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Abstract. We present a model for simulating wave propagation in stratified magneto-
atmospheres. The model is based on equations of ideal MHD together with gravita-
tional source terms. In addition, we present suitable boundary data and steady states
to model wave propagation. A finite volume framework is developed to simulate the
waves. The framework is based on HLL and Roe type approximate Riemann solvers
for numerical fluxes, a positivity preserving fractional steps method for discretizing
the source and modified characteristic and Neumann type numerical boundary condi-
tions. Second-order spatial and temporal accuracy is obtained by using an ENO piece-
wise linear reconstruction and a stability preserving Runge-Kutta method respectively.
The boundary closures are suitably modified to ensure mass balance. The numerical
framework is tested on a variety of test problems both for hydrodynamic as well as
magnetohydrodynamic configurations. It is observed that only suitable choices of HLL
solvers for the numerical fluxes and balanced Neumann type boundary closures yield
stable results for numerical wave propagation in the presence of complex magnetic
fields.
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1 Introduction

There is considerable interest in the astrophysics community regarding the problem of
wave propagation in magnetized stellar atmospheres. The main theme of this research is
to determine how convection generated waves transport and deposit energy in the over-
lying chromospheric and coronal plasmas. Models aim to explain the observed energy
distribution in interesting astrophysical objects like the sun. The mathematical descrip-
tion of the underlying physical processes in realistic magneto-atmospheres is extremely
complicated. The models for this wave heating problem include the equations of ideal
magneto-hydrodynamics (MHD) together with complicated source and diffusion terms.
In addition, radiative transfer and non-equilibrium thermodynamics also play leading
roles. These models are described by systems of nonlinear partial differential and in-
tegral equations in three dimensions, coupled with realistic initial and boundary data.
The issue of determining model parameters along with proper initial and boundary data
requires considerable observational work.

It is not possible to obtain analytical solutions for the full model or even extremely
simplified versions of it. Also for these equations, theoretical results concerning exis-
tence, uniqueness and qualitative behavior are currently unavailable. Therefore, in order
to investigate these models, one must resort to numerical methods. Even this task faces
formidable difficulties due to nonlinearity and sheer computational complexity. A de-
tailed account of the physical processes involved in wave propagation along with exten-
sive references to the corresponding astrophysics literature can be found in [1, 2].

In [1,2], the authors consider a relatively simple model for wave propagation in the so-
lar atmosphere. This model takes into account the equations of compressible ideal MHD
along with gravitational source terms, supplemented by a description of the underlying
steady states. Waves in the “solar” atmosphere are modeled by inducing perturbations of
these steady states. We adopt the modeling framework of the above papers as a starting
point of this work and develop a class of schemes of the finite volume type to simulate
this model. A complete description of these schemes involves suitable approximate Rie-
mann solvers for the ideal MHD equations, proper treatment of the gravitational source
term and an appropriate implementation of boundary conditions.

The core of the model we consider consists of the equations of ideal MHD. Conse-
quently, most of the computational effort is directed at MHD solvers. The MHD equa-
tions are an example of a system of non-linear hyperbolic conservation laws. Solutions of
these equations develop discontinuities such as shock waves and contact discontinuities
even for smooth initial data. Furthermore, the MHD equations are not strictly hyperbolic
and contain a large number of waves. Some of the characteristic fields are not convex (i.e.
genuinely nonlinear except in some subset of state space), and the resulting solutions can
have intermediate and compound shocks. All these issues have to be addressed in order
to design efficient numerical methods for ideal MHD.

Finite volume methods are a popular type of numerical framework for approximating
solutions to conservation laws. These methods are based on approximating the integral
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form of the conservation law on each cell or control volume. Numerical fluxes at each
cell interface are based on either exact or approximate solutions of Riemann problems at
the interface. Higher order of accuracy in space can be obtained by using non-oscillatory
ENO/WENO type piecewise polynomial functions in each cell. Higher order accuracy
in time is obtained by using suitable Runge-Kutta solvers. A detailed account of these
methods is presented in [3].

In this paper, we will consider approximate Riemann solvers of the HLL type (see [3])
when constructing numerical fluxes. These solvers are based on approximating the so-
lution of Riemann problems by a piecewise constant function containing fewer disconti-
nuities than there are waves in the exact solution. A complete description of the solver is
provided by specifying the wave speeds and intermediate states. The ideal MHD equa-
tions have seven waves (in one space dimension). Typical HLL solvers for the MHD
equations involving 2, 3, 5 and 7 waves have been developed. Among these are the 3
wave solvers of [4, 5], the 5 wave solver of [6] and the 3, 5 and 7 wave solvers of [7, 8].
The latter ones are based on an extended Suliciu type relaxation system.

