
Commun. Comput. Phys.
doi: 10.4208/cicp.2009.09.055

Vol. 7, No. 3, pp. 510-533
March 2010

Implicit Discontinuous Galerkin Method for RANS

Simulation Utilizing Pointwise Relaxation Algorithm

Kanako Yasue∗, Michiko Furudate, Naofumi Ohnishi and
Keisuke Sawada

Department of Aerospace Engineering, Graduate School of Engineering, Tohoku
University, Sendai 980-8579, Japan.

Received 20 March 2009; Accepted (in revised version) 19 June 2009

Available online 1 September 2009

Abstract. An efficient implicit procedure for the Discontinuous Galerkin (DG) method
is developed utilizing a pointwise relaxation algorithm. In the pointwise relaxation,
those contributions from the degrees of freedom in own computational cell are ac-
counted for in the implicit matrix inversion. The resulting scheme is shown to be stable
with very large CFL numbers for both the Euler and the Navier-Stokes equations for
typical test problems. In order to achieve a faster convergence, efforts are also made
to reduce computing time of the present method by utilizing a p-multigrid scheme
and also by solving a simplified matrix instead of a fully loaded dense matrix in the
implicit matrix inversion. A superior performance of the present implicit DG method
on the parallel computer using up to 128 PEs is shown in terms of readily achievable
scalability and high parallel efficiency. The RANS simulation of turbulent flowfield
over AGARD-B model is carried out to show the convergence property and numerical
stability of the present implicit DG method for engineering applications.

AMS subject classifications: 76M10, 65M60, 65D30, 65B99

Key words: Discontinuous Galerkin method, pointwise relaxation implicit scheme, viscous com-
pressible flow.

1 Introduction

Unstructured mesh methods are commonly used in obtaining flowfield over complete
aircraft configuration because of their easiness in creating computational mesh for highly
complicated geometries. These methods are also known to capture shock waves quite

∗Corresponding author. Email addresses: hoe@cfd.mech.tohoku.ac.jp (K. Yasue), furu@cfd.mech.tohoku.
ac.jp (M. Furudate), ohnishi@rhd.mech.tohoku.ac.jp (N. Ohnishi), sawada@cfd.mech.tohoku.ac.jp

(K. Sawada)

http://www.global-sci.com/ 510 c©2010 Global-Science Press

K. Yasue et al. / Commun. Comput. Phys., 7 (2010), pp. 510-533 511

sharply using an adaptive grid refinement. In these methods, the finite volume formula-
tion is usually chosen because the conservation laws can be rigorously fulfilled for var-
ious cell geometries. However, the spatial accuracy of these methods remains usually
at most second order. The cause of this lower spatial accuracy can be attributed to the
poorly reconstructed dependent variables in the computational cell. Conventional re-
construction using the cell-averaged variables in nearby cells tends to loose its accuracy
for unstructured mesh particularly when cell geometries are highly skewed. In order to
capture various features of complicated flowfield in practical problems, truly high or-
der reconstruction method for unstructured mesh should be devised for finite volume
methods.

Higher order reconstructions for finite volume method may be achieved for unstruc-
tured mesh by using the k-exact formulation [1] or the ENO/WENO schemes [2], though
with a substantially increased amount of random memory access due to use of a wider
stencil. Recently, the DG finite element method [3,4] has received attentions because of its
ability in achieving higher order spatial accuracy rigorously even on unstructured mesh.
In this method, instead of referring to nearby cells as in the finite volume methods, recon-
struction of the dependent variables is realized with desired accuracy using the degrees
of freedom (DOFs) which are introduced in each cell and evolved in time. Therefore,
higher order spatial accuracy can be achieved in the DG method with minimal stencil.
Indeed, it has been shown that the desired spatial accuracy could be achieved even with
various cell geometries using the DG method.

The obvious shortcoming of the DG method is its extremely high computational cost.
In the DG method, the dependent variables are expressed as a sum of the DOFs (ex-
pansion coefficients) multiplied with the corresponding basis functions. The number of
equations to be solved in the DG method is given by a multiple of the number of de-
pendent variables and the number of DOFs introduced in each cell. For example, the
number of DOFs is 4 for 3D second order case and 20 for 3D fourth order case. There-
fore, one needs to solve 100 equations for the latter case. Furthermore since the Gaussian
quadrature formula is used to evaluate integrals, sufficient number of Gaussian quadra-
ture points should be allocated both on the cell boundary and inside of the cell volume
to assure numerical accuracy. This increases the number of flux evaluations and results
in higher computational cost.

In order to reduce the computing cost of the DG method, it is certainly necessary to
develop an implicit scheme to accelerate the convergence, particularly for those steady
flow problems. It is also necessary to implement the code on vector/parallel comput-
ers. Several such attempts regarding the implicit DG method have already been studied.
For example, Bassi and Rebay proposed an implicit DG method utilizing GMRES for the
Navier-Stokes equations [5], Rasetarinera and Hussaini developed a matrix-free Krylov
approach for the Euler equations [6], Hartmann et al. employed GMRES-Newton algo-
rithm for the Euler and the Navier-Stokes equations [7–9], and Dolejšı́ et al. proposed a
semi-implicit DG method for the Euler and the Navier-Stokes equations [10, 11]. In de-
veloping implicit schemes, it is very important to have a flexible portability and an easier

512 K. Yasue et al. / Commun. Comput. Phys., 7 (2010), pp. 510-533

parallelization capability. This parallelization capability can be maximized if the implicit
scheme is totally pointwise, i.e., no connectivity exists with neighboring cells. Because all
the information necessary for reconstructing dependent variables are contained within a
cell, the DG method is expected to be suitable for the pointwise relaxation implicit algo-
rithm.

In the present study, we develop a pointwise relaxation implicit DG method of sec-
ond order spatial accuracy for numerical integration of the Euler and the Navier-Stokes
equations. We explore the stability and convergence properties of the present method for
typical test problems with very large CFL numbers. In order to reduce computing time of
the present method, a dense matrix inversion in each cell is approximated by a simplified
matrix inversion where higher order modal components are block diagonalized. Further
convergence acceleration is attempted by utilizing the p-multigrid scheme [12, 13]. The
parallel performance of the present pointwise relaxation implicit DG method is exam-
ined.

2 Numerical method

2.1 Discontinuous Galerkin method

Let us consider the Navier-Stokes equations for 3D flowfield written in the conservation
form as

∂Q

∂t
+

∂E

∂x
+

∂F

∂y
+

∂G

∂z
=0, (2.1)

where Q, E=Ec−Ev, F=Fc−Fv and G=Gc−Gv denote the conservative variable and the
flux functions in x, y and z directions, respectively, and are given by

Q=




ρ
ρu
ρv
ρw
e




, Ec =




ρu
ρu2+p

ρuv
ρuw

(e+p)u




, Fc =




ρv
ρuv

ρv2+p
ρvw

(e+p)v




, Gc =




ρw
ρuw
ρvw

ρw2+p
(e+p)w




,

Ev =




0
τxx

τyx

τzx

τxxu+τxyv+τxzw+κ ∂T
∂x




, Fv =




0
τxy

τyy

τzy

τyxu+τyyv+τyzw+κ ∂T
∂y




,

Gv =




0
τxz

τyz

τzz

τzxu+τzyv+τzzw+κ ∂T
∂z




.

