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Abstract. In this paper we propose a new model for segmentation of an image under
some geometrical constraints in order to detect special regions of interest. Our work
is based on the recent work by Gout et al. [Numer. Algorithms, 39 (2005), pp. 155-173
and 48 (2008), pp. 105-133] using geodesic active contours models, by combining it
with the idea of a piecewise constant Mumford-Shah model as with the non-selective
Chan-Vese segmentation. Numerical tests show that our method is more robust than
the previous works.
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1 Introduction

An important problem in image processing is the segmentation of a picture representing
a real scene, into classes or categories, corresponding to different objects and the back-
ground in the image. In the end, each pixel should belong to one class and only one.
In other words, we look for a partition of the image into distinct segments each hav-
ing some features in common, e.g., intensities, colour or texture. A variety of different
techniques have been developed to solve the problem of image segmentation, such as re-
gion growing and emerging [1], watershed algorithms [31], minimum description length
criteria [21], and Mumford-Shah energy minimization [22]. Recently, PDE-based active
contour models [20,29] for curve evolution have been popular for image segmentation.
In our recent work [4-6], we have developed effective multilevel algorithms for the Chan-
Vese [14] approach for implementing active contours without edges. In [7,11] the authors
discussed the global minimizers of the snake models.
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While the above segmentation models are useful for various applications, however,
other imaging problems require the functionality of selectivity, i.e., only segment a partic-
ular part among those objects that have the same feature. Such situations are ubiquitous
in medical imaging especially in CT images where most objects (organs) have similar in-
tensities. For example, we might like to segment the left kidney only whilst the above
methods will give both kidneys mixed other organs. For the simple example in Fig. 3, it
is fairly easy to segment the image to obtain 4 objects together but not separately because
these four objects belong to the same intensities-based class. The task of a selective seg-
mentation is how to detect only one of them, given additional information. Following
Gout et al. [18], we consider the case of geometric constraints in terms of a list of given
points near the interested objects to aid segmentation.

We remark that geometric constraints are also necessary for normal segmentation
methods whenever the interface between objects is not ‘clearly” visible due to poor image
quality or some occultation. Curve evolution means to evolve deformable contours sub-
ject to constraints towards the boundary of the object to be detected. This deformation is
made trying to minimize a functional depending on the curve and defined so that a local
minimum is obtained at the boundary of the object. Casselles et al. [8] have shown, for
example, that setting one of the regularization parameters to zero in the classical active
contour model is equivalent to finding a geodesic curve in a Riemann space whose met-
ric depends on the image content [18], because an edge in an image is the locus of points
for which the image gradient rapidly varies. However when data acquisition cannot be
performed in an ideal manner, this criterion can no longer be applied. This is the case
when two objects, having similar homogeneous intensity or texture etc, are very close to
each other. Then it is hard to clearly identify the interface without additional informa-
tion. Here we consider geometrical constraints consisting of a set of points belonging to
the contour of interest. For a medical image, practically, the expert needs to click on the
organ under consideration a couple of times.

To proceed, let z(x,y) be the given image defined on a rectangular domain (). The
geometrical constraints in terms of a set of n; points near the boundary of object to be
detected are defined by A= {(x;,y;) €Q, 1<i<n;} C Q. The aim is to find an optimal
contour I' C () that best approaches the points from the set A while detecting the desire
object in an image.

Recently Gout et al. [18] proposed a model based on geodesic active contours for solv-
ing this problem. Their model uses image gradient information |Vz|, to stop the contour
evolution. If the given image z is very noisy, then the isotropic smoothing Gaussian has
to be used, which will smooth the edges in an undesirable manner. While this model
can detect objects correctly for many examples, we found that it is sensitive to param-
eter choice and hence it can fail to work for some images. Here to increase robustness,
we modify their model by combining it with the idea from Chan-Vese model [14], which
helps in segmenting noisy images without an isotropic smoothing Gaussian and also
helps to segment images with fuzzy boundaries, as verified later.

