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Abstract. The turbulence in plane Couette flow subjected to system rotation is inves-
tigated. The anti-cyclonic rotation rate is well above the range in which roll-cells occur
and close to the upper bound, beyond which no stationary turbulent states of motion
exist. The mean velocity profile exhibits a linear region over 80% of the cross-section, in
which the mean absolute vorticity is driven to zero. Viscous effects still prevail in nar-
row regions next to the walls, whereas the quasi-homogeneous central core exhibits
abnormal anisotropies of the Reynolds stress tensor, the vorticity tensor and the en-
ergy dissipation rate tensor. In spite of the distinctly higher turbulence level observed,
a 13% drag reduction is found. This paradoxical finding is ascribed to configurational
changes in the turbulence field brought about by the system rotation.

AMS subject classifications: 76M12, 76F10, 76F65, 76U05
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1 Introduction

Rotation might give rise to remarkable and profound alterations of shear flow turbulence.
Ever since the illuminating experimental investigation of a rotating plane channel flow
by Johnston et al. [20], it has been known that the action of the Coriolis force due to system
rotation changes not only the mean velocity distribution but also the turbulent velocity
fluctuations. The location of maximum mean velocity is shifted from the channel center
towards the so-called ‘suction’ side, and the mean velocity profile exhibits a linear region
with slope close to twice the imposed rotation rate. The turbulence intensity is reduced
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or sometimes even suppressed near this ‘suction’ side, whereas the turbulent agitation is
enhanced at the opposite side of the channel, i.e., along ‘pressure’ side. These essential
observations have later been confirmed and supplemented by more recent experimental
studies by Nakabayashi and Kitoh [30, 31] and direct numerical simulations by Kristof-
fersen and Andersson [22], Lamballais et al. [23, 24], Liu and Lu [26] and Grundestam
et al. [13].

The influence of the Coriolis force due to imposed system rotation depends both on
the orientation and the magnitude of the background vorticity 2Ω

F relative to the mean
flow vorticity Ω≡∇×u in a rotating frame-of-reference. In simple shear flows, like the
two-dimensional channel flow, the mean vorticity vector Ω is perpendicular to both the
mean flow direction, say x, and to the wall-normal direction, say y. If the angular velocity
vector Ω

F of the rotating frame-of-reference is aligned with Ω, the local vorticity ratio
S≡2Ω

F/Ω effectively distinguishes between different flow regimes. In the plane channel
flow, for instance, S changes sign where the mean velocity peaks and the rotating channel
flow is therefore simultaneously affected by cyclonic (S > 0) and anti-cyclonic (S < 0)
rotation.

In contrast with the pressure-driven plane channel flow, the shear-driven plane Cou-
ette flow exhibits a monotonically increasing mean velocity from one wall to the other
with the obvious implication that the entire flow field is either exposed to cyclonic or
anti-cyclonic rotation. This fact alone makes the rotating plane Couette flow an attractive
prototype for explorations of rotational effects on rotating shear flows. In this context, the
notion of ‘pressure’ and ‘suction’ sides should be discarded. Hart [15] found that the lami-
nar plane Couette flow is unstable with respect to inception of counter-rotating roll cells
in the parameter range −1<S<0 and otherwise stable. In the turbulent flow regime, the
mean flow vorticity Ω is no longer constant across the flow and S varies with the distance
from the wall. Bech and Andersson [6] therefore introduced a rotation number defined in
terms of the average mean flow vorticity Ωav, i.e., Ro≡−2Ω

F/Ωav. Here, Ωav also equals
the constant vorticity of the corresponding laminar Couette flow. Care should be taken
not to mix up the rotation number defined above with the Rossby number routinely used
in geophysical fluid dynamics.

In a computational study of turbulent plane Couette flow, Bech and Andersson [6]
observed that the roll cell instability was present also in the turbulent case provided that
the rotation is anti-cyclonic (Ro=+0.01). If the Couette flow, on the other hand, was sub-
jected to weak cyclonic rotation with Ro=−0.01, no roll cells appeared and the turbulence
was damped as compared with the turbulence level in non-rotating Couette flow. At the
same time laboratory investigations by Tillmark and Alfredsson [37] and computer simu-
lations by Komminaho et al. [21] showed that cyclonic rotation may completely suppress
the turbulence.

While Bech and Andersson [6] were concerned about weak rotation with a rotation
number Ro=±0.01, the intermediate rotation numbers Ro=0.10,0.20 and 0.50 were con-
sidered in a subsequent study by Bech and Andersson [7]. The weak but yet distinct roll
cells observed already at Ro=+0.01 became more regular and energetic at Ro=+0.10 and
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+0.20. At the highest rotation rate Ro = +0.50, however, a disordering of the counter-
rotating vortices appeared. The overall turbulence level was substantially higher than
in the non-rotating flow and the resulting skin-friction was roughly 20% above that for
Ro=0.

Bech and Andersson [7] also attempted to simulate the anti-cyclonically rotating Cou-
ette flow with Ro = +1.0 and reported that the turbulent fluctuations were completely
suppressed and the flow laminarized. This finding is consistent with the more recent
observations by Alfredsson and Tillmark [1]. Their flow visualization studies revealed
that the distinct roll cells observed at Ro=+0.50 were also distinguishable at Ro=+0.75.
For rotation numbers above +0.75, however, they claim that the predominant cell struc-
tures have vanished and the elongation of the turbulent structures was significant. For
Ro > +1.0 the turbulence was quenched, no roll cells were seen, and the flow was fully
laminarized.

The central core region of a rotating Couette flow bears some resemblances with ho-
mogeneous shear flow subjected to system rotation. Rotating homogeneous shear flows
have been considered both theoretically and numerically, including the computer sim-
ulations by Bartello et al. [5], Salhi and Cambon [35], Yanase et al. [40], Brethouwer [9]
and Iida et al. [16]. Rotating homogeneous shear flows are known to be neutrally sta-
ble if the vorticity ratio S =−1.0 [11, 35]. This special case of anti-cyclonic rotation with
S = −1.0, i.e., zero absolute mean vorticity, is particularly interesting. According to the
Bradshaw-Richardson number B = S(S+1), the case S =−1 should be neutrally stable
(i.e., B = 0) just as the non-rotating case S = 0. Cambon et al. [11] convincingly demon-
strated that although the zero absolute mean vorticity case should be equivalent to the
S = 0 case according to the Bradshaw-Richardson stability criterion, the flow dynamics
are indeed strikingly different. Comprehensive support of this view has subsequently
been provided by Salhi and Cambon [35] and Brethouwer [9]. Yanase et al. [40] and
Brethouwer [9] found that the flow field was dominated by very elongated and intense
streamwise vortex tubes. Iida et al. [16] focused on S=±0.5 with the view to investigate
the tilting mechanism of the longitudinal vortex structures. Here, anti-cyclonic rotation
S =−1/2 corresponds to zero-tilting vorticity and maximum destabilization (B =−1/4)
according to Cambon et al. [11]. Iida et al. [16] examined the influence of spanwise sys-
tem rotation on the vertical flow structures and observed that the spanwise tilting of the
structures was reduced whereas their inclination with respect to the mean flow direction
was increased.

It is well known that the rotating plane Couette flow can be considered as the narrow-
gap limit of the Taylor-Couette (TC) flow, i.e., the fluid motion in the annular gap between
two independently rotating circular cylinders; see, e.g., Dubrulle et al. [12]. A wealth
of stable flow regimes was observed in the TC apparatus of Andereck et al. [2], several
of which exhibited toroidal Taylor vortices analogous to the roll cells observed by Bech
and Andersson [7] and Alfredsson and Tillmark [1] in the rotating plane Couette flow.
Townsend [38] assumed two different kinds of TC turbulence, one generated by the mean
shear and the other due to the Taylor-vortices. In featureless turbulence, i.e., turbulence



686 M. Barri and H. I. Andersson / Commun. Comput. Phys., 7 (2010), pp. 683-717

devoid of any sustained large-scale features, only the shear mechanism is retained. Such
featureless turbulence was also observed in the Taylor-Couette flow by Andereck et al. [2]
in a certain parameter range.

The purpose of the present study is to identify, if possible, a plane Couette flow sub-
jected to sufficiently strong anti-cyclonic rotation such that the roll-cell instability is com-
pletely suppressed but the turbulence still persists. If so, this particular flow configu-
ration offers a unique environment in which the influence of the Coriolis force due to
system rotation on shear flow turbulence can be studied in isolation, i.e., without being
hampered by the simultaneous occurrence of roll cells. Unlike the featureless turbulence
occurring in the Taylor-Couette flow, the plane Couette flow turbulence is unaffected by
streamline curvature which inevitably affects the TC-flow, see, e.g., Patel and Sotiropou-
los [33].