(2.2)

K. Yasue et al. / Commun. Comput. Phys., 7 (2010), pp. 510-533 513

The subscript c represents the convective term and v the viscous term. In the above
equations, ρ denotes the fluid density, u, v, w the Cartesian velocity components, e the
total energy, T the temperature, and κ the coefficient of heat conduction. The viscous
stress components are described as

τxx =
2

3
µ

(
2

∂u

∂x
−

∂v

∂y
−

∂w

∂z

)
,

τyy =
2

3
µ

(
−

∂u

∂x
+2

∂v

∂y
−

∂w

∂z

)
,

τzz =
2

3
µ

(
−

∂u

∂x
−

∂v

∂y
+2

∂w

∂z

)
,

τxy =τyx =µ

(
∂u

∂y
+

∂v

∂x

)
,

τxz =τzx =µ

(
∂u

∂z
+

∂w

∂x

)
,

τyz =τzy =µ

(
∂v

∂z
+

∂w

∂y

)
.

(2.3)

In this study, we introduce a coordinate transformation from a computational cell in
(x,y,z) space to a reference cell in (ξ,η,ζ) space in order to introduce orthogonal basis
functions in the reference space [14,15]. Note that the transformation is introduced inde-
pendently in each computational cell.

The transformed equations are then given by

∂Q

∂t
+

∂E

∂ξ
+

∂F

∂η
+

∂G

∂ζ
=0, (2.4)

where

Q= J−1Q, E= J−1(ξxE+ξyF+ξzG),

F= J−1(ηxE+ηyF+ηzG), G= J−1(ζxE+ζyF+ζzG),

and J−1 is the Jacobian of the transformation. The weak formulation can be found by mul-
tiplying Eq. (2.4) with a test function w(ξ,η,ζ), and integrating it over the transformed
computational cell Ω. The integration by part yields

∫

Ω

∂wQ

∂t
dΩ+

∫

∂Ω
w(Enξ +Fnη +Gnζ)d∂Ω−

∫

Ω

(
E

∂w

∂ξ
+F

∂w

∂η
+G

∂w

∂ζ

)
dΩ=0, (2.5)

where ∂Ω denotes the boundary of the domain Ω and nξ , nη, nζ the component of unit

outward normal vector in ξ, η and ζ direction of ∂Ω, respectively. In the DG method, the

514 K. Yasue et al. / Commun. Comput. Phys., 7 (2010), pp. 510-533

4

1

2

3

5

6

7

84

1

2

3

4

1

2

35

6

4

1

2

3

5

x

y

z

4

1

2

3 41

2 3

5 6

1

5

ζ

η

ξ

41

2 3

5

6 7

8

4

2 3

physical coordinate

reference coordinate

ξ

η

ζ

Figure 1: Schematic illustration of 3D mappings from the physical cell in (x, y, z) space to the reference cell
in (ξ, η, ζ) space.

transformed conservative variables Q is replaced by the approximate solution Qh in the
finite element space as

Qh(ξ,η,ζ,t)=∑
j

Qj(t)φj(ξ,η,ζ), (2.6)

in which Qj denotes the DOFs and φj the basis functions. The subscript j denotes the
number of the DOFs, and varies from 1 to 4 for the 3D second order case. In this study
the orthogonal basis function given by Jacobi polynomials are used [14], and described
as

φlmn(ξ,η,ζ)= P0,0
l

(
2

1+ξ

−η−ζ
−1

)
·

(
−η−ζ

1−ζ

)l

·P2l+1,0
m

(
2

1+η

1−ζ
−1

)
·

(
1−ζ

2

)l+m

·P2l+2m+2,0
n (ζ), (2.7)

for tetrahedral cells,

φlmn(ξ,η,ζ)= P0,0
l (ξ)·P0,0

m (η)·P0,0
n (ζ), (2.8)

for hexahedral cells,

φlmn(ξ,η,ζ)= P0,0
l

(
2

1+ξ

1−ζ
−1

)
·P0,0

m (η)·(1−ζ)l ·P2l+1,0
n (ζ), (2.9)

K. Yasue et al. / Commun. Comput. Phys., 7 (2010), pp. 510-533 515

for prismatic cells, and

φlmn(ξ,η,ζ)= P0,0
l

(
2

1+ξ

1−ζ
−1

)
·P0,0

m

(
2

1+η

1−ζ
−1

)
·(1−ζ)l+m ·P2l+2m+2,0

n (ζ), (2.10)

for pyramidal cells, where

P
α,β
γ (z)=

(−1)γ

2γγ!
(1−z)−α(1+z)−β dγ

dzγ

(
(1−z)α+γ(1+z)β+γ

)
. (2.11)

Subscripts l, m and n specify the order of polynomials. For the 3D second order case,
four DOFs are needed for all cell types because the hierarchical modal basis functions
are used in this study. The combinations of (l,m,n) are (0,0,0) for the constant term
and (1,0,0), (0,1,0) and (0,0,1) for the linear terms. Substituting Eq. (2.6) into Eq. (2.5),
and replacing the test function w by the basis function φi(ξ,η,ζ), the weak form of the
governing equations is then given by

∑
j

dQj

dt
Iij +

∫

∂Ω
φi

(
E
(
Qh

)
nξ +F

(
Qh

)
nη +G

(
Qh

)
nζ

)
d∂Ω

−
∫

Ω

(
E
(
Qh)

) ∂φi

∂ξ
+F
(
Qh)

) ∂φi

∂η
+G

(
Qh)

) ∂φi

∂ζ

)
dΩ=0, (2.12)

where

Iij =
∫

Ω
φiφjdΩ

denotes the mass matrix that becomes diagonal when the basis functions possess orthog-
onality.

The surface and the volume integrals are evaluated using the Gaussian quadrature
formulae. The surface integral in Eq. (2.12) is evaluated in the reference coordinate sys-
tem (see Fig. 1) in order to ensure that Gaussian quadrature points on both side of in-
terface refer to the identical point in the physical coordinate system. The number of
Gaussian quadrature points for the second order case is four for both the triangular and
quadrilateral faces. On the other hand, as to the volume integrals, we first transform
the cell geometries in the reference coordinate system to a cubic in the transformed co-
ordinate system (not shown in Fig. 1) in unified manner [14]. The volume integral is
evaluated for the cubic cell in this transformed space for which we assign eight Gaussian
quadrature points for the second order case.