This paper is organized in the following way. Section 2 contains a review of the ex-
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isting model of Gout et al. [18]. In Section 3 we present our proposed new model of
minimization and derive the Euler-Lagrange equation. In Section 4 we describe a semi-
implicit method and an additive operator splitting (AOS) method for solving the PDE. In
Section 5 we give some experimental results.

2 An image segmentation model using geodesic active contours
and geometrical constraints (M-1)

The model by Gout et al. [18] builds the given geometrical constraints into a geodesic ac-
tive contour model [8]. The constraints will be represented by a distance function d(x,y)
(which is towards zero when near the given points and is towards one elsewhere) and
the geodesic model requires an edge detector function g (which is zero on edges and is
one at homogenous regions).

In [18] the following edge detector function, a popular choice [8,13], is used

1

$(0)= T

Clearly ¢(|Vz(x,y)|) is zero on edges in an image and is 1 in flat regions. The purpose
of the edge detector function g is to stop the evolving curve on edges of the objects. To
stop the evolving curve going away from the points from set A, the following distance
function d is defined in [18]:

" =) (y—yi)?
d(x,y):H<1—e 202 ¢ 207 >, V(x,y) €Q. (2.1)

i=1

Another option for d is

min(x,-,yi)EA ‘ (x’y) - <'xl’yl)

d(x,y)=distance((x,y),A) = i

for all (x,y) € Q and i=1,2,---,n; used in [17]; here we added the scaling factor M =
MaX(y, e A, (xoy.) e | (XaYa) = (Xi,yi)| to ensure 0<d <1. Here we mainly use (2.1). Clearly
d acts locally and will be approximately 0 in the neighborhood of points of A. The aim of
their model is to find a contour I" such that g~ 0 in the vicinity of 4 ~0, by minimizing
the following energy

F(T) = /r dg(|Vz|)ds. (2.2)

Here the contour I will stop where g~ 0 (near object boundaries) in the neighborhood of
points for A where d~0.
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Level Set Formulation of the Model. To extend the domain of the integral in (2.2) to
the whole image other than T', the level set approach [25, 26, 28] is the best option. Let
¢:Q)— R be a Lipschitz continuous function whose zero level setis T, i.e.,

I={(xy) €Q:g(x,y) =0},

with ¢ <0 inside I' and ¢ >0 outside I'. In terms of the level set formulation, equation
(2.2) becomes

F(9)= [ d(x)g(IV2(xy))I VH(@(x))ldxdy,

where H is the one-dimensional Heaviside function and |, |VH(¢(x,y))|dxdy is the
length of I'. Thus we have the following minimization problem

min F(¢(x,y)).
¢(xy)

Since the Heaviside function is not differentiable at the origin, we consider the regular-
ized version of H denoted by H, and is given by [14, 15,25]:

1 2 X , 1 €
He(x)—§<1+;arctan(g)), be(x) =H{(2) =~ 5. (2.3)
Thus the minimization problem becomes
min Fe(¢(x,y)), (24)
¢(xy)
where
Fe(¢(x,y)) = /Q d(x,y)8(IV2(x,y)])ée (@) [V (x,y)|dxdy. (2.5)

Minimization with respect to ¢(x,y) leads to the following Euler-Lagrange equation

~5c(9(x, )V (d(ny)g(Nz(x'y)’)%) -

Gout et al [18] considered the following equation with artificial time step ¢:

I9P(xy,t) _ Vo(xy,t)
WA 5. (p(xy,1)V (d(x,wg(rvz(x,y) el ) 26)
with the boundary condition
(P(xyt) 0p(xy.t) _
\V<P Xyt o '
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where 7i is the outward unit normal to the boundary d(). Clearly the quantity %
tends to 0 when a local minimum is achieved. In other words if the model converges
and the curve will not evolve any more since a steady state has been reached. Replacing
de(p(x,y,t)) by |Vp(x,y,t)|, a motion is applied to all level sets and it makes the flow
independent of the scaling of ¢ [2,34]; more details can be found in [17,18]. The following
evolution problem was considered

9P (x,y,t Vo(xy,t

WL _ 19p(xy,0)|V - [ d(x )51 V2y)) i) )

ot Vo (xyt)]
(2.7)

W1 o onan,
on

with ¢(x,y,0)=¢o(x,y), where ¢o(x,y) is the initial value of the desirable ¢(x,y). To speed

the convergence of the model they added an extra term ad(x,y)g(|Vz(x,y)|) known as a

“balloon term” [16] to the evolution equation of a level set, where « is any constant. This

term prevents the curve from stopping on a non significant local minimum and is also

of importance when initializing the process with a curve inside the object to be detected.