Another alternative is to use linearized approximate Riemann solvers. In this case,
the exact solution of Riemann problems at each cell interface is replaced by an exact
solution of a suitable linearization of the non-linear flux function across the interface.
The resulting solvers are denoted as Roe type approximate Riemann solvers for systems
of conservation laws (see [3] for details). These solvers are known to have high accuracy,
in particular they resolve isolated discontinuities exactly. Roe type solvers for ideal MHD
have been developed in [10–12] and other references therein.

When choosing an approximate Riemann solver, the key issues are computational
cost, accuracy and stability. One essential stability criteria for ideal MHD is maintaining
positive density and pressure. Another desirable property for a solver is that a discrete
entropy condition should hold, in which case the solver is said to be entropy stable. In one
space dimension, the standard HLL two wave solver, three wave solver of [5], five wave
solver of [6] and the relaxation based solvers of [7,8] are provably positivity preserving†.
The three wave solver of [4] has not been proven to be positivity preserving. It is well
known that Roe type solvers are not positivity preserving. The solvers of [7, 8] are also
entropy stable. However, for MHD all these results are valid in only one space dimension.

The above schemes are only first-order accurate in both space and time. We use stan-
dard piecewise linear ENO [13] reconstruction to obtain second-order spatial accuracy.
Second-order accuracy in time is obtained by using the strong stability preserving (SSP)
Runge-Kutta method [14].

When simulating stratified atmospheres, the numerical treatment of the gravitational
source term has to be taken into account. The presence of this source term leads to in-
teresting steady states that need to be preserved. Furthermore, waves are modeled as
perturbations of these steady states. The pressure and density at a steady state decay
exponentially in the vertical direction due to the presence of gravity, which leads to very

†We define a positivity preserving scheme as a scheme that ensures that density and pressure remains posi-
tive under a suitable CFL-condition.



476 F. G. Fuchs et al. / Commun. Comput. Phys., 7 (2010), pp. 473-509

low densities and pressures at the top of the computational domain. Since preserving
positivity is a challenge for any solver, this problem is particularly acute in stratified at-
mospheres. We treat the source term by using the method of fractional steps and identify
suitable stability conditions and discretizations which still keep the HLL solvers pos-
itivity preserving. Second-order accurate fractional steps is obtained by using Strang
splitting [3].

The next issue that needs to be addressed for the simulation of waves is that of bound-
ary conditions. For simplicity, consider a two-dimensional model with x- and z-directions
being associated with the horizontal and vertical directions respectively. Since we are in-
terested in simulating a small part of the solar atmosphere, we use periodic boundary
conditions at the x-boundary. At the bottom z-boundary, we have to prescribe bound-
ary conditions in order to model incoming waves. At the top z-boundary, we need to
implement numerical boundary conditions that minimize reflections when waves (from
the bottom of the domain) reach this boundary. Furthermore, this boundary should not
generate any waves or numerical artifacts that affect the quality of the solution in the
interior of the domain. The vertical boundary conditions have to retain the mass bal-
ance and not lead to conservation errors. Conservation errors will force solutions away
from the steady state. Since the solutions have very low pressures at the top boundary,
conservation errors can easily lead to negative pressures and densities.

We adapt the non-reflecting characteristic boundaries developed in [15–17] to this
problem. The adaptation is complicated on account of the complex eigenstructure and
the non-strict hyperbolicity of the equations. We also introduce an alternative imple-
mentation of the non-reflecting boundary conditions of [15, 16]. Additionally, we have
to adapt the boundary conditions in order to ensure mass balance. Another alternative
implementation of boundary conditions is to modify simple Neumann type numerical
boundary conditions to enforce mass balance. This choice might lead to greater amount
of reflections. Furthermore, we propose a novel set of boundary conditions based on ex-
trapolating (by an exponential profile) the pressure and the density from the interior of
the domain into the ghost cells together with Neumann type conditions for the velocity
and magnetic fields. We compare all the boundary conditions in numerical experiments.

The aim of the paper is to develop a finite volume based numerical framework that
simulates wave propagation in an idealized magneto-atmosphere. We implement differ-
ent first- and second-order accurate HLL type solvers as well as Roe solvers for the finite
volume fluxes and compare them in a series of experiments. The sources are discretized
by using a method of fractional steps that keeps pressures and densities positive. The
model is completed by boundary conditions of the characteristic type as well as Neu-
mann type that are modified to ensure mass balance in the domain. All the above in-
gredients are combined together to obtain a finite volume framework that can simulate
waves in stratified magneto-atmospheres. We emphasize that a successful simulation of
wave propagation requires proper choices of all the above ingredients and we present
them in this paper.