In the DG method, reconstruction of the dependent variables is made independently
in each computational cell. This makes the dependent variables discontinuous at the cell
interface. The conventional approximate Riemann solver is then applied for the evalua-
tion of the numerical flux function, and the AUSM-DV upwind scheme [16] is chosen in
this study. The viscous terms are discretized according to BR2 formulation [17]. Then,

516 K. Yasue et al. / Commun. Comput. Phys., 7 (2010), pp. 510-533

Eq. (2.12) becomes

∑
j

dQj

dt
Iij +

∫

∂Ω
φi

(
Enξ +Fnη +Gnζ

)
d∂Ω−

∫

Ω

(
E

∂φi

∂ξ
+F

∂φi

∂η
+G

∂φi

∂ζ

)
dΩ

−
∫

∂Ω
φiδnd∂Ω+

∫

Ω

(
δξ

∂φi

∂ξ
+δη

∂φi

∂η
+δζ

∂φi

∂ζ

)
dΩ=0. (2.13)

The local lifting terms δξ , δη and δζ for interface f are weakly defined by

∫

Ω

(
ψξδ

f
ξ +ψηδ

f
η +ψζδ

f
ζ

)
dΩ=

∫

∂Ω f

ψξ

(
nξ Aξ +nη Aη +nζ Aζ

)
J−1 QR−QL

2
d∂Ω

+
∫

∂Ω f

ψη

(
nξ Bξ +nηBη +nζ Bζ

)
J−1 QR−QL

2
d∂Ω

+
∫

∂Ω f

ψζ

(
nξCξ +nηCη +nζCζ

)
J−1 QR−QL

2
d∂Ω, (2.14)

where ψξ , ψη and ψζ are test functions. Here we assume that the viscous flux functions

Ev, Fv and Gv can be written respectively as

Ev = J−1
(
ξxEv+ξyFv+ξzGv

)
= Aξ

∂Q

∂ξ
+Aη

∂Q

∂η
+Aζ

∂Q

∂ζ
,

Fv = J−1
(
ηxEv+ηyFv+ηzGv

)
= Bξ

∂Q

∂ξ
+Bη

∂Q

∂η
+Bζ

∂Q

∂ζ
,

Gv = J−1
(
ζxEv+ζyFv+ζzGv

)
=Cξ

∂Q

∂ξ
+Cη

∂Q

∂η
+Cζ

∂Q

∂ζ
.

(2.15)

The trace values of the dependent variable at the cell interface are given by QL and QR

in Eq. (2.14) where the superscript L denotes the inside of the cell and R the outside.
The fourth term in Eq. (2.13) involving the projected local lifting term δn is determined
weakly for the interface f when

ψξ =nξφi, ψη =nηφi, ψζ =nζφi

are substituted in Eq. (2.14), while the last term in Eq. (2.13) can be found when

ψξ =
∂φi

∂ξ
, ψη =

∂φi

∂η
, ψζ =

∂φi

∂ζ

are substituted in Eq. (2.14).
For calculation of turbulent flowfield, one equation turbulence model proposed by

Spalart and Allmaras is employed [18]. The transport equation of the Spalart-Allmaras
turbulence model is also transformed into reference space, and the working variable of
the model is expanded similarly in the finite element space.

K. Yasue et al. / Commun. Comput. Phys., 7 (2010), pp. 510-533 517

2.2 Pointwise relaxation implicit scheme

We first consider the linearization of the convective flux function given by

E
n+1
c

∼=E
n
c +

∂E
n
c

∂Q
∆Q=E

n
c +
(
ξx Ac+ξyBc+ξzCc

)
∆Q,

F
n+1
c

∼= F
n
c +

∂F
n
c

∂Q
∆Q= F

n
c +
(
ηx Ac+ηyBc+ηzCc

)
∆Q,

G
n+1
c

∼=G
n
c +

∂G
n
c

∂Q
∆Q=G

n
c +
(
ζx Ac+ζyBc+ζzCc

)
∆Q,

(2.16)

where Ac = ∂Ec/∂Q, Bc = ∂Fc/∂Q and Cc = ∂Gc/∂Q are the Jacobian matrices of the con-
vective flux function in (x,y,z) space, and n denotes the time step. We then approximate
the flux integral of the convective terms in Eq. (2.13) as

∫

∂Ω
φi

(
E

n+1
c nξ +F

n+1
c nη +G

n+1
c nζ

)
d∂Ω

∼=
∫

∂Ω
φi

(
E

n
c nξ +F

n
c nη +G

n
c nζ

)
d∂Ω+

∫

∂Ω
φi

(
σx Ac+σyBc+σzCc

)+
∆Qd∂Ω, (2.17)

where

σx = ξxnξ +ηxnη +ζxnζ , σy = ξynξ +ηynη +ζynζ , σz = ξznξ +ηznη +ζznζ .

The positive projection of the Jacobian matrix D of the convective flux function is given
by

D+ =κ(D+λmax I)/2,

where
D=σx Ac+σyBc+σzCc

and λmax is the maximum eigenvalue given by

λmax =(|uσx +vσy+wσz|+c
√

σ2
x +σ2

y +σ2
z), (2.18)

in which c is the sound velocity. Similar to that in LU-SGS scheme [19], we choose κ=1.05.
Note that the temporal variation of the transformed DOFs is related to ∆Q by

∆Q=∑
j

∆Qjφj. (2.19)

Substituting Eq. (2.19) into Eq. (2.17), we obtain
∫

∂Ω
φi

(
E

n+1
c nξ +F

n+1
c nη +G

n+1
c nζ

)
d∂Ω

∼=
∫

∂Ω
φi

(
E

n
c nξ +F

n
c nη +G

n
c nζ

)
d∂Ω+∑

j

∫

∂Ω
φi

(
σx Ac+σyBc+σzCc

)+
∆Qjφjd∂Ω. (2.20)

518 K. Yasue et al. / Commun. Comput. Phys., 7 (2010), pp. 510-533

The linearization of the volume integral in Eq. (2.13) is given as

∫

Ω

(
E

n+1
c

∂φi

∂ξ
+F

n+1
c

∂φi

∂η
+G

n+1
c

∂φi

∂ζ

)
dΩ

∼=
∫

Ω

(
E

n
c

∂φi

∂ξ
+F

n
c

∂φi

∂η
+G

n
c

∂φi

∂ζ

)
dΩ+

∫

Ω

(
ωi

x Ac+ωi
yBc+ωi

zCc

)
∆QdΩ

=
∫

Ω

(
E

n
c

∂φi

∂ξ
+F

n
c

∂φi

∂η
+G

n
c

∂φi

∂ζ

)
dΩ+∑

j

∫

Ω

(
ωi

x Ac+ωi
yBc+ωi

zCc

)
∆QjφjdΩ, (2.21)

where

ωi
x = ξx

∂φi

∂ξ
+ηx

∂φi

∂η
+ζx

∂φi

∂ζ
,

ωi
y = ξy

∂φi

∂ξ
+ηy

∂φi

∂η
+ζy

∂φi

∂ζ
,

ωi
z = ξz

∂φi

∂ξ
+ηz

∂φi

∂η
+ζz

∂φi

∂ζ
.