Thus the evolution problem becomes

%ft%f) = |V(x,y,t)|V- (d(x,y)g(\VZ(x,y)D%>

+ad(xy)g(IVz(xy)) Ve (xy b,

0Pp(x,y,t) =0 onodQ
on ’

with ¢(x,,0) =¢o(x,y). The above equation can be written as

WD) _ |9p(xy,8) d(x,)5(|V2(x,9)) V- (%)

+ V(d(xy)g(|Vz(xy)) Ve
+ ad(x,y)8(IVz(x,y) ) IV (x,y,t)]- (2.8)

Further an AOS method [23,32] was used to solve (2.8).

We remark that this model is based on geodesic active contours in which an edge
detector plays a major role. However such detectors use only local information of the
boundary (gradient and curvature information) to detect the boundary itself which in-
evitably runs into difficulties when dealing with fuzzy edges and discrete edges. Fur-
thermore because of the local attributes and the dependence on gradients, geodesic ac-
tive contours are heavily affected by noisy inputs; it is hard to detect objects from a noisy
image. One can use isotropic Gaussian smoothing, but this will smooth the edges too.
Below we propose a new model where an added stopping term is based on Mumford
and Shah segmentation techniques [14,22]. With this new model we can detect objects in
noisy images without using isotropic Gaussian smoothing.
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3 A modified selective segmentation model (M-2)

The Chan-Vese (CV) model [14] is a special case of the piecewise constant Mumford and
Shah model [22] when restricted to only 2 phases. The CV model is not based on the
gradient of the image z(x,y) for the stopping process. It can detect contours both with
and without gradients. Also there is no need to smooth the image in the case of a noisy
image. To take the advantages of the CV model [14] for selective segmentation, we add
M Jinside(r) 12 () —c1 dxdy+ Ay Soutsiae() |2(x.y) —c2 2dxdy to the model (2.2) where A1,A;
are any constants and c3,c; are average values of the given image z(x,y) inside and out-
side I'. Thus we propose the following model

min  F(¢(x,y),c1,¢2), (3.1)
$(xy),c1,02
with
F(F,cl,cz):y/rdg(]Vz(x,y)])ds—i-Al/ ’ (r)|z(x,y)—c1]2dxdy
+ Ay |z(x,y) — 2 |*dxdy, (3.2)

outside(T)

where y is a positive parameter. Clearly if A; = A =0 this minimization problem reduces
to minimization problem (2.2).
Thus we consider the following minimization problem

min  F(¢(x,y),c1,c2). (3.3)
P(xy)ce

using the level set formulation of (3.2)

Fg(xy)ere) = [ d(xy)g(IVz(xy))IVH(@(xy)) dxdy
A1 [ [2ey)—eiPH(@ (oy)dxdy

0 [ (ey)—eaP(1=H(g(xy)))dxy, (3.4)

where H is again the Heaviside function. Further using the regularized Heaviside func-
tion H,, we consider the following minimization problem

min  Fe(¢(x,y),c1,62), (3.5)
P(xy),c1,02

where

Fe(¢(x,y),c1,02) = /Q d(x,y)8(IVz(x,y)])de (¢(x,y)) | VP (x,y)|dxdy
A1 [ 2(e) =1 PHe( () ddy

4 [ [2(0y) —calP(1= He(@ () )dxdly. (3.6)
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Keeping ¢(x,y) fixed and minimizing with respect to ¢; and ¢, we have the following
equations for computing c; and c;:

_ Jozx y He(qb(x y))dxdy

= 7
if [He(¢(x,y))dxdy>0 (i.e. if the curve has a nonempty interior in (2), and
z(x, —Hc(¢p(x,y)))dxd
C2(¢(x’y)):f0 ]/ (P( ]/)) Y (3.8)

fa(l—He(cz»(x,y)))dxdy

if [(1—He(¢(x,y)))dxdy>0 (i.e. if the curve has a nonempty exterior in ().
Now keeping ¢; and c; fixed, we minimize (3.6) with respect to ¢(x,y). To minimize
F. we use the Gateaux derivatives of the functional F.

hmh <P€(q>+h1,b €1,62) — Pe(q),cl,cl)) =0,

which leads to

i [ pdCepg(1VExy)) <5z(¢>rw\lp+(se<¢> Vﬁ;;l”)d xdy

+ 6@ @) —er P=Aa(z(xy) —c2)?) gy =0, (3.9)

where ¢ is a test function of the same type as ¢. From Green’s Theorem we have

/ OV Bdr = — / Vo.ddx+ / Vi iids, (3.10)
Q Q 0Q)

where 7 is the unit normal vector to the boundary of (). Hence taking

e .
v=0, Gy’ Pvp-a,

Vo
we obtain
de(¢)
/ pv ( (P’ng)dx
_ _ de(¢) 5 ()
/Q vy G(x,y)| S / YO (xy) g VTS
ie.,
V-V

RN | ax

/l[)V ( ? >dx—|—/ PG(x,y) W(z’) gzds
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where
0
V=5t Glry)=d(xy)g(IVa(xy)).

Thus Eq. (3.9) becomes

G Tglpdsdy-+ |G () (1S pas
Vo / Vo
/ He(¢ ( ,y)W(P,)ldedy / HOe(P)Gxy)V ¢ 17 gripdxdy
-I-/zS z(x,y) —c1)? = Aa(z(x,y) —c2)?)pdxdy =0.

Further the following form holds

v 5e(¢) d
- / Hoe(@)V - <G(x,y)ﬁ>¢dxdy+ /BQVGOW) \V(Z? %lpds

—I—/ e ( (x,y) —c1)? = Aa(z(x,y) —c2)?) pdxdy =0,

for all test functions 1. Hence we have the following Euler-Lagrange equation for ¢:

Vol

0
G(x,y) W(Z’) B? 0, onodQ.

5@V (G(x,wE) —6e() (M(a(v) 12— Aa(z(xy)—c2)?) =0,
(3.11)

The above PDE may be considered as the steady state form of the following evolution
equation

2 w9 V- (Gl )
—0e() (M z(ey) =) = Aa(z(xy) —e2)?), (3.12)
Se(P) 9| _

SOV 4] 3 o

with ¢(x,,0) = go(x,y).

To prevent the curve from stopping on a non-significant local minimum and to ini-
tialize the iteration process with a curve inside the object to be detected [16,18], a balloon
term aG(x,y)|V¢| is now added to speed up the convergence of the evolution equation
as done in M-1, where « is a constant. Thus Eq. (3.12) with the balloon term can be written
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as
2 w02 V- (Gl )
—6e(9) (M (2(x.y) —e1)? = Aa(z(x,y) —c2)? ) +aG(x,y) V¢, (3.13)
c(9) 09
e

with ¢(x,y,0) = ¢o(x,y). Existence and uniqueness of the solution can be proved along
similar lines to [18].

4 Numerical methods
We now present two numerical methods for solving the nonlinear parabolic PDE (3.13).

4.1 Semi-implicit method
First write the PDE (3.13) as

9¢

3 =~ Moe(@(x,y)) +f(xy),

Vo Vo
GV (jrgp) + VC ><W>

where
Fy) =6e(9) (~M(z=a1)+A2(z=2)%) +aG (x,y) V).
Using the differences AY, A ,--- given by,
AL¢ij=¢ij=irj DL=¢ii—ij

4.1)
AN pii=dij—¢ij-1, AL =diji1—¢ij

and a semi-implicit scheme, the discretized form of equation (4.1) is

k+1 X pktl
s . 4)1] e(qbi'(,j)ci']' %Ax< 219, )
t hy V(D5 gk )+ (D gk /hy)?
+lAy< Aicpk-i-l >
B\ gl e+ (ALl /)
S (9F)) . x ket y Y k41
ch ‘{ ALG(xy) ALgy +h2A Glxy) Ay i o+ fie
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We usually use hj =hy =1, so we have