First, the fully developed turbulent plane Couette flow in orthogonal-mode rotation
is defined in Section 2 and some fundamental conservation laws in rotating frames-of-
reference are provided. The basics of the direct numerical simulations performed are
provided in Section 3. The primary flow statistics and Reynolds stress budgets are pre-
sented in Sections 4 and 5, respectively, while vortex dynamics and flow anisotropies are
considered in Sections 6-7.

2 Orthogonally rotating plane Couette flow

2.1 Flow configuration and governing equations

Let us consider the turbulent Couette flow driven in the x-direction by the relative motion
of two infinite parallel planes separated a distance 2h in the y-direction. The fluid motion
is induced solely by the prescribed velocity difference 2Uw between the two planes (see
Fig. 1). The flow is characterized by the Reynolds number Re≡ ρUwh/µ, where ρ and µ
are the density and the dynamic viscosity of the incompressible fluid, respectively. The
shear-driven Couette flow is rotated about the spanwise z-axis with constant angular
velocity Ω

F = (0,0,ΩF). Since the average mean vorticity Ωav is −Uw/h, the rotation
number becomes:

Ro≡−2Ω
F/Ωav =2Ω

Fh/Uw. (2.1)

The incompressible flow of a Newtonian fluid in a constantly rotating frame-of-reference
is governed by the conservation equations for mass and momentum:

∇·u=0, (2.2a)

∂u

∂t
+u·∇u=−

1

ρ
∇p+ν∇2

u−2Ω
F×u, (2.2b)

where ν is the kinematic viscosity µ/ρ. The last term on the right-hand side of Eq. (2.2b)
is the Coriolis force due to system rotation, whereas centrifugal effects are absorbed in the
effective pressure p. Since both Uw and Ω

F are prescribed constants, the time-dependent
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Figure 1: Schematic of spanwise rotating plane Couette flow. The system is rotating with constant angular
velocity Ω

F about the spanwise z-axis.

flow field will eventually evolve into a statistically steady state which is the subject of the
present investigation.

2.2 Reynolds’ decomposition

The instantaneous velocity components ui and pressure p can be decomposed into mean
(Ui,P) and fluctuating (ui,p) parts to facilitate both the presentation and interpretation
of the outcome of the simulation. In the absence of rotational-induced roll cells, the mean
flow becomes unidirectional (U,0,0) and the mean pressure P serves primarily to balance
the wall-normal component of the Coriolis force:

1

ρ

dP

dy
=−2Ω

FU−
d

dy
v2. (2.3)

This balance results from the Reynolds-average of Eq. (2.2b) in the y-direction, provided
that the flow is statistically homogenous in (x,z)-planes. If the corresponding mean mo-
mentum equation in the x-direction is integrated once in y, the constancy of the total
mean shear stress:

µ
dU

dy
−ρuv=τw ≡ρu2

τ (2.4)

is obtained. Here, uτ denotes the wall-friction velocity. It is noteworthy that the sum
of the viscous and turbulent shear stresses remains constant throughout the flow field,
irrespective of whether the flow is rotating or not. This is so because the mean flow U
is only affected indirectly by the Coriolis force through the turbulent or Reynolds shear
stress −ρuv. The latter is governed by the transport equation for the individual second-
moments:

Duiuj

Dt
= Pij+Gij+Dij+Πij−ε ij. (2.5)

The right-hand-side terms, which are responsible for production due to mean shear (Pij),
production due to rotation (Gij), viscous and turbulent diffusion (Dij), pressure-strain
redistribution (Πij), and viscous energy dissipation (ε ij), are defined in the Appendix.
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The mean turbulent kinetic energy k ≡ 1
2 uiui is a convenient scalar measure of the

turbulent activity. The one-to-one relationship (2.4) between the viscous and turbulent
shear stress components makes it possible to express the production of mean turbulent
kinetic energy PK in terms of only the mean shear rate:

PK ≡
1

2
Pii =

1

2
Pxx =−uv

dU

dy
=

u4
τ

ν

(
1−

dU+

dy+

)
dU+

dy+
. (2.6)

Here, U+ and y+ are the inner or wall variables U/uτ and yuτ/ν, respectively. Maximum
production is obtained where dU+/dy+=1/2, which according to Eq. (2.4) is the location
at which the viscous and turbulent shear stress components are equal. Eq. (2.6) for the
production PK of mean turbulent kinetic energy also shows that the production PK = 0
as long as dU+/dy+ =1, i.e., in the innermost viscous sublayer where the mean velocity
varies linearly with the distance from the wall. This turns out to be an exact result for the
plane Couette flow, whereas the same is only approximately correct in channel flows.

2.3 Mean vorticity and second-moments of vorticity fluctuations

The components of the instantaneous vorticity vector are decomposed in mean Ωi and
fluctuating ωi parts in accordance with the Reynolds decomposition. In the present case
where the steady mean flow is unidirectional and the turbulence statistics are homoge-
neous in (x,z)-planes and in time, the equation for the only non-vanishing mean vorticity
component Ωz =−dU/dy reduces to the ordinary differential equation:

0=
d

dy
(wωy−vωz)+ν

d2
Ωz

dy2
, (2.7)

which can be integrated once to give:

0=wωy−vωz+ν
dΩz

dy
. (2.8)

Here, the constant of integration is zero since all the terms vanish identically at both
walls. It is noteworthy that the vorticity 2Ω

F due to the imposed system rotation does not
appear explicitly in Eq. (2.7). This is so because we are concerned only with orthogonal
mode rotation, i.e., the axis of rotation is aligned with the mean strain rate vector. This
particular orientation of the imposed rotation does not contribute to stretching and/or
tilting of the mean vorticity by mean strain.

Transport for the individual second-moments of the vorticity fluctuations can written
symbolically as:

Dωiωj

Dt
=T1ij+T2ij +S3ij+S4ij+S5ij+V6ij+V7ij, (2.9)
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where the terms on the right-hand side are given in the Appendix. The terms are num-
bered according to their order of appearance in Tennekes and Lumley [36] and Antonia
and Kim [3]. Their enstrophy budgets are readily recovered as half the trace of Eq. (2.9).
The capital letters are used to distinguish between transport (T), stretching (S) and vis-
cous (V) terms. In the equation above, the system rotation appears explicitly only in the
third stretching term S5ij.

A striking difference between the second-moment equation for the velocity fluctu-
ations (2.5) and that for the vorticity fluctuations (2.9) should be pointed out. While
Eq. (2.5) simplifies considerably upon contraction of the indices since both Πii = 0 and
Gii =0, none of the terms vanish when Eq. (2.9) is contracted to the enstrophy budget. In
the present context, it is particularly noteworthy that the effect of system rotation remains
in the stretching terms S5ii also after contraction. The enstrophy is therefore explicitly in-
fluenced by rotation, in contrast with the turbulent kinetic energy.

3 Computer simulations

A direct numerical simulation of a fully developed Couette flow at Re=1300 and Ro=0.7
has been performed. This Reynolds number is the same as that considered by Bech et al.
[8] and Bech and Andersson [6,7], which is well above 500 as required for fully developed
turbulence to persist [1]. The second-order accurate finite-volume code MGLET [28], was
used for the numerical integration of the incompressible Navier-Stokes equations (2.2).
The pressure is defined at the center of each grid cell and the velocity components at the
interfaces. The velocity components and their derivatives are obtained by linear interpo-
lation and central differences, respectively. An explicit second-order Adams-Bashforth
scheme was employed for the time integration. Periodic boundary conditions were used
in the two homogeneous directions and no-slip and impermeability conditions were im-
posed at both walls. The simulations were run on a parallel MPI computer.

The length and width of the computational domain were Lx=28πh and Lz=4πh, and
the number of grid points was 896×240×240 in the x-, y- and z-directions, respectively.
This domain is nearly three times longer than that used by Bech et al. [8] and Bech and
Andersson [6, 7]. The resolution in wall-units achieved by this grid for Ro = 0.7 corre-
sponded to ∆x+ = 7.5 and ∆z+ = 4.0 in the two homogeneous directions whereas ∆y+

varied from 0.15 to 1.14 in the wall-normal direction. Statistical averaging was made in
the two homogeneous directions and over a time interval 30h/uτ . Preliminary results
obtained with a smaller domain and coarser mesh were presented by Barri and Anders-
son [4].