The rest of the paper is organized as follows: in Section 2, we present the model
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of the idealized solar atmosphere and specify the detailed eigenstructure of ideal MHD
equations. The approximate Riemann solvers are described and compared in a series
of numerical experiments in Section 3. In Section 4, we explain the numerical approxi-
mation of the gravity source term and provide a complete description of the boundary
conditions in Section 5. Numerical experiments for wave propagation in the idealized
solar atmosphere are provided in Section 6.

2 The model

In this section, we present the equations and initial and boundary conditions modeling
an idealized solar atmosphere. The basic equations of the model are the equations of
ideal MHD along with source terms due to gravity given by

ρt+div(ρu)=0, (2.1a)

(ρu)t+div(ρu⊗u+(p+
1

2
|B|2)I−B⊗B)=−ρge3, (2.1b)

Bt+div(u⊗B−B⊗u)=0, (2.1c)

Et+div((E+p+
1

2
|B|2)u−(u·B)B)=−ρg(u·e3), (2.1d)

div(B)=0, (2.1e)

where ρ is the density, u = {u1,u2,u3} and B = {B1,B2,B3} are the velocity and magnetic
fields respectively, p is the thermal pressure, g is constant acceleration due to gravity ,
e3 = {0,0,1}, E is the total energy determined by an ideal gas equation of state of the
form,

E=
p

γ−1
+

1

2
ρ|u|2+

1

2
|B|2, (2.2)

where γ is the adiabatic gas constant. The above equations describe the conservation of
mass, momentum and energy and the evolution of the magnetic field due to the velocity.
In addition, magnetic monopoles have not been observed in nature and this fact is mod-
eled by the constraint that the divergence of the magnetic field remains zero during the
evolution.

In condensed form, the above equations (2.1) can be written as a system of balance
laws of the form,

Ut+( f (U))x+(g(U))y+(h(U))z =S(U), (2.3)

where U is the vector of conserved variables, f , g and h are the directional fluxes and S is
the source.

For simplicity, we consider the equations in two dimensions. The x coordinate repre-
sents the horizontal direction and the z coordinate the vertical direction. In particular this
means that no variable depends on y, i.e., ∂y ≡0 in (2.1). We consider (2.1) in the domain
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[0,X]×[0,Z] where X and Z are positive numbers. Next, we specify steady states (station-
ary solutions) that are of interest as they will serve as a background for the propagation
of waves.

2.1 Hydrodynamic steady state

To begin with, we assume that the magnetic field B is set to zero implying that the model
is driven by ideal compressible hydrodynamics. In addition, the atmosphere is assumed
to be steady by setting the velocity field u to zero. With this ansatz the pressure and the
density have to satisfy the following ordinary differential equation

∂p

∂z
=−ρg. (2.4)

We look for solutions of (2.4) satisfying p(x,z)= cρ(x,z) for some constant c and for all x
and z, which amounts to assuming an isothermal atmosphere. This is a reasonable ap-
proximation since we are interested in simulating the region around the lower chromo-
sphere of the sun where the temperature remains approximately constant. Substituting
this into (2.4) leads to the following hydrodynamic steady state,

u=0, B=0, ρ(x,z)=ρ0e−z/H, p(x,z)= p0e−z/H, (2.5)

where the scale height H is given by H = p0/(gρ0) and p0 and ρ0 are the values of the
pressure and density at the bottom boundary of the domain. Observe that the pressure
and density decay exponentially with height, giving very low values near the top of the
computational domain. As a consequence, when we are performing numerical calcu-
lations of small perturbations of this state, retaining positivity of pressure and density
(particularly at the top of the computational domain) is going to be a key difficulty.

2.2 Magnetic steady states

Any realistic description of the solar atmosphere has to include magnetic fields. Hence,
we need to calculate steady states of (2.1) with non-trivial magnetic fields. Momentum
balance in (2.1) can also be written as

(ρu)t+div(ρu⊗u+pI)=curl(B)×B−ρge3.