(2.22)

Next, the linearization of the viscous terms and also the lifting terms from BR2 for-
mulation are described. For the viscous terms, almost the same procedures used for the
convective terms are employed. The linearizations of the flux integral and the volume
integral in Eq. (2.13) for the viscous terms are approximated as

∫

∂Ω
φi

(
E

n+1
v nξ +F

n+1
v nη +G

n+1
v nζ

)
d∂Ω

∼=
∫

∂Ω
φi

(
E

n
vnξ +F

n
vnη +G

n
vnζ

)
d∂Ω+∑

j

∫

∂Ω
φi

(
σx Av+σyBv+σzCv

)
∆Qjφjd∂Ω, (2.23)

and

∫

Ω

(
E

n+1
v

∂φi

∂ξ
+F

n+1
v

∂φi

∂η
+G

n+1
v

∂φi

∂ζ

)
dΩ

∼=
∫

Ω

(
E

n
v

∂φi

∂ξ
+F

n
v

∂φi

∂η
+G

n
v

∂φi

∂ζ

)
dΩ+∑

j

∫

Ω

(
ωi

x Av+ωi
yBv+ωi

zCv

)
∆QjφjdΩ, (2.24)

respectively, where

Av =∂Ev/∂Q, Bv =∂Fv/∂Q, Cv =∂Gv/∂Q.

In this study, we further assume that the local lifting term can be expanded using the
basis functions as

δn =∑
j

φjδnj
. (2.25)

K. Yasue et al. / Commun. Comput. Phys., 7 (2010), pp. 510-533 519

This approximates the integration of the local lifting term as
∫

∂Ω
φiδ

n+1
n d∂Ω

∼=
∫

∂Ω
φiδ

n
nd∂Ω+

∫

∂Ω
φi

∂

∂Q

(

∑
k

φkδnk

)
∆Qd∂Ω

=
∫

∂Ω
φiδ

n
nd∂Ω+

∫

∂Ω
φi

(

∑
k

φk
∂δnk

∂Q

)

∑
j

φj∆Qjd∂Ω, (2.26)

in which the derivative of the expansion coefficient is given approximately as

∂δni

∂Q
=

1

Iii

{∫

∂Ω
φinξ

(
nξ Aξ +nη Aη +nζ Aζ

)(
−

1

2

)
d∂Ω

+
∫

∂Ω
φinη

(
nξ Bξ +nηBη +nζ Bζ

)(
−

1

2

)
d∂Ω

+
∫

∂Ω
φinζ

(
nξCξ +nηCη +nζCζ

)(
−

1

2

)
d∂Ω

}
, (2.27)

where we freeze the coefficient matrices.
The volume integral for the local lifting term is then approximated as

∫

Ω

(
δξ

∂φi

∂ξ
+δη

∂φi

∂η
+δζ

∂φi

∂ζ

)n+1

dΩ

=
∫

∂Ω

(
A∗ J−1 QR−QL

2

)n+1

d∂Ω

∼=
∫

∂Ω

(
A∗ J−1 QR−QL

2

)n

d∂Ω+
∫

∂Ω
A∗

(
−

1

2

)
∆Qd∂Ω

=
∫

∂Ω

(
A∗ J−1 QR−QL

2

)n

d∂Ω+
∫

∂Ω
A∗

(
−

1

2

)
∑

j

φj∆Qjd∂Ω, (2.28)

where

A∗=
∂φi

∂ξ

(
Aξnξ +Aηnη +Aζnζ

)
+

∂φi

∂η

(
Bξnξ +Bηnη +Bζnζ

)

+
∂φi

∂ζ

(
Cξnξ +Cηnη +Cζnζ

)
. (2.29)

Finally, the time derivative term in Eq. (2.13) is approximated to first order in time as

∑
j

dQj

dt
Iij =

1

∆t ∑
j

Iij∆Qj. (2.30)

520 K. Yasue et al. / Commun. Comput. Phys., 7 (2010), pp. 510-533

We now obtain the algebraic equation for the temporal change of the transformed DOFs
(∆Qi, i=1,2,···) in each computational cell as

∑
j

Mij∆Qj =Ri, (2.31)

where

Mij =
1

∆t
Iij+

∫

∂Ω
φi(σx Ac+σyBc+σzCc)

+φjd∂Ω−
∫

Ω

(
ωi

x Ac+ωi
yBc+ωi

zCc

)
φjdΩ

−
∫

∂Ω
φi(σx Av+σyBv+σzCv)φjd∂Ω+

∫

Ω

(
ωi

x Av+ωi
yBv+ωi

zCv

)
φjdΩ

−
∫

∂Ω
φi

(

∑
k

φk
∂δnk

∂Q

)
φjd∂Ω+

∫

∂Ω
A∗

(
−

1

2

)
φjd∂Ω, (2.32)

and

Ri =−
∫

∂Ω
φi

(
E

n
nξ +F

n
nη +G

n
nζ

)
d∂Ω+

∫

Ω

(
E

n ∂φi

∂ξ
+F

n ∂φi

∂η
+G

n ∂φi

∂ζ

)
dΩ

+
∫

∂Ω
φiδ

n
nd∂Ω−

∫

∂Ω

(
A∗ J−1 QR−QL

2

)n

φjd∂Ω. (2.33)

The matrix M to be inverted in each computational cell has 20×20 components for 3D
problems for a second order case.

We note that the present pointwise relaxation implicit DG method is really an explicit-
like scheme in the sense that Eq. (2.31) is solved in each computational cell independently.
Therefore it is particularly interesting to observe how the solution evolves in time when
a very large CFL number is assumed. This is examined by applying the present scheme
to a 3D linear advection problem. The computed results will be shown in the later sec-
tion. The obtained convergence histories shown therein indicate that the residual slowly
decreases for a certain number of iterations at the beginning of the calculation. In that pe-
riod, the incident wave from the inflow boundary propagates across the computational
domain one cell by another per time step. After that, the residual begins to decrease
quickly to a machine zero. The former period may be termed as the time evolving phase,
and the latter as the relaxation phase. Any implicit scheme exhibits more or less the same
tendency, but it seems that the time evolving phase is more evident for the present point-
wise relaxation implicit scheme. It should be noted that a conventional implicit scheme
probably can achieve a faster convergence than the present one because the information
propagates over the entire domain for every time step through implicit matrix inversion.
However, we prefer the present pointwise approach for its easier parallelization property
even though a larger iteration number is to be needed for convergence.

K. Yasue et al. / Commun. Comput. Phys., 7 (2010), pp. 510-533 521

2.3 Reduction of computational cost

2.3.1 Matrix simplification

A considerable part of the computational cost of the present implicit solver comes from
those for setting the matrix components in Eq. (2.32) and inversion of the algebraic equa-
tion in Eq. (2.31). By simplifying the dense matrix Mij, one can reduce the computational
time and memory size, simultaneously.