For comparative purposes, a new simulation of the non-rotating Couette flow at Re=
1300 was performed using exactly the same computational domain and the same grid
as for the Ro = 0.7 case. In order to eliminate the potential role of domain size and grid
resolution on the results, data from the new Ro=0 simulation will be used as the reference
case throughout this paper to demonstrate the effects of system rotation. Comparisons
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Figure 2: Kolmogorov length scale η/h for the rotating case Ro=0.7 (solid line) compared with the corresponding
non-rotating Couette flow (broken line).

with the DNS data of Bech et al. [8] will be provided only for the mean velocity and the
Reynolds stress profiles in Section 4.

The Kolmogorov length scale η = (ν3/ǫ)1/4 is a measure of the order of magnitude
of the size of the smallest turbulent eddies. In anticipation of small-scale isotropy, η is a
scalar quantity. Fig. 2 shows the Kolmogorov scale evaluated on the basis of the scalar
dissipation rate ǫ of the mean turbulent kinetic energy. Since ǫ = 1

2 ε ii varies across the
flow, also η varies with y/h. While η increases with the wall distance from 0.018h to
0.026h in the non-rotating case, η exhibits a surprisingly constant level of about 0.022h
except in the innermost 10% of the rotating Couette channel. It is worthwhile to point
out that if the Kolmogorov length scale η is expressed in wall units, i.e., η+ =Reτη/h, we
find that η+ ≈ 2 which suggests that the grid resolution used in the present simulations
is fully adequate.

In order to see whether or not counter-rotating roll cells, as observed both by Bech and
Andersson [7] and Tillmark and Alfredsson [37] at relatively high anti-cylonic rotation
rates, are embedded in the three-dimensional flow field, the two-point correlations Rij(rk)
are shown in Fig. 3, in which also results for the non-rotating case are included. The non-
oscillatory behaviour of R22(rz) and R33(rz) and the rapid decay to zero of R22(rx) and
R33(rx) assure that the present flow field with Ro = 0.7 does not possess any counter-
rotating roll cells.

While Alfredsson and Tillmark [1] observed elongated turbulent structures and
weaker roll-cells of varying spanwise extent when the rotation number was increased
from 0.50 to 0.75, the present DNS at Ro = 0.70 showed no roll cells at all. The fact that
the quenching of the roll-cells at high anti-cyclonic rotation rates occurred at a somewhat
lower rotation number than in the laboratory channel might be due to the lower Reynolds
number (Re =790) in their study or more likely due to their finite-length channel width
and the relatively low aspect ratio (about 5) which implies that side-wall effects may play
a role.
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Figure 3: Two-point correlations near the center (y/h=0.98) with (a), (c) streamwise and (b), (d) spanwise
separations. Results without rotation (Ro =0) are at the top and with rotation (Ro =0.7) are at the bottom.
(——) Ruu; (···) Rvv; (– – –) Rww.

The presence of extraordinarily long flow structures in plane Couette flow [21, 39]
makes the required length Lx of the computational domain substantially larger than that
needed in a channel flow simulation. The two-point correlations presented in Fig. 3 show
that both the length Lx and the width Lz used herein are sufficient to accommodate the
largest flow structures, both in the rotating and the non-rotating Couette flow. It is also
noteworthy from Fig. 3(c) that the length scale of the wall-normal fluctuations is sub-
stantially larger than the length scale of the streamwise velocity fluctuations. This is just
the opposite of the situation in channel and Couette flow without rotation (see Fig. 3(a))
and is a first indication of the anomalies of rapidly rotating Couette flow.

4 Mean flow and velocity statistics

The shape of the mean velocity profile U(y) in Fig. 4 is rather different from the typical S-
shaped velocity distribution observed by Bech et al. [8] and others in non-rotating Couette
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Figure 4: Mean velocity distribution U(y) for Ro =0.7 (bold line) compared with the corresponding profile for
non-rotating Couette flow (thin line) and DNS data from [8] for Ro=0 (symbols).

flow. The DNS data from Bech et al. [8] are included here and in the two subsequent
figures simply to demonstrate the close resemblance between the present simulation for
Ro=0 and that of Bech et al. [8].

For the anti-cyclonically rotating Couette flow, the mean velocity profile exhibits a
substantial linear range which extends over 80% of the cross-section. The slope dU/dy of
the velocity profile in the linear region is close to 2Ω

F, which makes the local vorticity
ratio S ≈ −1. This shows that the mean velocity profile has adjusted itself such that
the mean flow vorticity Ω just counterbalances the imposed anti-cyclonic background
vorticity 2Ω

F, i.e., the absolute vorticity in an inertial frame-of-reference is driven to zero.
This phenomenon has been observed before, both in rotating channel flows by Johnston
et al. [20], Kristoffersen and Andersson [22], Lamballais et al. [23, 24] and Nakabayashi
and Kitoh [30, 31] and in rotating Couette flows by Bech and Andersson [7].

The wall-friction velocity uτ defined in Eq. (2.4) is obtained as a part of the numerical
solution. Since the turbulent shear stress −ρuv vanishes identically at the walls, uτ is
determined by the wall-slope of the mean velocity profile. The Reynolds number Reτ ≡
ρuτh/µ based on the wall-friction velocity uτ is an essential dimensionless parameter,
which in the present case becomes ≈ 76.5. This is significantly lower than Reτ = 82.02
found for Ro =0 and Reτ =82.2 reported by Bech et al. [8] for non-rotating Couette flow
at the same Reynolds number. This implies that a drag reduction of about 13% has been
achieved by the imposed rotation. On the contrary, at the highest rotation number Ro=0.5
considered by Bech and Andersson [7] the wall-friction Reynolds number was Reτ =91.0,
i.e., a 21% increase in wall-friction.

The extent of the Coriolis-dominated region in Fig. 4 is consistent with the criterion
proposed by Nakabayashi and Kitoh [30] that system rotation matters when y>δc, where
δc is the Coriolis length scale δc = uτ/Ω

F. In the present case, this criterion can be ex-
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pressed as
y

h
>

2

Ro

Reτ

Re
≈0.2. (4.1)

The inequality (4.1) suggests that the region in which system rotation is a leading-order
effect expands with increasing rotation Ro.

Nakabayashi and Kitoh [30] argued that the Coriolis force may penetrate deep into
the near-wall layer. The role played by the Reynolds number is taken over by a new
dimensionless parameter, namely the ratio between the viscous length scale ν/uτ and
the Coriolis length scale uτ/Ω

F, i.e., νΩ
F/u2

τ . This new dimensionless group can readily
be expressed as a combination of the rotation number and the Reynolds number as:

νΩ
F

u2
τ

=
1

2
RoReRe−2

τ . (4.2)

In the present case of a rapidly rotating Couette flow, this group is about 0.07. In the lab-
oratory experiments of rotating channel flow reported by Nakabayashi and Kitoh [30,31]
this parameter did not exceed 0.01, whereas Kristoffersen and Andersson [22] reached
about 0.02 at their highest rotation rate. The case considered herein is therefore un-
doubtedly one of strong rotation. The present results support the relevance of the di-
mensional group in Eq. (4.2) as a distinguishing parameter in rotating shear flow. While
Nakabayashi and Kitoh [30] introduced this parameter as the ratio between the viscous
length scale and the Coriolis length scale, the parameter can equally well be identified as
the ratio between the viscous time scale ν/u2

τ and the Coriolis time scale 1/Ω
F.

It is obvious that dU/dy cannot exceed Uw/h in the Couette flow and this intuitive
constraint inevitably implies that Ro = 1 is an upper bound for which neutral stability
S=−1 can be sustained. This is consistent with the upper bound on momentum transport
in turbulent Couette flow derived by Busse [10]. He found that no state of turbulent
motion can exist for

4Re≤
1708

4ReRo
+4ReRo. (4.3)

This criterion for turbulence to exist can be recast into an explicit constraint on the rota-
tion number:

Ro<
1

2

(
1+

√
1−4

1708

16

1

Re2

)
. (4.4)

For Re = 1300, this formulae suggests that turbulence can be maintained only if Ro <

0.9999, i.e., fully consistent with our intuition-based conjecture that Ro cannot exceed
unity. The recent flow visualizations of Alfredsson and Tillmark [1] indeed showed that
the turbulence was suppressed and the flow relaminarized for rotation numbers beyond
1.0.