This form makes the role of gravity and the Lorentz force explicit. The magnetic steady
state is a stationary solution of (2.1) with the additional ansatz that p=cρ, curl(B)=0 and
u=0. This corresponds to stationary and Lorentz-force free fields. Substituting the above
ansatz into (2.1), we obtain that the density and the pressure is given by (2.5). Further-
more, since the magnetic field B is assumed to be such that curl(B)≡0 and div(B)≡0, it
can be expressed in terms of vector harmonic functions. As we consider a small part of
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the solar atmosphere and assume periodic boundary conditions in the horizontal direc-
tion, we choose to express the magnetic field in terms of a finite number of modes in a
Fourier expansion. A resulting steady state is given by

u=0, B2 =0, p(x,z)= p0e−z/H, ρ(x,z)=ρ0e−z/H,

B1(x,z)=
M

∑
k=0

fk sin

(

2kπx

X

)

e−2πkz/X,

B3(x,z)=
M

∑
k=0

fk cos

(

2kπx

X

)

e−2πkz/X,

(2.6)

where fk’s are the Fourier coefficients corresponding to the data B1(x,0) and B3(x,0) at
the bottom boundary and M is the total number of Fourier modes for the boundary data.
We choose B2≡0 as the resulting magnetic field is planar. This is done for simplicity.

A simple calculation shows that (2.6) is indeed a steady state of (2.1). Furthermore, the
pressure and density have an exponential decay along the vertical direction. The mag-
netic field is quite complicated and leads to a genuinely multi-dimensional description
of the model. These factors complicate design of numerical schemes.

2.3 The characteristic structure of ideal MHD

For the sake of completeness we give some details regarding the eigensystem of the MHD
equations. Consider Eq. (2.1) in the x-direction without gravity i.e., g=0. The divergence
constraint in one space dimension forces the magnetic field in x direction, B1, to be con-
stant in space and time, and thus act only as a parameter in the equations. Defining the
vector of primitive variables,

V ={ρ,u1,u2,u3,B2,B3,p},

the system (2.1) reduces to the following quasilinear form in one dimension,

Vt+A1(V)Vx =0. (2.7)

For the precise expression for the Jacobian matrix A1, see [18]. Defining the speeds

a2 =
γp

ρ
, b1,2,3 =

B1,2,3

√
ρ

,

b2 =b2
1+b2

2+b2
3, b2

⊥=b2
2+b2

3,

the eigenvalues of A1 read

λ1 =u1−c f , λ2 =u1−b1, λ3 =u1−cs, λ4 =u1,

λ5 =u1+cs, λ6 =u1+b1, λ7 =u1+c f ,
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where c f and cs are given by

c2
f =

1

2

(

a2+b2+
√

(a2+b2)2−4a2b2
1

)

,

c2
s =

1

2

(

a2+b2−
√

(a2+b2)2−4a2b2
1

)

.

(2.8)

The waves corresponding to λ1 and λ7 are called fast waves, the ones corresponding to
λ3 and λ5 slow waves, those corresponding to λ2 and λ6 Alfvén waves and the wave
associated with λ4 is called a contact wave. As the above eigenvalues are real, the system
is hyperbolic. But the eigenvalues are not always distinct, and the system is not strictly
hyperbolic. This non-strict hyperbolicity is a formidable obstacle to the development of
mathematical theory and numerical methods for MHD.

It is well known that the eigenvectors of (2.7) have to be scaled properly in order to be
well-defined. We now present the orthonormal set of eigenvectors first described in [18].
The right and left eigenvectors corresponding to the contact wave λ4 are given by,

re =(1,0,0,0,0,0,0)T , le =
1

a2

(

a2,0,0,0,0,0,−1
)

.

Define β2,3 = b2,3/b⊥. Then, the eigenvectors corresponding to the Alfvén waves λ2 and
λ6 are given by

r±A =
(

0,0,±β3,∓β2,−√
ρβ3sign(b1),

√
ρβ2sign(b1),0

)T
,

l±A =
1

2

(

0,0,±β3,∓β2,− β3√
ρ

sign(b1),
β2√

ρ
sign(b1),0

)

,

where r+
A and l+A correspond to λ2.

As in [18], we introduce the following normalizing factors,

α2
f =

a2−c2
s

c2
f −c2

s

, α2
s =

c2
f −a2

c2
f −c2

s

.

Note that α2
f +α2

s =1. The eigenvectors corresponding to the fast and slow waves read,

r±f =





















α f ρ

±α f c f

∓αscsβ2sign(b1)
∓αscsβ3sign(b1)

αs
√

ρaβ2

αs
√

ρaβ3

α f ρa2





















, r±s =





















αsρ
±αscs

∓α f c f β2sign(b1)
∓α f c f β3sign(b1)

α f
√

ρaβ2

α f
√

ρaβ3

αsρa2





















,
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l±f =
1

2a2

(

0,±α f c f ,∓αscsβ2sign(b1),∓αscsβ3sign(b1),αsa
β2√

ρ
,αsa

β3√
ρ

,
α f

ρ

)

,

l±s =
1

2a2

(

0,±αscs,∓α f c f β2sign(b1),∓α f c f β3sign(b1),α f a
β2√

ρ
,α f a

β3√
ρ

,
αs

ρ

)

.