4)k+1 (Pz
At ] 6(4)5(,])

Gz,j (4)5:&-11] (Pk—H) <4)k+1 ‘Pk+l) i1

+<‘P£]J‘r+l1 ‘PkH)Dz]_(‘PkH 4’5711) ij-1| + fij

be(9l)

s |{ Gy (il =i )+ A5G xy) (9] — qbk“)}, (42)

if we denote by

Digj =1/ (A195 )2 (AL 9E, 2 Diy=1//(819% P+ (A% g,
Dij1=1/ \/ (AL ¢F; )2+ (AL¢E )2 (4.3)

As the coefficients D; 1, D;jand D;; 1 has been freezed at k, Eq. (4.2) gives a linear sys-
tem of equations which can be solved by an iterative method. The semi-implicit method
can allow large time steps but the main drawback is the computational cost of the asso-
ciated linear systems [33] for large images. Hence we shall develop an AOS method as
done in [23,32] to solve the PDE (3.13) which will be our preferred method for M-2.

4.2 An additive operator splitting method
Consider Eq. (3.13) in the form

W s (IV- (V) + f=puoe(9) (0u(Foug) 40, (FOup) ) £, (4
where
f==0e(¢)(M(z—c1)>—Aa(z—c2)*) +aG(x,y)|Vo|, F= |VG¢’

The AOS scheme [23,32] splits the m-dimensional spatial operator into a sum of m one-
dimensional space discretizations. Therefore we consider the first of two one-dimensional
problems

1 gk
)

oy FF4+FF
g = HOe(P) ((

S @ =) - () (e - "“)) +fi,  (45)

ie.,
=gl put(adf] —capf T +esp ) + £, (4.6)
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where

FF4FF FF  +2FF4+FF

Fk+Fk
Cl:‘se(ﬁb)TZHr c2="0c(¢) 5 ZH/ C3:5€(4’)1711‘

2
After we solve the system of equations (4.6) in the x-direction, we then solve a similar sys-

tem in the y-direction before averaging the two solutions. In matrix notation the process
can be written as

(I-20tA;(¢")pr T =£F, fori=1,2,

and
1 1
¢ :EZEQDI ’
-1

where [ is the identity matrix and A; for | = 1,2 are tridiagonal matrices derived from
(4.6).

5 Experimental results

In this section we present some simulation results illustrating the old method M-1 and
the new method M-2. We shall observe that M-2 is better in terms of robustness, quality
and speed.

Firstly we present some simple examples when M-1 does not work well. Secondly we
show that our model M-2 works fine on these examples and we also test our model on
real images. Lastly we give evidence that our model M-2 is faster than M-1 in convergence
in terms of number of iterations (and CPU time as the complexity per iteration of both
model is similar).

5.1 Performance of M-1

The performance of M-1 is strongly influenced by the initial contour. When it is selected
to be close to the final solution, the result of M-1 is very good as shown in Fig. 1 where the
left plot shows the initial circle chosen to be quite close to the final contour of the rectangle
which is segmented on the right plot correctly by M-1. In a simple test, M-1 is found not
to converge properly if the radius of the initial contour is halved (in comparison M-2
would work for either initial contour). The same observation has been made on other
test images; in Fig. 2 we show similar initial contour and segmented results for a realistic
CT image — here again starting from a smaller circle would fail M-1 (but not M-2).

Heavy noise in a given image can also affect the quality of segmentation by M-1,
even if the initial contour is chosen quite close. In Fig. 3, we show such an example of a
synthetic noisy image to detect the rectangle in it with 4 markers shown in the figure in
red dots. M-1 clearly fails to detect the rectangle when the initial contour is quite close.
There, the left figure is the original image with initial data (red dots are the markers), the
middle is the result after 1000 iterations (hardly any improvement) and the far right is the
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(a) Original with initial data (b) after 1000 iterations

Figure 1: M-1 results |: successful detection of the rectangle in a synthetic clean image with 4 markers and the
initial guess (left plot) quite close the final solution (right plot).