The partition between viscous and turbulent shear stresses is shown in Fig. 5. Due
to the substantial linear portion of the mean velocity profile in Fig. 4, the viscous shear
stress is constant over the entire center region and the stress magnitude is 3-4 times larger
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Figure 5: Variation of viscous and turbulent shear stress across the flow for Ro=0.7 (bold lines) compared with
the corresponding data for non-rotating Couette flow (thin lines) and DNS data from [8] for Ro=0 (symbols).
Viscous shear stress µ(dU/dy)/τw (– – –; ◦) and turbulent shear stress −ρuv/τw (——; ⋄).

than in the non-rotating case. Let us recall that the viscous shear stress µdU/dy, when
normalized by τw, is equal to dU+/dy+ , i.e., the inner-variable mean shear rate. The
slope of the mean velocity in outer variables, as in Fig. 4, is related to dU+/dy+ in Fig. 5
in accordance with:

dŨ

dỹ
≡

d(U/2Uw)

d(y/h)
)=

1

2
Re−1Re2

τ

dU+

dy+
. (4.5)

The local vorticity ratio S can be deduced from either of the two, i.e.,

S=−
2Ω

F

dU/dy
=−

1

2
Ro

(
dŨ

dỹ

)−1

=−RoReRe−2
τ

(
dU+

dy+

)−1

. (4.6)

With dU+/dy+ approximately equal to 0.16 over nearly 80% of the cross-section in Fig. 5,
the core region value of S≈−1.004. In the substantial part of the cross-section where S
is practically equal to −1.0, the absolute mean vorticity vanishes and the shear-Coriolis
instability is neutral. A further elaboration on the consequences of this observation is
postponed until Section 5.

The constancy of the total mean shear stress, as expressed in Eq. (2.4), therefore also
makes the turbulent shear stress −ρuv constant over about 80% of the cross section. The
turbulent shear stress equals the viscous shear stress at about y/h≈0.07, which is signif-
icantly closer to the wall than in the non-rotating case where the two shear stresses equal
at y/h ≈ 0.10. This intersection point is exactly where the turbulent energy production
attains its maximum value (see the discussion in Section 2.2). This observation therefore
reflects that the imposition of rotation makes the near-wall layers thinner.

This suggestion is confirmed by the profiles of the turbulence intensities in Fig. 6(a),
which show that the peak positions are indeed closer to the walls than for Ro=0. An even
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more striking observation is the reversal of the conventional anisotropy urms>wrms>vrms

in wall turbulence in general and in non-rotating Couette flow in particular. In the rapidly
rotating Couette flow vrms > wrms > urms over a substantial part of the flow. While the
wall-normal velocity fluctuations vrms are consistently smaller than the other velocity
fluctuations for Ro=0, vrms exceeds the streamwise fluctuations urms over the central 80%
of the cross section and the spanwise fluctuations wrms over more than 60% of the flow.

The dominance of the wall-normal velocity fluctuations affects the distribution of the
mean turbulent kinetic energy k across the flow as shown in Fig. 6(b). The conventional
near-wall peaks are totally absent and the maximum value of k is observed midway be-
tween the walls where also vrms attains its maximum. The energy level is higher over the
entire core region and exceeds that of the non-rotating flow with about 75% at the center.
The simultaneous observations of a higher turbulence level and reduced flow resistance
can only be understood if the rotating turbulence is less efficient in wall-normal mixing
(i.e., shear production) than conventional wall turbulence.

In spite of the above observation that the wall-normal fluctuations dominate over the
streamwise fluctuations, the outcome of a quadrant analysis shown in Fig. 7 does not
show any qualitative differences brought about by the system rotation. In both cases,
the fourth quadrant (Q4-events) dominates very close to the wall whereas contributions
from the second quadrant (Q2) are more influential further out. It is readily seen, how-
ever, that the position at which the two kind of events are of equal importance has shifted
from y+≈14 in the non-rotating case to about y+≈6 for Ro=0.7. It can also be noticed that
the adverse contributions from the Q1 and Q3 events have been significantly reduced, es-
pecially near the wall. Although the Q4-dominance over the Q2-events still persists in the
vicinity of the wall, the relative contribution from the Q4-events has been substantially
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reduced, thereby suggesting that the importance of the sweep events has diminished. It
is noteworthy that a similar reduction of the fractional contribution of sweeping events
relative to ejections was observed also at the anti-cyclonic side of the rotating Poiseuille
flow both in the computer experiments by Kristoffersen and Andersson [22] and the lab-
oratory experiments by Nakabayashi and Kitoh [31]. In that flow, however, the turbulent
shear stress −ρuv was increased due to the imposed system rotation, whereas the shear
stress is lowered in the present flow. A particular feature of Couette flow turbulence is
that an ejection (Q2-event) from the fixed wall appears as a sweeping event (Q4) when
seen from the moving wall and vice versa.

For the sake of completeness, the skewness S and flatness F of the fluctuating ve-
locity components are shown in Fig. 8. The skewness of u is positive in the core region
and inevitably goes to zero at the center due to symmetry. This contrasts with the non-
rotating case in which S(u) is negative in the core. The latter is generally ascribed to the
dominance of outbursts or ejections beyond y+ ≈ 12 whereas so-called sweeps are the
major contributor to the turbulence production in the vicinity of the wall. The positive
value of S(u) in the core region of the rotating Couette flow must therefore imply that
the conventional stress-producing mechanism has been suppressed. The flatness of u is
substantially higher than 3.0 in the core region which suggests more frequent occurrences
of extreme events than in a Gaussian distribution.

The skewness and flatness of the wall-normal velocity component v become roughly
constant, i.e., S(v)≈0 and F(v)≈2.8, in the core region. In the immediate vicinity of the
wall, the skewness of v has become negative with the wall-value S(v)≈−1 rather than be-
ing close to zero as in the non-rotating case. This implies that extreme wall-ward motions,
although possibly rare, are more frequent than extreme out-rushs. The violent wall-ward
motions may furthermore be correlated with strong positive streamwise fluctuations and
thus contribute to the Reynolds shear stress. This is in contrast with other wall-flows,



M. Barri and H. I. Andersson / Commun. Comput. Phys., 7 (2010), pp. 683-717 697

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5
(a)

y/h

S
(u

i)

0 0.2 0.4 0.6 0.8 1
2

3

4

5

6

7

8

9

10
(b)

y/h

F
(u

i)

Figure 8: Higher-order moments of the velocity fluctuations ui. (a) Skewness S(ui); (b) Flatness F(ui). Data
from the rotating Couette flow (bold lines) compared with the non-rotating case (thin lines). (——) u; (– – –)
v; (···) w.

notably plane Poiseuillle flow, where both S(u) and S(v) are positive in the vicinity of
the wall and extreme u-motions are therefore not correlated with large v-motions.

The symmetry properties of the present flow imply that S(w) = 0. The skewness of
w, as deduced from the simulated flow field, is essentially zero both in the rotating and
non-rotating case and thereby confirms the adequacy of the sampling.

5 Energy considerations and Reynolds-stress budgets

The budgets of the individual components of the Reynolds stress tensor provide insight
into the interactions between the large-scale turbulence and the mean flow. The budgets
of the three diagonal components and the only non-zero off-diagonal Reynolds stress
component are shown in Fig. 9.

In order to assist in the interpretation of the budgets, it might be helpful to consider
the production terms due to mean shear and rotation. For unidirectional mean flow U(y)
rotating about the z-axis, we obtain:

Pxx+Gxx =−2uv
dU

dy
+4Ω

Fuv=(1+S)Pxx≈0, (5.1a)

Pyy+Gyy =0−4Ω
Fuv=−SPxx≈Pxx, (5.1b)

Pxy+Gxy =−v2
dU

dy
−2Ω

F(u2−v2)=

[
1+S

(
1−

u2

v2

)]
Pxy≈

u2

v2
Pxy =−u2

dU

dy
. (5.1c)

Here, the rightmost part of the each of the above equations is valid only for S≈−1.0. Data
for the individual production terms in the core region, together with the pressure-strain
rates and the dissipation rates, are provided in Table 1.
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Table 1: Core-region values of the leading terms in the second-moment budgets evaluated at the symmetry
plane y/h=1.0 for Ro =0.7. All terms are scaled with u4

τ/ν. The imbalance refers to the sum of the leading
terms that are included in the table.

i=1, j=1 i=2, j=2 i=3, j=3 i=1, j=2

Pij + 0.249 ———— ———— − 0.919
Gij − 0.264 + 0.264 ———— + 0.794
Πij + 0.056 − 0.176 + 0.114 + 0.102
−ε ij − 0.040 − 0.099 − 0.103 + 0.021
Imbalance + 0.001 − 0.011 + 0.011 − 0.002

It is well known that the mean shear only contributes to streamwise velocity fluctu-
ations. The system rotation introduces source terms both in the streamwise and wall-
normal directions, whereas the fluctuations in the direction of the axis of rotation are
unaffected. It is particularly noteworthy that the rotational terms in Eq. (5.1) cancel out
if the second-moment equation (2.5) is contracted to give an equation for the turbulent
kinetic energy. This is intuitively evident since the instantaneous Coriolis force always
acts perpendicular to the instantaneous velocity vector. The Coriolis force can therefore
neither produce work nor directly alter the energy of the flow. The substantially higher
mean turbulent kinetic energy in the rotating case (see Fig. 6(b)) must therefore be as-
cribed to indirect effects of system rotation. The weakly and moderately rotating Couette
flow considered by Bech and Andersson [6,7] was affected by large-scale counter-rotating
roll cells, as was the rotating Poiseuille flow studied by Johnston et al. [20] and Kristof-
fersen and Andersson [22] and others. Such roll cells contribute substantially to the ki-
netic energy of the flow, whereas the present Couette flow is free of rotational-induced
large-scale vortices. The excess kinetic energy level can therefore only be a result of an
indirect influence of the Coriolis force on the turbulence structure.