The normalization factors α f and αs are not well-defined at the triple point where b1 = a

and b⊥ = 0. In this case, we use the fact that α2
f +α2

s = 1,β2
2+β2

3 = 1 and define α f = αs =

β2 = β3 =1/
√

2.

3 Approximate Riemann solvers

In this section we review the different approximate Riemann solvers that we want to test.
Consider the ideal MHD equations (2.1) with g=0 in the domain [0,X]×[0,Z]. We divide
this into I×K cells (or control volumes), and define xi =−∆x/2+i∆x, i =0,··· , I+1, and
zk =−∆z/2+k∆z, k =0,··· ,K+1, so that zk+1/2 = k∆z. Let Ii,k denote the control volume
[xi−1/2,xi+1/2)×[zk−1/2,zk+1/2). The cell average of the vector of conserved variables at
time tn over the cell Ii,k is given by Un

i,k. Let ∆ = min{∆x,∆z}, then the time step ∆tn is
chosen by the CFL condition,

max
i,k

{∣

∣

∣
u1,n

i,k

∣

∣

∣
+c

f 1,n
i,k ,

∣

∣

∣
u3,n

i,k

∣

∣

∣
+c

f 3,n
i,k

}∆tn

∆
≤1, (3.1)

where c
f j,n
i,k is the fast speed in the j-th direction in the cell Ii,k . Then, a general finite

volume scheme is written,

Un+1
i,k =F

(

Un
i−1,k,Un

i,k−1,Un
i,k,Un

i+1,k,Un
i,k+1

)

=Un
i,k−

∆tn

∆x

(

Fn
i+1/2,k−Fn

i−1/2,k

)

−∆tn

∆z

(

Hn
i,k+1/2−Hn

i,k−1/2

)

, (3.2)

where the numerical fluxes are functions of the neighboring cell averages, i.e.,

Fn
i+1/2,k = F

(

Un
i,k,Un

i+1,k

)

, Hn
i,k+1/2 = H

(

Un
i,k,Un

i,k+1

)

.

These numerical fluxes should be such that F(A,B) is an approximation to the solution
at x=0 of the Riemann problem in the x direction for (2.1). To be concrete, if U satisfies

Ut+ f (U)x =0, U(x,0)=

{

UL x<0,

UR x>0,

then F(UL,UR)≈ f (U(0,t)). The numerical flux H(UL,UR) is defined analogously.
We will use approximate Riemann solvers of the HLL type, see [3], in order to define

the numerical fluxes.
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3.1 HLL2 solver

The number “2” denoting this approximate Riemann solver means that we approximate
the full Riemann solution using two moving discontinuities (waves). Let UL,R and fL,R

denote the left and right state and flux respectively. If the speed of the two waves are
sL and sR then the constant state in between these waves, U∗ will be determined from
conservation by

fR− f∗= sR (UR−U∗), f∗− fL = sL (U∗−UL),

where f∗ denotes the numerical flux between these two waves. Solving the above equa-
tions yields

U∗=
fR− fL−sRUR+sLUL

sL−sR
, f∗ =

sR fL−sL fR +sLsR(UR−UL)

sR−sL
. (3.3)

Then, the numerical flux can be written as

Fhll2(UL,UR)=











fL if sL ≥0,

f∗ if sL <0< sR,

fR if sR ≤0.

(3.4)

It remains to define the waves speeds sL and sR, and we do this as in [19]. Let Ū =
(UL+UR)/2, then the wave speeds are given by

sL =min
{

u1
L−c f L, ū1− c̄ f

}

, sR =max
{

u1
R+c f R, ū1+ c̄ f

}

, (3.5)

where ū1 and c̄ f are the normal velocity and the fast wave speed of A(Ū) respectively.
This solver only approximates the outermost (fast) waves of the Riemann solution and
can be very dissipative, particularly at contact discontinuities.

