The mixed-cell solu-
tions exhibit slight over- or undershoots in density (most noticeable in the shock-contact
and water-air shocktube problems) and SIE (seen in the Sod, modified Sod, moving
shock, and water-air shock tube problems). Comparison of these results with those using
the Tipton’s method or with those corresponding to a pure-material calculation indicate
that the results of the new method are, overall, more similar to the pure-material calcu-
lations than to those using Tipton’s method. While the overall L; norms of the errors
are comparable on almost all problems, the challenging water-air shock tube problem
exhibits a difference among the methods, with the new method having notably smaller
Li-error than the Tipton results and being qualitatively more similar to the pure-material
calculation.

There remain other tests of these methods, e.g., on problems for which the material
interface is not precisely in the center of the mixed cell; in particular, the case of a very
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small initial volume fraction of one material poses a challenge for the class of methods
we have considered. Further analysis of our approach, compared with and contrasted
to a comparable analysis of Tipton’s method, may provide valuable insights by which
improved multi-material Lagrangian compressible flow algorithms can be developed.
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