The anisotropy and inhomogeneity of a turbulent flow field is caused by the pro-
duction terms in Eq. (2.5). In the orthogonally rotating Couette flow, the only non-zero
production terms are those given in Eq. (5.1) above. In non-rotating channel and Couette
flow, the turbulence is produced by mean shear, i.e., Pxx >0, whereas Pyy and Pzz both are
zero.

Throughout the core region of the rapidly rotating Couette flow S ≈−1. This im-
plies that the rotational turbulence production Gxx just outweighs the conventional mean
shear production Pxx (see Fig. 9(a)) with the crucial implication that no energy is trans-
ferred from the mean flow into the streamwise velocity fluctuations. Instead, the correla-
tion between the wall-normal Coriolis force and the wall-normal velocity fluctuations in

Eq. (5.1b) becomes a significant source of v2, as seen in Fig. 9(b).

As far as the shear stress −ρuv is concerned, the rotational production Gxy assists the

mean shear production Pxy as long as the conventional shear flow anisotropy u2 >v2 per-

sists. In the presence of an abnormal anisotropy v2>u2, however, the situation is reversed
and Gxy tends to reduce the turbulent shear stress, as can be observed from the budget
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for −ρuv in Fig. 9(d). The overall implication is that the streamwise velocity fluctuations
have taken over the role played by wall-normal fluctuations for Ro =0, as demonstrated
by Eq. (5.1c). It is noteworthy, however, that what is left in (5.1c) stems from interac-
tions between streamwise velocity fluctuations and the wall-normal component of the
instantaneous Coriolis force.

The rightmost parts of Eq. (5.1) apply in the core region of the rapidly rotating Couette
flow where S≈−1.0. In this region turbulent velocity fluctuations are contributed into
the wall-normal direction by the action of the Coriolis force whereas no turbulence is
produced in the streamwise and spanwise directions. Thus, in order for turbulence to
prevail, a redistribution mechanism is required which transfers turbulent energy from
the wall-normal direction into the two other coordinate directions. If no energy is fed into
the streamwise direction, the correlation uv required for the turbulence production (5.1b)
will vanish and the turbulence will eventually fade away. It is therefore speculated that
the quenching of the turbulence in rapidly rotating Couette flow reported by Bech and
Andersson [7] and Alfredsson and Tillmark [1] results from the attenuation of the crucial
transfer mechanism between the directional components of the instantaneous velocity
vector.

Outside of the core region, however, the local vorticity ratio S increases monotoni-
cally from −1 to −0.16 at the walls. Here, the wall-value of S is readily obtained from
Eq. (4.6) with dU+/dy+ = 1.0. The simplifications introduced in the rightmost parts of
Eq. (5.1) do no longer apply, which for instance implies that streamwise velocity fluctu-
ations produced by mean shear are only partially hampered by the rotational sink term
near the walls, see, e.g., Fig. 9(a).

The preceding discussion is valid only if the rotation is sufficiently fast, i.e., beyond
the supercritical regime in which roll cells co-exist with the turbulence. The existence of
a purely turbulent flow regime for anti-cyclonic rotation rates Ro above 0.5 and a roll-cell
dominated regime for 0 < Ro < 0.5 [6, 7] is analogous to the existence of two different
flow regimes in the Taylor-Couette flow recently addressed by Dubrulle et al. [12]. The
two conceptually different turbulent regimes for anti-cyclonic rotation contrast with the
existence of only one turbulent flow regime in plane Couette flow subjected to cyclonic
rotation.

6 Vorticity dynamics

The vorticity is an essential kinematic property of fluid motion, as illustrated by the snap-
shots of the flow field shown in Fig. 10. In order to focus on the streamwise vorticity, the
instantaneous λ2-field (to be defined in Section 6.2) has been pre-multiplied by ωx before
the iso-contours were plotted. It is evident from these plots that the streamwise vorticity
has been substantially enhanced when the flow is subjected to strong anti-cyclonic rota-
tion as in Fig. 10(b). Furthermore, we consider the distribution of θ = tan−1(ωy/ωx), the
inclination angle of the projection on the (x,y)-plane of the vorticity vector. Fig. 11 shows
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Figure 10: Instantaneous flow field visualised by means of iso-contours of −λ2ωx. (a) Ro = 0; (b) Ro = 0.7.
The contour level is the same in both parts of the figure. Positive and negative contour levels are distinguished
by light and dark shading, respectively.
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the inclination angle θ close (y+ =10) and far away (y+ =50) from the wall for both ro-
tating and non-rotating cases. The results indicate a distinct effect of system rotation on
the flow structures not only in the core region (θ≈10) but even in the flow region close
to the wall (θ≈25). These observations will be examined by means of vorticity statistics
in the following subsections.

6.1 Mean vorticity and mean Lamb vector

It is evident from the mean velocity profile in Fig. 4 and the partition between viscous
and turbulent shear stress components in Fig. 5 that the mean vorticity Ωz =−dU/dy is
constant and roughly equal to the background vorticity 2Ω

F over about 80% of the cross-
section. The integrated equation for the mean vorticity (2.8) is valid over the entire flow
region. The constancy of Ωz in the core region makes the viscous term in (2.8) vanish
and leaves a balance between wωy and −vωz. Such velocity-vorticity correlations are
associated with the Lamb vector:

λ=u×ω. (6.1)

The above definition of the instantaneous Lamb vector is the same as that adopted by
Orlandi [32] and Liu and Lu [26] while Moffatt and Tsinober [29] used the definition
ω×u. The mean value Λ of the instantaneous Lamb vector λ lies entirely in the (x,y)-
plane, i.e., Λz = 0, due to symmetries. The two non-zero components are in the present
case:

Λx =vωz−wωy and Λy =−UΩz+wωx−uωz. (6.2)

Here, the velocity-vorticity correlations which contribute to the streamwise component
are recognized as the two first contributions to the integrated mean vorticity balance (2.8)
which therefore can be stated as Λx =νdΩz/dy. The mean vorticity Ωz, which is negative
across the entire flow, increases monotonically from its minimum value at y=0 to its max-
imum (but still negative) level in the core. The resulting dΩz/dy>0 in the near-wall re-
gion is balanced by −Λx in accordance with Eq. (2.8); see Fig. 12. The major contribution
to the positive Λx in the near-wall region stems from the negative correlation between
the spanwise velocity fluctuations and the wall-normal vorticity. It is noteworthy that Λx

is roughly doubled in the presence of system rotation in the vicinity of the walls. This
increase in the Lamb vector is in qualitative agreement with the rotating Poiseuille flow
simulations by Liu and Lu [26]. They reported a substantial enhancement of Λx near
the pressure (i.e., anti-cyclonic) side of their rotating channel, whereas Λx was nearly
suppressed near the suction (i.e., cyclonic) side.

In the core region of the Couette flow where the mean vorticity is uniform, dΩz/dy≈0
and the streamwise component of the mean Lamb vector vanishes, i.e., vωz ≈wωy. It is
noteworthy from Fig. 12 that Λx is suppressed already at y≈0.3h in the presence of system
rotation. Since the Lamb vector is responsible for the energy cascade, this observation
implies that the energy transfer from large to small scales is inhibited by the imposed
rotation.
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Figure 12: Individual terms (——) wωy; (– – –) −vωz; and (– · –) νdΩz/dy in the integrated mean vorticity
equation (2.8). Notice that the sum vωz−wωy equals Λx, i.e., the x-component of the mean Lamb vector in

Eq. (6.2). (a) Non-rotating Couette flow; and (b) Anti-cyclonically rotating Couette flow with Ro=0.7.