3.2 HLL3 solvers

This type of solver uses three moving discontinuities to approximate the solution of the
Riemann problem. Let the UL,R and fL,R be as before. With this notation a HLL3 solver
gives the approximate solution

Uhll3 =























UL if sL ≥0,

U∗
L if sL <0< sM,

U∗
R if sM <0< sR,

UR if sR ≤0,

Fhll3(UL,UR) =























fL if sL ≥0,

f ∗L if sL <0< sM,

f ∗R if sM <0< sR,

fR if sR ≤0,

(3.6)

where the outer wave speeds sL and sR are given by (3.5) and the middle wave speed is
given by sM. Local conservation implies,

sLU∗
L− f ∗L = sLUL− fL, sMU∗

R− f ∗R = sMU∗
L− f ∗L , sRUR− fR = sRU∗

R− f ∗R. (3.7)
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From this we obtain the following expressions for f ∗L and f ∗R

f ∗L = f∗−
sL(sR−sM)

sR−sL
∆U∗, f ∗R = f∗+

sR(sM−sL)

sR−sL
∆U∗, (3.8)

where ∆U∗=U∗
R−U∗

L and f∗ is given by (3.3).

3.2.1 HLL3L solver

In [4], the author determines the two middle states by making the following ansatz,

∆U∗=α(UR−UL),

where α is a parameter to be determined. If we set α = 0 the middle wave disappears
and we get the HLL2 solver. When α=1, an HLL3 solver will give a single discontinuity
approximating the contact wave.

Since the middle wave is supposed to model the contact discontinuity, we can choose
the middle wave speed as the corresponding velocity of the Jacobian A(Ū), i.e., sM = ū1.
Set c∗=

∣

∣c̄ f −sM

∣

∣ and

s=
|∆ f −sM∆U|

|∆U| ,

where ∆U =UR−UL and ∆ f = fR− fL, the interpolation factor α is then defined as

α=max

{

0,1− s

c∗

}

.

This heuristic choice of α, which was suggested in [4], is motivated by the following
argument. If the true solution of

Vt+A(Ū)Vx =0, V(x,0)=

{

UL x<0,

UR x>0,

consisted of a single contact discontinuity, then ∆ f = sM∆U, which gives s=0 and α=1.
Similarly, if the solution consisted of a single fast shock with speed sM+ c̄ f (a particular
form of the HLL2 solution) s= c∗, which gives α=0.

Although the pressure and density computed by this solver are not provably posi-
tive, the HLL3L solver gives satisfactory numerical results on many test problems (see
Section 6).

3.2.2 HLL3G solver

A positivity preserving HLL three wave solver was proposed by Gurski in [5]. We use
the notation of the previous section and the fluxes are defined in (3.6). We choose sL and
sR as the Einfeldt speeds of (3.5) and the middle speed sM as the normal Roe velocity
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as in the HLL3L solver. Then from the conservation equations (3.7), we can express the
middle states in terms of sM,

ρ∗L =ρL
(sL−u1

L)

(sL−sM)
, ρ∗R =ρR

(sR−u1
R)

(sR−sM)
,

p∗ = pL+ρL(u1
L−sL)(u1

L−sM)+
|BL|2

2
.

(3.9)

Note that the pressure does not jump across the contact discontinuity modeled by the
middle wave. Since we are considering (2.1) in one dimension, B1 is taken to be a con-
stant. The tangential components of the velocity and the magnetic field do not jump
across the contact discontinuity and hence

u2,∗
L =u2,∗

R =u2,∗, B2,∗
L = B2,∗

R = B2,∗.

Identical expressions hold for u3 and B3, and we substitute them into the conservation
equations in order to get (in the case when B1 6=0),

u2,∗=
ρLu2

L(u1
L−sL)−ρRu2

R(u1
R−sR)+0.5(B1(B2

R−B2
L)

ρL(u1
L−sL)−ρR(u1

R−sR)
,

u3,∗=
ρLu3

L(u1
L−sL)−ρRu3

R(u1
R−sR)+0.5(B1(B3

R−B3
L)

ρL(u1
L−sL)−ρR(u1

R−sR)
,

B2,∗=
B2

L(u1
L−sL)−B2

R(u1
R−sR)+B1(u2

R−u2
L)

sR−sL
,

B3,∗=
B3

L(u1
L−sL)−B3

R(u1
R−sR)+B1(u3

R−u3
L)

sR−sL
,

E∗
L =

0.5(|BL|2u1
L)+(pLu1

L+EL(u1
L−sL)−sM p∗)+B1(B∗

L ·u∗
L−BL ·uL)

sM−sL
,

E∗
R =

0.5(|BR|2u1
R)+(pRu1

R+ER(u1
R−sR)−sM p∗)+B1(B∗

R ·u∗
R−BR ·uR)

sM−sR
.

If B=0 we can find the relevant formulas in [5]. The pressure and density computed using
this solver are always positive. In [5], the author noted that a modified version of this
solver resolves Alfvén and slow waves better, but we found that this modification might
lead to negative pressures in some of our simulations, and hence we use the original
version of this solver.