(a) Original with initial data (b) after 1000 iterations

Figure 2: M-1 results II: successful detection of the rectangle in a real CT image with 4 markers and the initial
guess (left plot) quite close the final solution (right plot).

final result after 20000 iterations where the level set function ¢ does not move any more.
Here the parameters used are: ¢o=+/(x—x0)2+ (y—y0)2 —25 where

Y_x-comp of markers Y_y-comp of markers

Xp= ’ 0=
no. of markers no. of markers
and =4, x=-0.00151, At=1. To improve the result, in Fig. 4, M-1 is tested on the same
image, where the image is filtered first. The initial condition is go=1/(x —x0)2+ (x —y0)2—
25, where xy,1o are the averages of x,y-components of the markers. We show on the plot
the original image with initial contour, the result after 800 iterations in the middle plot
and the result after 16000 iterations on the right. Clearly the final result is not satisfactory.
Here filtering can improve on segmentation by M-1 but excessive filtering (smoothing)
can smear edges (as seen in Fig. 4).

In Fig. 5, M-1 is tested on an artificial image. Here with only partial success, it only
detects the outer boundary of the letter O using the parameters are y = (size of z)? /1400,
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(a) Original with initial data (b) after 1000 iterations (c) after 20000 iterations

Figure 3: M-1 results: unsuccessful detection of the rectangle in a synthetic noisy image with 4 markers and

initial guess g =+/(x—x0)2+ (x—y0)2—25, where xg,yo are the averages of x,y-components of the markers,
a=—0.00151 and o =4.

(a) Original with initial data (b) after 800 iterations (c) after 16000 iterations

Figure 4: M-1 results: partially successful detection of the rectangle in a synthetic noisy image with 4 markers

ideally placed. Here the initial guess ¢g=/(x—x0)2+ (x—10)2—25, where xq,yy are the averages of x,y-
components of the markers, « =—0.0011 and c=4.

(a) Original with initial data (b) after 900 iterations

Figure 5: M-1 results: partially successful detection of the letter O in the UOL image as the inner boundary of
the letter O is left out.
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(a) Original with initial data (b) after 35 iterations (c) after 250 iterations

Figure 6: M-2 results: successful detection of the letter O in the image UOL with 4 markers placed in ideal
positions and with initial guess ¢ as in Fig. 5. = (size of 2)2/1400, A1=0.00951, A, =0.0095, x=—5.1x10"*
and c=4.

(a) Original with initial data (b) after 4 iterations (c) after 14 iterations

Figure 7: M-2 results: successful detection of the object X in a clean and synthetic image with 3 markers. Here
#=100, a=—-0.001, Ay =0.1, A, =0.1 and 0 =4.

A1 =0.00951, A, =0.0095, a = —5.1x10~* and o =4. To see a successful segmentation in
this case, the initial contour must be further modified to be close to the solution. And
here and from now on, ¢y = \/(x—x0)2—|— (y—yo0)?—ro, Xo,y0 are the averages of the x,y-
components of the markers and 7y =miny ||x—y/|| where x= (xo,y0) and y € A.

5.2 Improved performance of M-2

In Fig. 6, M-2 is tested on the artificial image of Fig. 5, using the same parameters, where
M-1 did not do very well. We set the initial condition as above in Fig. 5. In particular,
Po =/ (x—x0)2+(x—y0)2—ro where xo,yo are defined as above and ry = miny || x—y]|
where x=(xp,1/0) and y € A. Clearly the object is segmented successfully.

In Fig. 7 our model M-2 is tested on an artificial image to detect the object X with 3
markers. The object X is segmented successfully.
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(a) Original with initial data (b) after 15 iterations (c) after 130 iterations

Figure 8: M-2 results: successful detection of the rectangle in a noisy synthetic image with 4 markers with
initial guess set similarly to before and other parameters the same as in Fig. 7.

UoL VoL Vol

(a) Original with initial data (b) after 35 iterations (c) after 250 iterations

Figure 9: M-2 results: successful detection of the letter O in the image UOL with 4 markers placed away from
the boundaries. The same parameters as in Fig. 6 are used.