The role of the mean Lamb vector in the turbulence productions is readily revealed if
the production of turbulent kinetic energy by mean shear in Eq. (2.6) is rewritten as:

PK =
1

2
Pii =−uiuk

∂Ui

∂xk
=−ε ijkωjuiUk−

∂uiukUk

∂xi
=−ΛxU−

dUuv

dy
. (6.3)

Here, ε ijkωjui comprises the velocity-vorticity correlations involved in the k-component
of the mean Lamb vector. The rightmost part of Eq. (6.3) shows that only the streamwise
component of Λ contributes to the turbulent energy production in this particular flow.
In the core region where the shear stress −uv remains constant and Λx vanishes, the
more conventional expression (2.6) for the kinetic energy production is recovered. It
can readily be inferred from the data in Fig. 12 that the consistently positive value of
Λx is responsible for a loss of turbulent energy, i.e., transfer from large to small scales
and ultimately dissipation. This loss is, however, more than outweighed by advection of
large-scale energy.

The helicity density is defined as

h=u·ω. (6.4)

The helicity h is related to the Lamb vector through the mathematical vector identity [34]:

h2+λ
2 = |u·ω|2+|u×ω|2 = |u|2|ω|2. (6.5)

According to (6.4) helicity is a measure of the degree of alignment of the vorticity vector
and the velocity vector. High levels of helicity are believed to hamper the energy cascade
and therefore also the energy dissipation. In the present flow, however, the mean value of
the helicity density defined in (6.4) vanishes identically due to the inherent symmetries
associated with the statistical homogeneity in the spanwise direction.
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Figure 13: Variation of the mean streak spacing ∆
+ = ∆·uτ/ν in the near-wall region for rotating (∗) and

non-rotating (◦) Couette flow.

6.2 Near-wall streaks and coherent flow structures

The wall-region of a non-rotating plane Couette flow resembles that in other simple wall-
bounded flows, e.g. the plane Poiseuille flow. The presence of elongated streamwise
streaks with a typical mean spacing ∆ of about 100 wall units (i.e., ν/uτ) are among
the most characteristic features of wall turbulence. The particular spanwise separation
which corresponds to the distinct minimum of the two-point correlation of u in Fig. 3
is a measure of the mean separation between low- and high-speed motions. The mean
streak spacing ∆ is estimated as twice this distance. The results in Fig. 13 show that ∆

+

increases nearly linearly with the wall distance from about 100 in the immediate vicinity
of the wall to about 150 at y+=30 in the absence of rotation, i.e., just as in the non-rotating
Poiseuille flow. In the presence of system rotation, a somewhat larger streak spacing ∆

+

is observed. This is opposite to the distinctly reduced streak spacing observed at the anti-
cyclonic (pressure) side of the rotating Poiseuille flow considered by Kristoffersen and
Andersson [22]. The enhanced streak density in that study was accompanied by a higher
wall-friction velocity. In the present case, on the other hand, the increased streak sepa-
ration is associated with a reduction in uτ, i.e., fully consistent with the widely accepted
belief that the streak density is closely related to the wall friction.

An efficient scalar quantity frequently used to identify regions of localized vortices in
a flow field is λ2 introduced by Jeong and Hussain [18] as the second largest eigenvalue
of the tensor sikskj+rikrkj where sij and rij are the strain-rate and rotation-rate tensors,
respectively. The distribution of the rms-value of λ2 from the wall and towards the center
is shown in Fig. 14. λ2rms is normalized by u4

τ/ν2, i.e., the reciprocal of the viscous time
scale ν/u2

τ squared. In the absence of rotation, the near-wall variation closely resembles
that of plane Poiseuille flow with a peak located at about y/h ≈ 0.2 or y+ ≈ 16. The
peak level is, however, more than 50% higher in the Couette flow than in the Poiseiulle
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Figure 14: Variation of λ2rms from the wall to the centerline for the rotating (solid line) and non-rotating

(broken line) Couette flow. The data are scaled with u4
τ/ν2.

flow and the reduction of λ2rms towards the centerline is by far more modest than in
the channel flow. When the Couette flow is subjected to rapid anti-cyclonic rotation,
however, λ2rms increases monotonically all the way from the wall towards the center and
the λ2-level at the centerline is more than 3 times higher than without rotation. This is
yet another manifestation of the anomaly of the flow dynamics in the core region.

6.3 Enstrophy and vorticity budgets

The root-mean-square values of the fluctuating vorticity components are shown in
Fig. 15. The only resemblance with conventional wall-flow behaviour is that the wall-
normal vorticity goes to zero at the wall simply as a result of the no-slip condition. While

spanwise vorticity fluctuations ω2
z normally dominate in the near-wall region, see, e.g.,

Antonia and Kim [3], the streamwise vorticity ω2
x is by far more intense in the present

case. This enhancement due to system rotation overshadows the characteristic near-wall

peak of ω2
x which can be observed for Ro = 0. This peak has usually been associated

with the presence of coherent streamwise-oriented vortices. A striking homogeneity of
the fluctuating vorticity field is observed in the entire core region. Here, a distinct and
anomalous anisotropy prevails with the streamwise vorticity fluctuations exceeding the
two other components, which on the other hand turn out to be practically equal and thus
reflects an axisymmetry of the vorticity field. This contrasts with the non-rotating case in
which the vorticity field is close to an isotropic state in the core region.

Following Antonia and Kim [3], the behaviour of the individual vorticity components
can be further explored by examining the dominating terms in the second-moment equa-
tion (2.9). They based their analysis on their equation (14) which appears as an equation
for twice the scalar enstrophy due to the implicit summation over repeated indices i and
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j. Their equation (14) is consistent with the diagonal elements of present equation (2.9)
for the individual second-moments provided that summation is only carried out for j
whereas the conventional summation rule is not applied for the repeated index i which
rather should be taken as either 1, 2 or 3. In the present context, the stretching term S5ij is
of particular concern. Tennekes and Lumley [36] referred to this term as a mixed produc-
tion term. This term plays a major role in the viscous sublayer in channel flows [3] where
it peaks about y+≈4. In a rotating frame-of-reference, this is the only term in the second-
moment vorticity budgets that explicitly includes the system rotation; see Eq. (A.13) in
the Appendix.

Table 2: Core-region values of the leading terms in the second-moment vorticity budgets evaluated at the
symmetry plane y/h=1.0 for Ro=0.7. All terms are scaled with (u2

τ/ν)3. The imbalance refers to the sum of
the leading terms that are included in the table.

i= j=1 i= j=2 i= j=3 Enstrophy

S3ij ·103 − 0.01 + 1.26 + 1.90 + 1.58

S4ij ·103 + 6.60 ———— ———— + 3.30

S5I
ij ·103 − 3.20 + 3.32 − 0.10 + 0.01

S5I I
ij ·103 + 3.20 − 3.34 + 0.10 − 0.02

V7ij ·103 − 6.50 − 1.34 − 1.88 − 4.86

Imbalance ·103 + 0.09 − 0.10 + 0.02 + 0.01

The vorticity budgets presented in Fig. 16 show that most of the terms in (2.9) con-
tribute in the near-wall region, whereas a major simplification is observed further away
from the walls. Several terms become of negligible importance in the core region and
those that contribute remain constant over at least 60% of the cross-section (see Table 2).
The budget of the spanwise vorticity in Fig. 16(c), for instance, simplifies to a balance
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between stretching by fluctuating velocity gradients S3zz and viscous dissipation V7zz.
Such a balance prevails also in the central part of the plane channel flow examined by
Antonia and Kim [3].

Most of the terms in the ω2
y-budget are vanishingly small in the absence of rotation,

in particular in the core region. It is noteworthy that the present budget in Fig. 16(b) is
rather different from the corresponding Poiseuille flow budget provided by Antonia and
Kim [3] in their Fig. 8(b). They observed that two stretching terms S4 and S5 are the dom-
inating sources of wall-normal vorticity fluctuations. In the present case, however, S4yy

is absent as it should be for symmetry reasons. In fact, S4 contributes only to streamwise
vorticity fluctuations in unidirectional shear flows. With system rotation imposed, the
important stretching term S5yy associated with the mean flow vorticity is outweighed by
the stretching due to the imposed rotation in the entire core region. This leaves a balance
between turbulent vortex stretching of vorticity fluctuations S3yy and viscous dissipation
V7yy, i.e., similarly as in the spanwise direction.