The algebraic equation in Eq. (2.31) for the 3D second order case can be written as




M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44







∆Q1

∆Q2

∆Q3

∆Q4


=




R1

R2

R3

R4


, (2.34)

where ∆Q1 corresponds to the lowest order (constant) term while ∆Q2, ∆Q3 and ∆Q4 are
for the first order (linear) terms. The size of each matrix component M ij is 5×5. In the
original pointwise relaxation implicit scheme, a fully loaded dense matrix is solved by a
direct inversion using LU decomposition. We approximate this algebraic equation to a
simpler form as




M11 M12 M13 M14

M21 M22 0 0
M31 0 M33 0
M41 0 0 M44







∆Q1

∆Q2

∆Q3

∆Q4


=




R1

R2

R3

R4


. (2.35)

This simplified form is chosen due to an observation that coupling among three first order
(linear) terms is not so tight and hence diagonalized form could be applicable to these
terms while the coupling between the lower order (constant) term and those linear terms
should be retained. Numerical experiments have revealed that above simplified form
maintains numerical stability and convergence property of the original one not only for
solving the Euler equations but also for the Navier-Stokes equations with one-equation
turbulence model. Eq. (2.35) is equivalent to solve




M̂11 0 0 0
M21 M22 0 0
M31 0 M33 0
M41 0 0 M44







∆Q1

∆Q2

∆Q3

∆Q4


=




R̂1

R2

R3

R4


, (2.36)

where

M̂11 = M11−M12M−1
22 M21−M13M−1

33 M31−M14M−1
44 M41,

R̂1 = R1−M12M−1
22 R2−M13M−1

33 R3−M14M−1
44 R4.

(2.37)

522 K. Yasue et al. / Commun. Comput. Phys., 7 (2010), pp. 510-533

Therefore, instead of inverting a 20×20 matrix for once, we consider inversion of 5×5
matrix for four times as

∆Q1 = M̂
−1

11 R̂1,

∆Q2 = M−1
22

(
R2−M21∆Q1

)
,

∆Q3 = M−1
33

(
R3−M31∆Q1

)
,

∆Q4 = M−1
44

(
R4−M41∆Q1

)
.

(2.38)

We note that a fully block diagonalized case such as to solve




M11 0 0 0
0 M22 0 0
0 0 M33 0
0 0 0 M44







∆Q1

∆Q2

∆Q3

∆Q4


=




R1

R2

R3

R4


, (2.39)

resulted in numerical instability. Furthermore, the block matrix inversion similar to
Eq. (2.36) but to solve




M11 0 0 0
M21 M22 0 0
M31 0 M33 0
M41 0 0 M44







∆Q1

∆Q2

∆Q3

∆Q4


=




R1

R2

R3

R4


, (2.40)

exhibited weak instability for the Euler equations where we attempted to obtain a uni-
form flow using the mesh system prepared for the computation of the laminar boundary
layer flow over a flat plate (Fig. 11 appearing in later section), although the slippery wall
condition is applied at the flat plate. In the Navier-Stokes simulation using the same
mesh, Eq. (2.40) gives a stable numerical procedure even with very large CFL numbers,
and can reach a machine zero convergence. A detailed stability analysis of the pointwise
relaxation implicit DG method as well as for the higher order cases will appear elsewhere.

2.3.2 p-multigrid scheme

As an effective convergence acceleration technique, h-multigrid scheme is very popu-
lar. In the h-multigrid scheme, error component of longer wavelength on a finer grid
is selectively decayed using solutions on a coarser grid. In the p-multigrid, instead of
using a coarser grid, lower order solution approximation in the finite element space is
utilized. Therefore, the same computational grid is used in all approximation level. The
p-multigrid scheme used in this study is constructed by the following steps [13]:

1. Obtain the solution at the next time level at P1 approximation order Q̃n+1
P1

,

Q̃n+1
P1

=Qn
P1

+M
−1

R(Qn
P1

);

K. Yasue et al. / Commun. Comput. Phys., 7 (2010), pp. 510-533 523

2. Restrict the solution and residual at P1 approximation level to P0 approximation level,

Q∗
P0

= I
P0
P1

Q̃n+1
P1

,

RP0
= Ĩ

P0
P1

R(Q̃n+1
P1

);

3. Obtain the solution at the next time level at P0 approximation order Q̃n+1
P0

,

Q̃n+1
P0

=Q∗
P0

+M
−1

RP0
;

4. Compute correction term at P0 approximation order CP0
,

CP0
= Q̃n+1

P0
−Q∗

P0
;

5. Update the solution at the next time level at P1 approximate order Qn+1
P1

,

Qn+1
P1

= Q̃n+1
P1

+ J
P1
P0

CP0
.

Note that IP0
P1

, ĨP0
P1

, and JP1
P0

denote the state restriction operator, the residual restriction
operator, and the state prolongation operator, respectively.

2.4 Slope limiter

A very simple slope limiter currently in use for enhancing numerical stability at the shock
wave is described [20]. Let us define p+ =(1+ǫ)pmax where pmax denotes the maximum
of the cell averaged pressure values among the nearby cells sharing the cell interface
of current computational cell and ǫ is a small positive constant. Similarly, let us define
p−=(1−ǫ)pmin where pmin denotes the minimum of the cell averaged pressure values. If
the maximum value of the pressure at Gaussian quadrature points becomes larger than
p+, we multiply a common positive constant no greater than unity to those DOFs of de-
pendent variables so that the maximum pressure value at quadrature points agrees with
p+. Similarly, if the minimum value of the pressure at the quadrature points becomes
smaller than p−, we multiply a common positive constant to DOFs so that the minimum
pressure value agrees with p−. We choose ǫ to be 0.01 in this study so that the slope lim-
iter does not work at smooth extrema in the flowfield. We note that the positive constant
should not be multiplied to the lowest order DOFs because these DOFs actually represent
the cell averaged values of the conservative variables.

The present slope limiter is found sufficient to suppress numerical instability when
shock waves appear in the flowfield. With shock waves, a machine-zero convergence is
generally difficult to attain. The residual first decreases for several orders of magnitude
and then begins to fluctuate. Such example will be shown in the later section. The chosen
value of 0.01 for ǫ is rather conservative and it is generally possible to use 0.1-0.3 for
both the Euler and the Navier-Stokes calculations in transonic flow regime. For strong
expansion region, however, ǫ should be decreased to O(0.01) and sometimes the same
slope limiting procedure is needed to apply to density.

524 K. Yasue et al. / Commun. Comput. Phys., 7 (2010), pp. 510-533

2.5 Parallel algorithm

In this work, we implement the pointwise relaxation implicit method on a parallel com-
puter using the METIS grid partitioning [21] and the Message Passing Interface (MPI)
library. In the DG method, information exchange with neighboring cells occurs through
the numerical flux function and also the local lifting term for the viscous flux determined
at the cell interface. This property is retained in the present implicit method. Therefore,
even at the inter-domain boundary, a simple method of assigning DOFs in ghost cells is
sufficient for communication between neighboring domains. The procedure for paral-
lelization thus becomes extremely simple.