3.2.3 HLL3R solver

In [7,8], an MHD 3-wave solver is derived from a relaxation system as an extension of the
work for hydrodynamics in [9]. This solver is positivity preserving, and it also satisfies a
discrete entropy inequality. We refer to [7,8] for justification, and only describe the solver
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here. First assume that the outer wave speeds sL = uL−cL/ρL and sR = uR+cR/ρR are
given for some positive cL,cR. Define the relaxation pressure

ßL,R =

(

p+
1

2
B2−(B1)2,−B1B2,−B1B3

)

L,R

.

Then define the intermediate states

u∗=uL
∗ =uR

∗ =
cLuL+cRuR+πL−πR

cL+cR
,

π∗=πL
∗ =πR

∗ =
cRπL+cLπR+cLcR(uL−uR)

cL+cR
.

These are constant across the middle wave, so we can define the middle wave speed
sM = u1

∗. The intermediate state values for ρ, B2,3 and E are given by B1 being constant,
and

BL,R

ρL,R
−B1 πL,R

c2
L,R

=
B∗

L,R

ρ∗L,R

−B1 π∗
c2

L,R

,

eL,R+
(BL,R)2

2ρL,R
−

π2
L,R

2c2
L,R

= e∗L,R+

(

B∗
L,R

)2

2ρ∗L,R

− π2
∗

2c2
L,R

.

Finally, adopting the notation of (3.6), the numerical flux is given by

f ∗L,R =
(

ρu1,ρu1u+π,u1B−B1u,Eu1+π ·u
)∗

L,R
.

The coefficients cL and cR are given by

cL =ρL

(

a0
L+

1

2
(γ+1)XL

)

, cR =ρR

(

a0
R +

1

2
(γ+1)XR

)

with γ as in the equation of state (2.2),

XL =(u1
L−u1

R)++
(π1

R−π1
L)

+

√
γρL pL +ρRcR

f

, XR =(u1
L−u1

R)++
(π1

L−π1
R)+

√
γρR pR+ρLcL

f

,

and a0
L,R given by (using the notation of (2.8))

(a0
L,R)2 =

1

2



a2+
b2

ξ
+

√

(

a2+
b2

ξ

)2

−4a2
b2

1

ξ





L,R

,

with

ξL,R =

(

c f +
1
2 (γ−1)X

c f +
1
2 (γ+1)X

)

L,R

.
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3.3 Roe Solver

Although our focus in this paper is on the approximate Riemann solvers of the HLL type,
we briefly describe the Roe solver in order to compare it with the HLL solvers as well as
to use it in our implementation of non-reflecting characteristic boundary conditions.

Given two states UL,UR across an interface, let Â (see [11]) be the Roe matrix associ-
ated with UL,UR (the simple average A(UL+UR

2 ) also suffices for most practical purposes).

Let R̂, L̂ be the right and left eigenvector matrices associated with Â. We can use the Roe-
Balsara eigensystem used in section 2 for the eigen-system decomposition, then the Roe
solver [20] is given by,

FRoe(UL,UR)=
1

2

(

fL+ fR− R̂|Λ̂|L̂(UR−UL)
)

, (3.10)

where |Λ̂|=diag{|λ̂1|,··· ,|λ̂7|} with λ̂’s being the eigenvalues of the Roe-matrix. This flux
needs to be augmented with some standard entropy fix like the Harten [21] or Harten-
Hyman [22] entropy fix in order to comply with the entropy condition. We use the Harten
fix [21] in the numerical experiments presented later. It is well known that the Roe solver
is a linearized, low dissipative solver that resolves isolated shocks exactly. Furthermore,
it doesn’t necessarily preserve positivity leading to problems when it is implemented in
our solar atmosphere model.

Remark 3.1. The above HLL and Roe solvers are based on the one-dimensional form of
the equations and require that the normal magnetic field Bi for i=1,3 is constant in each
direction. However, in multi dimensional computations, the normal magnetic field is no
longer constant. Hence, we need to suitably modify the solvers for multidimensional
problems.

We use a simple modification, in the i-th direction, we use Bi =(Bi
L+Bi

R)/2 in our for-
mulas to define the numerical fluxes in each direction. This simple modification does not
guarantee that the solver remains positive but works reasonably well in all the numeri-
cal experiments that we performed. A careful modification of the solvers to make them
handle genuinely multidimensional data requires a suitable discretization of the Powell
source term, see [26] and, for HLL3R, [8].

3.4 Numerical experiments

We will compare all the above solvers in a series of numerical experiments. Furthermore,
for all numerical examples in this paper we use γ=5/3.