The streamwise vorticity fluctuations are the main contributor to the enstrophy 1
2 ωiωi

in the rapidly rotating Couette flow. According to the budget in Fig. 16(a), S3xx is reduced
with rotation whereas S4xx is increased. Again, the stretching due to mean flow vorticity
exactly balances the stretching due to rotation and thereby leaves a balance between the
S4xx and V7xx in the core region. This contrasts with the non-rotating case in which S3xx

is the major source term.
The enstrophy balance is readily obtained as the trace of Eq. (2.9), i.e., as the sum of

the diagonal terms of the individual second-moments of the vorticity fluctuations. Let us
recall from Section 2 that the rotational contribution to the stretching term S5 does not
vanish when the indices are contracted in Eq. (2.9). However, in the nearly homogenous
core region where the vorticity ratio S≈−1.0, the two parts S5I

ij and S5I I
ij due to mean

flow stretching and rotational stretching, respectively, cancel out. The enstrophy budget
in Fig. 16(d) is included here to enable a qualitative comparison with the results from
the channel flow simulations by Lamballais et al. [23]. At the anti-cyclonic side of their
rapidly rotating channel they observed a balance between stretching and viscous terms.

7 Turbulence anisotropies

To further examine the anisotropy of the rotating Couette flow, anisotropy invariant maps
(AIM) are presented in Fig. 17. Here, these are derived on the basis of the anisotropy
tensors:

aij ≡
uiuj

2k
−

1

3
δij, (7.1)

dij ≡
ε ij

2ε
−

1

3
δij, (7.2)

υij ≡
ωiωj

2ω2
−

1

3
δij. (7.3)
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Figure 17: Anisotropy invariant maps. (a) Reynolds stress anisotropy aij; (b) dissipation rate anisotropy dij; (c)
vorticity correlation anisotropy υij. Data for rotating (∗) and non-rotating (◦) Couette flow.

The so-called Lumley triangle is drawn in the (-II, III)-plane where II and III are the sec-
ond and third invariant of the anisotropy tensor, see Lumley and Newman [27]. Fig. 17(a)
shows that the Reynolds stress anisotropy behaves rather differently in the rotating Cou-
ette flow. Instead of tending towards the one-component limit characterized by the dom-
inance of streamwise fluctuations as in the non-rotating case, the path from the 2D limit
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in the immediate vicinity of the walls goes in the opposite direction. The anisotropy
touches the boarder representing axisymmetric (rod-like) turbulence at y+ ≈12 and that
of disk-like axisymmetry at y+ ≈28. Thereafter, i.e., in the quasi-homogeneous core, the
anomalous anisotropy vrms > wrms > urms prevails. The same Reynolds stress anisotropy
has been observed also in rapidly rotating Poiseuille flow by Kristoffersen and Anders-
son [22] and Lamballais et al. [23, 24] as well as in homogeneous shear flows subjected to
strong rotation by Salhi and Cambon [35]. The dissipation rate anisotropy dij in Fig. 17(b)
follows a similar path as the Reynolds stress anisotropy aij in Fig. 17(a) and ends up with
a similar anisotropy in the core region, but nearly touching the boarder signifying ax-
isymmetric dissipation, i.e., εyy ≈ εzz > εxx.

Also the anisotropies of the vorticity fluctuations behave similarly to the Reynolds-
stress anisotropy in the near-wall region (cf. Fig. 17(c)), but stick to rod-like axisym-

metry with ω2
x exceeding the two other directional vorticities throughout the core re-

gion. In the absence of rotation, however, the vorticity fluctuations in the core region
are close to an isotropic state, just as in the central region of a plane Poiseuille flow. The
distinctly different path followed by υij in the rotating Couette flow reflects the anoma-
lous anisotropy of the vorticity fluctuations. The excess streamwise vorticity fluctua-
tions depart substantially from the nearly isotropic state observed in the non-rotating
Couette flow. Both Yanase et al. [40] and Brethouwer [9] observed very elongated and
intense streamwise vortex tubes in their simulations of rapidly rotating homogeneous
shear flows with S =−1.0. The tabulated values of υij provided by Brethouwer [9] were

attained after the simulation had evolved for a time 10(dU/dy)−1 and exhibit essentially
the same vorticity anisotropy as in the core region of the present rotating Couette flow.
Yanase et al. [40] further explored the temporal evolution of high-vorticity blobs via vor-
tex sheets into tubular vortices.

In the absence of system rotation, the paths followed by the anisotropy tensors in the
three AIM-maps in Fig. 17 exhibit roughly the same shapes. In the presence of strong
system rotation, on the other hand, aij, dij, and υij follow rather different paths. It is
particularly noteworthy that the anisotropy of the dissipation rate tensor behaves com-
pletely different from that of the vorticity correlation tensor in the quasi-homogeneous
core region.

Inspired by the arguments put forward by Nakabayashi and Kitoh [30], one may con-
jecture that the impact of the system rotation on the individual flow structures depends
on whether the eddy size is smaller or larger than the Coriolis length scale δc = uτ/Ω

F.
This motivates an inspection of the component energy spectra of the rotating Couette
flow. The spectra in Fig. 18 show that the dominating role of streamwise large-scale
fluctuations has been taken over by wall-normal velocity fluctuations in the center of the
flow. Due to the kinematic blocking enforced by the solid surface, however, enhancement
of the wall-normal fluctuations is prohibited next to the wall. Instead, spanwise fluctu-
ations have taken over the conventional role of the streamwise fluctuations in the near-
wall region. The spectra at y/h = 1.0 show that the conventional stress anisotropy has
been inverted due to the rotation as far as the large-eddy motion is concerned whereas
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Figure 18: One-dimensional energy spectra Eii(kx). (a), (c) Close to the wall at y+ ≈ 5 ; (b), (d) Near the
center at y/h = 0.98. Results without rotation (Ro = 0) at the top (a,b) and with rotation (Ro = 0.7) at the
bottom (c,d). (——) Euu; (– – –) Evv; (···) Eww.

the isotropy of the small-scale fluctuations is retained.
The Taylor microscale ℓu is defined as:

ℓ
2
u =

u2

(∂u/∂xj)2
. (7.4)

The directional index j of the derivative is subjected to summation such that ℓu becomes
independent of the coordinate direction. Analogous definitions are used for ℓv and ℓw.
The results in Fig. 19 show that both ℓu and ℓw are fairly constant across the flow, whereas
ℓv increases monotonically from the wall to the center of the flow. This is due to the
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presence of the wall which imparts a substantial damping of wall-normal motions as
compared to motions parallel with the walls. This general behaviour is therefore found
irrespectively of whether the flow is rotating or not. It is interesting to observe that ℓv

is some 15% larger in the core region in the presence of rotation than for Ro = 0. The
Taylor microscale of the streamwise fluctuations is reduced whereas the microscale of the
spanwise fluctuations is increased in the buffer region but otherwise unaffected by the
rotation. The conventional scale anisotropy ℓu >ℓw >ℓv, which reflects the conventional
Reynolds stress anisotropy urms >wrms >vrms, has been inverted to ℓv >ℓw >ℓu in the core
region for Ro=0.7.

8 Concluding remarks

The plane Couette flow subjected to anti-cyclonic background rotation has been seen
to develop a substantial nearly-homogeneous central core region in which the absolute
mean vorticity vanishes entirely provided that the imposed system rotation is sufficiently
fast. In spite of the presence of wall-layers bridging the core region with the solid walls,
the core region has been found to share most of the characteristic features of the truly
homogenous shear flow subjected to anti-cyclonic rotation provided that the imposed
system rotation exactly outweighs the mean flow rotation.

A distinguishing feature of the present case is that the flow is statistically steady in
time whereas a homogeneous shear flow is constantly evolving in time. Thus, while
the mean velocity and turbulence statistics in the Couette flow become independent of
time after a certain transient phase, the homogenous shear flow continuously evolves in
time. In practice the computational grid often moves with the mean flow in the latter
case. The inevitable skewing of the grid cells thus calls upon a re-meshing at regular
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time intervals [9, 16]. Another attractive feature of the present flow is the fact that the
imposed system rotation vector is consistently anti-parallel with the mean flow vorticity
vector and the flow field is everywhere exposed to anti-cyclonic rotation. This contrasts
with the analogous rotating Poiseuille flow, in which one part of the flow is rotating
cyclonically whereas another part is subjected to anti-cyclonic rotation.

The present results have for the first time demonstrated the existence of pure tur-
bulence in an anti-cyclonically rotating plane Couette flow, i.e., the rotation rate is suffi-
ciently high to suppress the roll-cell instability but yet not high enough to quench the tur-
bulence. An intuition-based conjecture suggests that Ro =1.0 is an upper bound beyond
which turbulence cannot be sustained. The present flow case is therefore a prominent
example of so-called featureless turbulence [2]. Since the resulting mean flow becomes
unidirectional in the absence of roll cells, this flow case is particularly well suited for
testing of turbulence closure models aimed to be used in conjunction with the Reynolds-
averaged Navier-Stokes equations.