In Fig. 8, M-2 is tested on synthetic noisy image with 4 markers and parameters y =
100, a =—0.001, A1 =0.1, A, =0.1 and o =4. The left plot is the original image with initial
data and the middle is the result after 15 iterations. Again the required object (shown on
the right plot) is successfully detected.

In Fig. 9, it is shown that if the markers are not exactly on boundary, the object can be
detected. The same data are used as in Fig. 6.

In Fig. 10, we show results where M-1, M-2 fail to segment the image if the initial
guess ¢y is far from the markers (away from the object to be detected).

In Fig. 11 our model is tested on a real brain MRI image to detect a tumor with 4
markers. The other parameters used are u = (size of z)2/1000, A; = 0.001, A, = 0.001,
a=—1.51x10"3 and o =4. The correct segmentation is obtained after 200 iterations.

In Fig. 12, we test the model on real knee MRI image with 3 markers (also work
with 2 markers) and the following parameters u = (size of z)>/10, A; = A, = 0.000051,
a=—1.51%x10"3 and ¢ =4. The correct segmentation is obtained after 120 iterations as
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[l

Figure 10: M-1 and M-2 results: unsuccessful detection of the letter O in the image UOL with 4 markers placed
away from the boundaries and with a (wrong) initial guess ¢ ‘outside’ the markers (usually it should be inside).

(a) Original with initial data (b) after 10 iterations (c) after 200 iterations

Figure 11: M-2 results: correct detection of tumor region in a real brain MRI image with 4 markers. u=
(size of z)%/1000, A; =0.001, A, =0.001, = —1.51x10"3 and 0 =4.

(a) Original with initial data (b) after 20 iterations (c) after 170 iterations

Figure 12: M-2 results: correct detection of the knee in a real knee MRI image with 3 markers.



N. Badshah and K. Chen / Commun. Comput. Phys., 7 (2010), pp. 759-778 775

(a) Original with initial data (b) after 100 iterations

Figure 13: Further M-2 results I: successful detection of a special region (right plot) in a cell image with 3
markers and the initial guess as on the left plot.

(a) Original with initial data (b) after 120 iterations

Figure 14: Further M-2 results IlI: successful detection of a special (right plot) in a real CT image with 4 markers
and the initial guess as on the left plot.

shown on the right plot.

Finally in Figs. 13 and 14, we show the correctly segmented results of two further real
images (right plots) by M-2, starting from the initial contours (left plots). We remark that
the same results can be obtained by M-1, only if the initial contours are enlarged to be
as close as to the final solutions (although M-1 cannot work with the initial contours of
Figs. 13 and 14).

5.3 Speed comparison of M-1 and M-2

Lastly, we compare results of M-1 and M-2 by number of iterations as each iteration of
either method, of AOS type, has a comparable complexity. In Fig. 15, the successful
segmentation of a disc in an artificial image is obtained in 500 iterations by M-1. The same
test is repeated in Fig. 16 using our new model M-2 obtaining a comparable result in only
100 iterations. Similar comparison results have been observed in many other experiments
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(a) Original with initial data (b) after 100 iterations (c) after 500 iterations

Figure 15: Slower convergence of M-1 to detect the disc in the disc-rectangle image using 3 markers with initial
guess as shown.

(a) Original with initial data (b) after 15 iterations (c) after 100 iterations

Figure 16: Faster convergence of M-2 to detect the same disc as in Fig. 15 using 3 markers. Clearly M-2 (100
steps) is faster than M-1 (500 steps) to reach the similar quality.

and clearly M-2 converges faster. Further development of even faster solvers [4, 9] for
both methods will be carried out in the near future.

6 Conclusions

In this paper we proposed a new variational model for selective image segmentation
based on geodesic active contours and the Chan-Vese model. Our new model (without
using Gaussian filter) is particularly good for noisy images. From testing the new model
on real images, we observe that it is also faster than the existing model in term of number
of iterations. The new model works even if the markers are not on the desired boundary
as long as the initial contour is contained within the markers, as shown by the numerical
experiments.
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