3 Results and discussions

3.1 Linear advection problem

We first show the computed results for 3D linear advection problem to examine the spa-
tial accuracy and the convergence property of the present scheme for various cell ge-
ometries. A unit cube is considered as the computational domain. A sinusoidal wave is
coming in from three upwind boundary faces and going out from the rest of the boundary
faces. The computational domain is first divided into uniform hexahedra with a constant
mesh interval δx. These small hexahedra are further subdivided into either of tetrahe-
dral, prismatic and pyramidal cells. Three different mesh intervals (δx) are considered
for examination of spatial accuracy of the present scheme. The number of cells for each
computational mesh is summarized in Table 1. In Fig. 2, the error norms for various cell
geometries are shown to decrease as the mesh interval is decreased. From the slope of
the curve, one can find the actual spatial accuracy of the scheme. For all cell types, the
present second order DG scheme well attains the formal accuracy.

Table 1: The number of computational cells for 3D scalar advection problem.

δx tetrahedron hexahedron prism pyramid
1/10 6,000 1,000 2,000 6,000
1/20 48,000 8,000 16,000 48,000
1/40 432,000 72,000 144,000 432,000

In Fig. 3, the convergence histories of the present implicit scheme are shown with the
CFL number of 106. One finds that a machine-zero convergence is quickly reached for all
cell types.

3.2 Inviscid compressible flowfield over ONERA-M6 isolated wing

Next, we consider the parallel computation of the inviscid compressible flowfield over
ONERA-M6 isolated wing as a typical test problem. The parallel computation is per-

K. Yasue et al. / Commun. Comput. Phys., 7 (2010), pp. 510-533 525

-3

-2.5

-2

-1.5

-1

-0.5

0

-1.7 -1.6 -1.5 -1.4 -1.3 -1.2 -1.1 -1 -0.9

Tetrahedron, P=2.19
Hexahedron, P=2.47
Prism, P=2.38
Pyramid, P=2.33

Log
10

(δx)

Figure 2: Error norms for various cell geometries
are plotted in terms of mesh interval. The slope of
the curve gives the spatial accuracy of the present
scheme.

-16

-14

-12

-10

-8

-6

-4

-2

0

0 50 100 150 200 250

Tetrahedron
Hexahedron
Prism
Pyramid

Iterations

Figure 3: Convergence histories of 3D scalar ad-
vection problem in terms of iteration for the case
with δx=1/20 and CFL=106.

Figure 4: Unstructured mesh for ONERA-M6 iso-
lated wing with 393,979 tetrahedral cells.

Figure 5: Pressure contours both on the wing up-
per surface and on the root plane.

formed using up to 128 processors of the SGI Altix 3700Bx2 at the Institute of Fluid Sci-
ence, Tohoku University. Fig. 4 shows the unstructured mesh for ONERA-M6 isolated
wing. It has 393,979 tetrahedral cells. In the calculation, the angle of attack is 3.06 deg,
and the freestream Mach number is 0.84. The CFL number is set to be 106 and the local
time stepping is employed. The computed pressure contours for the converged solution
are shown in Fig. 5. One can find that a typical lambda shaped shock pattern appears on
the upper surface. The pressure coefficient profiles at 20% and 90% semi-span locations
are plotted in Fig. 6 together with the corresponding experimental data [22]. The com-
puted results agree fairly well with the experimental data with small difference caused by
viscous effect. Note that numerical wiggles do not appear at the shock wave indicating
that the present slope limiter is functioning properly.

526 K. Yasue et al. / Commun. Comput. Phys., 7 (2010), pp. 510-533

(a)

-1.5

-1

-0.5

0

0.5

1
0 0.2 0.4 0.6 0.8 1

Experiment

Present

x/c (b)

-1.5

-1

-0.5

0

0.5

1
0 0.2 0.4 0.6 0.8 1

Experiment

Present

x/c

Figure 6: Pressure coefficient (Cp) profiles; (a) at 20% spanwise location, and (b) at 90% spanwise location.
Symbols represent the Cp profiles from the experimental data and solid lines represent the computed Cp profiles.

(a)

-8

-7

-6

-5

-4

-3

-2

-1

0 1 10
4

2 10
4

3 10
4

4 10
4

5 10
4

CFL=10
2

CFL=10
4

CFL=10
6

Iterations

-8

-7

-6

-5

-4

-3

-2

-1

0 1 10
4

2 10
4

3 10
4

4 10
4

5 10
4

CFL=10
2

CFL=10
4

CFL=10
6

Iterations (b)

-8

-7

-6

-5

-4

-3

-2

-1

0 2 10
4

4 10
4

6 10
4

8 10
4

1 10
5

CFL=10
2

CFL=10
4

CFL=10
6

CPU time, sec

Figure 7: Convergence histories with different CFL numbers for flowfield over ONERA-M6 isolated wing in
terms of; (a) number of iterations, and (b) CPU time.

The convergence histories for this problem with different CFL numbers are shown
in Fig. 7 in terms of number of iterations and CPU time. The residuals estimated by
L2 norm of the density variation decrease six orders in magnitude and then begin to
fluctuate probably due to the use of the present simple slope limiter. As indicated in
Fig. 7, the convergence history for CFL number of 104 is almost identical with that for
106, suggesting that relaxation to steady solution occurs in the same way when the CFL
number exceeds a certain value.

The parallel performance is examined in terms of speedup ratio and parallel effi-
ciency. The speedup ratio Sn and the parallel efficiency En of the parallel computation
using n processors are defined, respectively, as

Sn =
T1

Tn
, (3.1)

K. Yasue et al. / Commun. Comput. Phys., 7 (2010), pp. 510-533 527

20

40

60

80

100

120

140

20 40 60 80 100 120 140

Ideal

Present

Processors

1

1

Figure 8: Speedup ratio. Dashed line represents
the ideal speedup ratio, and solid line with symbols
represents the obtained speedup ratio.

20

40

60

80

100

120

20 40 60 80 100 120 140

Processors

1

1

Figure 9: Obtained parallel efficiency.

(a)

-8

-7

-6

-5

-4

-3

-2

-1

0 1 10
4

2 10
4

3 10
4

4 10
4

Case 1 (Original)

Case 2 (Original+matrix simplification)

Case 3 (Original+p-multigrid)

Case 4 (Original+matrix simplification
 +p-multigrid)

Iterations (b)

-8

-7

-6

-5

-4

-3

-2

-1

0 2 10
4

4 10
4

6 10
4

8 10
4

Case 1 (Original)

Case 2 (Original+matrix simplification)

Case 3 (Original+p-multigrid)

Case 4 (Original+matrix simplification
 +p-multigrid)

CPU time, sec

Figure 10: Convergence histories for the flowfield over ONERA-M6 isolated wing in terms of; (a) number of
iterations, and (b) CPU time.

and

En =
T1

n×Tn
×100[%], (3.2)

where T1 denotes the wall-clock time of serial execution and Tn the wall-clock time of
parallel execution using n processors. The obtained speedup ratio and the parallel effi-
ciency are plotted in Figs. 8 and 9, respectively. A super linear speedup is observed for 64
processors. Even up to 128 processors, one can find that the speedup ratio is almost scal-
able and the sustained parallel efficiency is fairly high. These evidences indicate that the
present pointwise relaxation implicit DG method can readily exploit the full performance
of parallel computers.