It is widely accepted that system rotation offers a challenge to any semi-
phenomenological turbulence model; see, e.g., Launder et al. [25], Johnston [19], Hamba
[14] and Jakirlic et al. [17]. The present flow case should be attractive for the turbulence
modeling community since the Reynolds-averaged Navier-Stokes equations and any ac-
companying one-point-closure model reduce to a coupled set of ODEs in the wall-normal
direction. This favourable feature enables the elimination of all numerical inaccuracies
and thus to pin-point any deficiencies in a model’s ability to account for the effect of the
Coriolis force on the turbulence field. This is only feasible in the absence of rotational-
induced roll cells, i.e., in featureless turbulence as achieved for Ro=0.7. Counter-rotating
roll cells, which arise with moderate anti-cyclonic rotation (Ro ≤ 0.5), inevitably con-
tribute extra source terms to the transport equations for the second-moments of the veloc-
ity and the vorticity fluctuations, i.e., in Eqs. (2.5) and (2.9), respectively. See, for instance,
Pettersson Reif and Andersson [41].

A quasi-homogeneous central core spanned about 80% of the cross-section. Here, the
mean velocity profile U(y) increased linearly with a slope ≈2Ω

F such that the local vor-
ticity ratio S≈−1. Throughout this extensive region of vanishing absolute vorticity, the
turbulent shear stress remained constant and the normal stress components, the vorticity
tensor and the energy dissipation rate tensor exhibited abnormal anisotropies. The core
region was dominated by fluctuating streamwise vorticity primarily generated by the
vortex stretching mechanism S4xx = ωxωydU/dy. A 13% drag reduction resulted from
the configurational changes of the turbulence field. Nevertheless, the turbulent kinetic
energy level turned out to be higher than in the absence of rotation.
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Appendix: Second-moment transport equations in a rotating

frame-of-reference

The transport equation (2.5) for the individual components of the second-moments uiuj

of the velocity fluctuations is written in quasi-symbolic form. The various terms on the
right-hand side are defined in Cartesian tensor notation as follows:

Pij≡−uiuk

∂Uj

∂xk
−ujuk

∂Ui

∂xk
, (A.1)

Gij≡−2Ω
F
k (ujumε ikm +uiumε jkm), (A.2)

Dij = DT
ij +DP

ij +DV
ij , (A.3)

Πij ≡
p

ρ

(
∂ui

∂xj
+

∂uj

∂xi

)
, (A.4)

ε ij ≡2ν

(
∂ui

∂xk

∂uj

∂xk

)
, (A.5)

where the different parts of the diffusion are given by

DT
ij ≡−

∂

∂xk
(uiujuk), (A.6)

DP
ij ≡−

1

ρ

∂

∂xk
(puiδjk+pujδik), (A.7)

DV
ij ≡ν

(
∂2uiuj

∂xk∂xk

)
. (A.8)

Here, ε ijk is the permutation or Levi-Civita tensor. This organization of the terms in the
second-moment transport equation follows Launder et al. [25]. The turbulent diffusion
due to velocity (DT

ij ) and pressure (DP
ij) fluctuations and the viscous diffusion (DV

ij ) are

labeled collectively as a single diffusion term Dij.
Similarly, the transport equation (2.9) for the individual components of the second-

moments ωiωj of the vorticity fluctuations was written in quasi-symbolic form, where
the various terms on the right-hand side are defined as follows:

T1ij ≡−ωiuk

∂Ωj

∂xk
−ωjuk

∂Ωi

∂xk
, (A.9)

T2ij ≡−uk

∂ωiωj

∂xk
, (A.10)
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S3ij ≡ωiωk

∂uj

∂xk
+ωjωk

∂ui

∂xk
, (A.11)

S4ij ≡ωjωkSik+ωiωkSjk, (A.12)

S5ij =S5I
ij+S5I I

ij ≡ (Ωk+2Ω
F
k )(sikωj+sjkωi), (A.13)

V6ij ≡ν
∂2ωiωj

∂xk∂xk
, (A.14)

V7ij ≡−2ν

(
∂ωi

∂xk

∂ωj

∂xk

)
. (A.15)

Here, Sij and sij denote the mean and fluctuating parts of the instantaneous strain-rate

tensor. Notice that Ω
F denotes the constant angular velocity of the steadily rotating

frame-of-reference whereas 1
2 Ω is the mean angular velocity associated with the fluid

motion, i.e., half the mean vorticity ∇×U. The stretching term S5ij has been split in two

parts in order to distinguish between the roles played by mean fluid rotation (S5I) and
system rotation (S5I I).

These expressions for the terms in the individual second-moment budgets of the fluc-
tuating vorticity components in a rotating frame-of-reference are not available elsewhere.
The above equations have been checked for consistency against the corresponding equa-
tion for the enstrophy provided by Lamballais et al. [23] and Liu and Lu [26]. By con-
traction of the indices i and j in the above terms their equation is recovered. The no-
tion of transport (T), stretching (S), and viscous (V) terms follows Lamballais et al. [23],
whereas the numbering refers to the order of the terms in Antonia and Kim [3], which
in turn referred to equation (3.3.38) and the accompanying discussion in Tennekes and
Lumley [36].
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[5] P. Bartello, O. Métais and M. Lesieur. Coherent structures in rotating three-dimensional tur-
bulence. J. Fluid Mech., 273 (1994), 1-29.

[6] K. H. Bech and H. I. Andersson. Secondary flow in weakly rotating turbulent plane Couette
flow. J. Fluid Mech., 317 (1996), 195-214.



716 M. Barri and H. I. Andersson / Commun. Comput. Phys., 7 (2010), pp. 683-717

[7] K. H. Bech and H. I. Andersson. Turbulent plane Couette flow subject to strong system
rotation. J. Fluid Mech., 347 (1997), 289-314.

[8] K. H. Bech, N. Tillmark, P. H. Alfredsson and H. I. Andersson. An investigation of turbulent
plane Couette flow at low Reynolds numbers. J. Fluid Mech., 286 (1995), 291-325.

[9] G. Brethouwer. The effect of rotation on rapidly sheared homogeneous turbulence and pas-
sive scalar transport. Linear theory and direct numerical simulation. J. Fluid Mech., 542
(2005), 305-342.

[10] F. H. Busse. Bounds on the momentum transport by turbulent shear flow in rotating systems.
J. Fluid Mech., 583 (2007), 303-311.

[11] C. Cambon, J.-P. Benoit, L. Shao and L. Jacquin. Stability analysis and large-eddy simulation
of rotating turbulence with organized eddies. J. Fluid Mech., 278 (1994), 175-200.

[12] B. Dubrulle, O. Dauchot, F. Daviaud, P.-Y. Longaretti, D. Richard and J.-P. Zahn. Stability
and turbulent transport in Taylor-Couette flow from analysis of experimental data. Phys.
Fluids, 17 (2005), 095103.

[13] O. Grundestam, S. Wallin and A. V. Johansson. Direct numerical simulation of rotating tur-
bulent channel flow. J. Fluid Mech., 598 (2008), 177-199.

[14] F. Hamba. The mechanism of zero mean absolute vorticity state in rotating channel flow.
Phys. Fluids, 18 (2006), 125104.

[15] J. E. Hart. Instability and secondary motion in a rotating channel flow. J. Fluid Mech., 45
(1971), 341-351.

[16] O. Iida, Y. Tsukamoto and Y. Nagano. The tilting mechanism of a longitudinal vortical struc-
ture in a homogenous shear flow with and without spanwise shear. Flow, Turbulence Com-
bust., 81 (2008), 17-37.

[17] S. Jakirlic, K. Hanjalic and C. Tropea. Modeling rotating and swirling turbulent flows: a
perpetual challenge. AIAA J., 40 (2002), 1984-1996.

[18] J. Jeong and F. Hussain. On the identification of a vortex. J. Fluid Mech., 285 (1995), 69-94.
[19] J. P. Johnston. Effects of system rotation on turbulence structure: a review relevant to turbo-

machinery flows. Int. J. Rotating Machin., 4 (1998), 97-112.
[20] J. P. Johnston, R. M. Halleen and D. K. Lezius. Effects of spanwise rotation on the structure of

two-dimensional fully developed turbulent channel flow. J. Fluid Mech., 56 (1972), 533-557.
[21] J. Komminaho, A. Lundblad and A. V. Johansson. Very large structures in plane turbulent

Couette flow. J. Fluid Mech., 320 (1996), 259-285.
[22] R. Kristoffersen and H. I. Andersson. Direct simulations of low-Reynolds-number turbulent

flow in a rotating channel. J. Fluid Mech., 256 (1993), 163-197.
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