We then examine the improved computational efficiency brought by the matrix sim-
plification given by Eq. (2.35) and the p-multigrid scheme. For this comparison, all the
computations are carried out using 8 processors. Table 2 summarizes the test cases in

528 K. Yasue et al. / Commun. Comput. Phys., 7 (2010), pp. 510-533

Table 2: Time integration schemes.

Case Numerical methods

1 Pointwise relaxation implicit scheme

2 Pointwise relaxation implicit scheme + matrix simplification

3 Pointwise relaxation implicit scheme + p-multigrid

4 Pointwise relaxation implicit scheme + matrix simplification + p-multigrid

which the baseline implicit scheme is combined with the matrix simplification and the
p-mutigrid scheme. The convergence histories of these cases in terms of number of it-
erations and also of CPU time are shown in Figs. 10(a) and 10(b), respectively. One can
say that the matrix simplification does not influence the convergence characteristics. The
number of iterations to reach convergence is halved when the p-multigrid scheme is used.
The CPU time to reach convergence is almost the same for case 2 and case 3, and is about
2/3 of that for case 1. By combining both the matrix simplification and the p-multigrid
scheme, the overall CPU time to reach convergence is 1/2 of that for case 1. Therefore,
one can say that a combination of the matrix simplification and the p-multigrid is quite
effective in reducing computational costs. We note that the parallel efficiency is found to
be unchanged for all cases listed in Table 2.

Figure 11: Hybrid mesh for the laminar boundary layer over a flat plate.

3.3 Laminar boundary layer flowfield over flat plate

In this subsection, we will show the computed results for the laminar boundary layer
flow over a flat plate. Fig. 11 shows the hybrid mesh for the flat plate. It has 2,183
tetrahedral cells and 3,600 prismatic cells. The freestream Mach number is chosen to be
0.5 and the Reynolds number is 107. The CFL number for the implicit integration is 105

K. Yasue et al. / Commun. Comput. Phys., 7 (2010), pp. 510-533 529

(a)

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1 1.2

x=0.1

x=0.3

x=0.5

x=0.7

x=0.9

Blasius solution

u/U (b)

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1 1.2 1.4

x=0.1
x=0.3
x=0.5
x=0.7
x=0.9
Blasius solution

v(2*re*x)
1/2

/U

Figure 12: Velocity profiles of; (a) x direction, and (b) y direction.

(a)

-18

-16

-14

-12

-10

-8

-6

-4

0 5 10
4

1 10
5

1.5 10
5

2 10
5

Case 1 (Original)

Case 2 (Original+matrix simplification)

Case 3 (Original+p-multigrid)

Case 4 (Original+matrix simplification
 +p-multigrid)

Iterations (b)

-18

-16

-14

-12

-10

-8

-6

-4

0 5 10
4

1 10
5

1.5 10
5

2 10
5

2.5 10
5

Case 1 (Original)

Case 2 (Original=matrix simplification)

Case 3 (Original+p-multigrid)

Case 4 (Original+matrix simplification
 +p-multigrid)

CPU time, sec

Figure 13: Convergence histories for the laminar boundary layer flowfield over a flat plate in terms of; (a)
number of iterations, and (b) CPU time.

and the local time stepping is employed. All the computations in this subsection and in
the next subsection are carried out using Xeon dual core 3.2GHz×2 (4 cores).

The computed velocity profiles are plotted with the Blasius solutions in Fig. 12. As
can be seen, a good agreement with the Blasius solution is obtained for x component. As
to y component, a reasonable agreement is obtained, though some differences with the
Blasius solution appear particularly at the boundary layer edge. The convergence histo-
ries for this problem are shown in Fig. 13. A machine zero convergence is obtained for all
the cases. The matrix simplification achieves 10% reduction of the total CPU time of the
original implicit method to reach convergence, while the convergence history is virtually
the same as that of the original method. The matrix simplification is less effective for
this case because the total amount of arithmetic operations is sharply increased due to
evaluation of viscous terms and lifting terms. When the p-multigrid scheme is combined
with the original method, the number of iterations needed for convergence becomes half

530 K. Yasue et al. / Commun. Comput. Phys., 7 (2010), pp. 510-533

Figure 14: Hybrid mesh for the turbulent boundary
layer over a flat plate.

0

5

10

15

20

25

30

1 10 100 1000 104 105

x=0.1
x=0.3
x=0.5
x=0.7
x=0.9

u+=y+

u+=5.75log
10
y++5.5

y+

Figure 15: u+ distribution in the turbulent bound-
ary layer.

(a)

-7

-6.5

-6

-5.5

-5

-4.5

-4

0 1 104
2 10

4
3 10

4
4 10

4

Case 1 (Original)

Case 2 (Original+metrix simplification)

Case 3 (Original+p-multigrid)

Case 4 (Original+matrix simplification
 +p-multigrid)

Iterations (b)

-7

-6.5

-6

-5.5

-5

-4.5

-4

0 2 104
4 10

4
6 10

4
8 10

4

Case 1 (Original)

Case 2 (Original+matrix simplification)

Case 3 (Original+p-multigrid)

Case 4 (Original+matrix simplification
 +p-multigrid)

CPU time, sec

Figure 16: Convergence histories for the turbulent boundary layer flowfield over a flat plate in terms of; (a)
number of iterations, and (b) CPU time.

of that for the original method and the CPU time becomes 3/5. The combination of the
matrix simplification and the p-multigrid is shown to reduce 5% of the total CPU time of
that given by the p-multigrid alone.

3.4 Turbulent boundary layer flowfield over flat plate

We now examine the turbulent boundary layer flowfield over a flat plate. The hybrid
mesh for the flat plate, which consists of 3,353 tetrahedral cells and 8,000 prismatic cells,
is shown in Fig. 14. The freestream Mach number is 0.5, and the Reynolds number is 107.
The CFL number is 105 and the local time stepping is employed.

The computed velocity profiles are plotted at several streamwise locations in Fig. 15.
A good agreement with the log law is obtained. Fig. 16 shows the convergence histories
of the present methods. A machine zero convergence is not achieved for this problem

K. Yasue et al. / Commun. Comput. Phys., 7 (2010), pp. 510-533 531

Figure 17: Unstructured hybrid mesh for AGARD-
B model with 198,131 tetrahedral cells and
158,070 prismatic cells.

Figure 18: Pressure contours on the surface and
Mach number contours on the root plane.

(a)

-3.5

-3

-2.5

-2

-1.5

0

0.05

0.1

0.15

0.2

0 2000 4000 6000 8000 1 10
4

L
2
 residual C

L

Iterations (b)

-3.5

-3

-2.5

-2

-1.5

0

0.05

0.1

0.15

0.2

0 5000 1 10
4

1.5 10
4

2 10
4

L
2
 residual C

L

CPU time, sec

Figure 19: Convergence history for the flowfield over AGARD-B model in terms of; (a) number of iterations,
and (b) CPU time.

due to fluctuation of computed eddy viscosity in the boundary layer. As in the laminar
case, a 10% reduction of the CPU time is attained with the matrix simplification, while
the convergence history is the same as that for the original method. Again, by combin-
ing p-multigrid scheme with the original method, the number of iterations needed for
convergence becomes half of that for the original method, and the CPU time becomes
3/5. The combination of the matrix simplification and the p-multigrid is found to be less
effective for this problem.

3.5 RANS simulation over AGARD-B wind tunnel calibration model

We finally show the computed results for the viscous compressible flowfield over AGARD-
B wind tunnel calibration model. This computation is also performed using 128 pro-
cessors on the SGI Altix where the original implicit method is used as a baseline com-
putation. Fig. 17 shows the unstructured hybrid mesh for AGARD-B model. It has

532 K. Yasue et al. / Commun. Comput. Phys., 7 (2010), pp. 510-533

198,131 tetrahedral cells, and 158,070 prismatic cells. The angle of attack is 2.2 deg. The
freestream Mach number is 1.4, and the Reynolds number is 2.8×107/m. The CFL num-
ber is set to be 105 and the local time stepping is again used in the calculation.

The computed pressure contours on the model surface together with the Mach num-
ber contours plotted on the root plane are shown in Fig. 18. Although the shock wave
is smeared out due to use of coarser mesh, the characteristic flow patterns are well ob-
tained. The obtained convergence histories are shown in Fig. 19. Both L2 residual and
the lift coefficient are converged within 3,000 iterations and 1.5×105 sec, respectively.
However, the L2 residual only decreases for two orders of magnitude for this problem.
This is caused by the fluctuations of the computed flowfield at the boat tail of the fuse-
lage where the boundary layer is separated from the edge. The computed lift coefficient
becomes 0.1013, while that of the experimental data is 0.1000. Although a reasonable
agreement is obtained for the lift coefficient with the experimental data, the computed
drag coefficient becomes almost 30% higher than the experimental data due to coarser
mesh not only at the wing leading edge but also at the forebody region. A more detailed
computation using a much finer mesh is certainly needed for obtaining a quantitative
agreement of drag coefficient.

4 Concluding remarks

The pointwise relaxation implicit DG method is developed. By applying several con-
vergence acceleration methods, the number of iterations and the total CPU time of the
DG method needed for convergence are reduced both for the inviscid compressible flow-
field and for the viscous compressible flowfield. It is also shown that the present implicit
scheme can readily achieve scalable speedup ratio and fairly good parallel efficiency,
while maintaining numerical stability and favorable convergence property. It is therefore
shown in the present study that the pointwise relaxation implicit algorithm can enhance
the applicability of the DG method for various practical problems, for which conven-
tional DG methods cannot be employed due to extremely high computational cost.

Acknowledgments

The parallel computations were carried out using SGI Altix 3700Bx2 at the Institute of
Fluid Science, Tohoku University.

References

[1] T. J. Barth, Aspects of unstructured grids and finite-volume solvers for the Euler and Navier-
Stokes equations, AGARD-R-787, (1992), 6-1-6-61.

[2] X-D. Liu, S. Osher, and T. Chan, Weighted essentially non-oscillatory schemes, J. Comput.
Phys., 115 (1994), 200-212.

K. Yasue et al. / Commun. Comput. Phys., 7 (2010), pp. 510-533 533

[3] B. Cockburn, and C-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite
element method for conservation laws II: General framework, Math. Comp., 52 (1989), 411-
435.

[4] B. Cockburn, and C-W. Shu, The Runge-Kutta discontinuous Galerkin method for conserva-
tion laws V: Multidimensional systems, J. Comput. Phys., 141 (1998), 199-224.

[5] F. Bassi, and S. Rebay, A High Order Discontinuous Galerkin Method for Compressible
Turbulent Flow. in B. Cockburn, G. E. Karniadakis, and C.-W. Shu, editors, Discontinuous
Galerkin Method: Theory, Computations and Applications, Lecture Notes in Computational
Science and Engineering 11, 113-123, Springer-Verlag, 2000.

[6] P. Rasetarinera, and M. Y. Hussaini, An efficient implicit discontinuous spectral Galerkin
method, J. Comput. Phys., 172, (2001), 718-738.

[7] R. Hartmann, Adaptive discontinuous Galerkin methods with shock-capturing for the com-
pressible Navier-Stokes equations, Int. J. Numer. Meth. Fluids, 51, (2006), 1131-1156.

[8] R. Hartmann, and P. Houston, Symmetric interior penalty DG methods for the compressible
Navier-Stokes equations I: Method formulation, Int. J. Numer. Anal. Model., 3, (2006), 1-20.

[9] R. Hartmann, and P. Houston, Symmetric interior penalty DG methods for the compressible
Navier-Stokes equations II: Goal-oriented a posteriori error estimation, Int. J. Numer. Anal.
Model., 3, (2006), 141-162.

[10] V. Dolejšı́, and M. Feistauer, A semi-implicit discontinuous Galerkin finite element method
for the numerical solution of inviscid compressible flow, J. Comput. Phys., 198, (2004), 727-
746.

[11] V. Dolejšı́, Semi-implicit interior penalty discontinuous Galerkin methods for viscous com-
pressible flows, Commun. Comput. Phys., 4, (2008), 231-274.

[12] C. R. Nastase, and D. J. Mavriplis, High-order discontinuous Galerkin methods using an
hp-multigrid approach, J. Comput. Phys., 213, (2006), 330-357.

[13] H. Luo, J. D. Baum, and R. Löhner, Fast p-multigrid discontinuous Galerkin method for
compressible flow at all speeds, AIAA J., 46 (2008), 635-652.

[14] S. J. Sherwin, and G. E. Karniadakis, A new triangular and tetrahedral basis for high-order
(hp) finite element methods, Int. J. Num. Meth. Eng., 38 (1995), 3775-3802.

[15] M. Dubiner, Spectral methods on triangles and other domains, J. Sci. Comp., 6 (1991), 345-
390.

[16] Y. Wada, and M-S. Liou, A flux splitting scheme with high-resolution and robustness for
discontinuities, AIAA Paper 94-0083, (1994).

[17] F. Bassi, and S. Rebay, Numerical evaluation of two discontinuous Galerkin methods for the
compressible Navier-Stokes equations, Int. J. Numer. Meth. Fluids, 40, (2002), 197-207.

[18] P. R. Spalart, and S. R. Allmaras, A one-equation turbulence model for aerodynamic flows,
AIAA Paper 92-0439, (1992).

[19] A. Jameson, and S. Yoon, Lower-upper implicit schemes with multiple grids for the Euler
equations, AIAA J., 25, (1987), 929-935.

[20] T. Haga, and K. Sawada, An improved slope limiter for high-order spectral volume methods
solving the 3D compressible Euler equations, in preparation, (2009).

[21] G. Karypis, and V. Kumar, A fast and high quality multilevel scheme for partitioning irreg-
ular graphs, SIAM J. Sci. Comp., 20, (1998), 359-392.

[22] V. Shumitt, and F. Charpin, Pressure distributions on the ONERA-M6-wing at transonic
Mach numbers, AGARD AR-138-B1 (1979).