Regarding the measurement of errors, if we have a reference solution available, then
we define the relative error as

100×‖α−αref‖
‖αref‖

,

where α is (a component of) the numerical approximation and αref is (the same compo-
nent of) the reference solution, and ‖·‖ is some norm.
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Figure 1: Results for the Brio-Wu shock tube for 200 mesh points at time t=0.35. Top left: ρ, top right: u1,

bottom left: B2 and bottom right: P.

The Brio-Wu shock tube

We start with a one-dimensional test case proposed in [10]. The initial data are given by

ρ0 =

{

1.0 if x<1.0,

0.3 if x≥1.0,
u1

0 =0, u2
0 =0, u3

0 =0,

B1
0 =0.7, B2

0 =

{

0.0 if x<1.0,

1.0 if x≥1.0,
B3

0 =0, p0 =

{

1.0 if x<1.0,

0.1 if x≥1.0.

The computational domain is (x,t)∈[0,1.5]×[0,0.35], and we use Neumann type artificial
boundary conditions for x = 0 and x = 1.5. The numerical results for 200 mesh points at
time t=0.35 are shown in Fig. 1 and are compared in Table 1. We calculate the reference
solution using the HLL3L solver and 8000 mesh points. As seen from the error table as
well as from Figure 1, the different solvers do quite well at resolving the complicated
solution which has a large number of waves. The error table shows that the Roe-scheme
has the best resolution, and the other schemes give very similar results. As expected,
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Table 1: Relative errors in L1 for the density and B2 for the Brio-Wu shock tube using M mesh points.

Relative errors in
ρ.































M HLL HLL3L HLL3G HLL3R Roe
100 4.42 3.35 3.71 3.49 2.64
200 3.21 2.31 2.61 2.33 1.60
400 1.92 1.25 1.50 1.30 0.72
800 1.19 0.73 0.91 0.77 0.37
1600 0.64 0.31 0.43 0.34 0.10

Relative errors in
B2.































M HLL HLL3L HLL3G HLL3R Roe
100 3.64 2.91 3.45 3.38 2.36
200 2.68 2.16 2.59 2.34 1.43
400 1.43 1.07 1.39 1.21 0.50
800 0.88 0.67 0.88 0.76 0.29
1600 0.43 0.28 0.43 0.34 0.11

all the schemes exhibit a convergence order roughly between 1
2 and 1 as the number of

mesh points increases. Among the HLL solvers, the HLL2 solver seems to be the most
dissipative and least accurate.

An expansion problem

From the previous experiment, the Roe solver was found to be most accurate. However,
it is well known that the Roe solver fails to be positivity preserving. We present a test
case illustrating this phenomenon. Consider the initial data,

ρ0 = p0≡1, u2
0 =u3

0 = B1
0 = B3

0 ≡0,

u1
0 =

{

−4.0 if x<0.7,

4.0 if x≥0.7,
B2

0 =

{

1.0 if x<0.7,

−1.0 if x≥0.7,

and the computational domain [0,0.14]×[0,0.12] and test all the solvers on this test case.
The data is set up in a manner such that the exact solution loses mass in the center of
the domain and the resulting pressure and density are quite close to zero. The numerical
results for the pressure at 400 mesh points near the final time is shown in Fig. 2. From
Fig. 2, the HLL solvers do well in this case in resolving very low pressures near the
center of the domain. There are minor differences in the resolution between different HLL
solvers. On the other hand, the Roe solver crashed on this test problem at time t =0.004
i.e about 4 percent of the final time, showing that its high accuracy and resolution comes
at a price i.e low stability particularly with respect to negative pressures. This example
serves as a caution in using the Roe solver on problems involving stratified atmosphere,
as low pressures are expected at the top boundary.
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Figure 2: Results for the pressure in the expansion problem for 400 mesh points at time t = 0.12 with all the
HLL solvers.

The Orszag-Tang vortex

This is a commonly used two dimensional test problem, see, e.g., [25], with initial data
given by

{

ρ0,u1
0,u2

0,u3
0,B1

0,B2
0,B3

0,p0

}

=
{

γ2,−sin(y),sin(x),0,−sin(y),sin(2x),γ
}

.

The computational domain is (x,y,t) ∈ [0,2π]2×[0,2.85] with periodic boundary condi-
tions in space. The initial data are smooth but shocks form even for small times. The
solution also contains a vortex structure in the center of the domain, and it is a compu-
tational challenge to resolve the shock-vortex interaction. Note that divB0 =0. In Fig. 3,
we show the pressure at time t=2.85 and compare the HLL3L, HLL3R, HLL3G and Roe
solvers on a uniform 200×200 mesh. From the figure, it is clear that the Roe scheme is the
least dissipative and that the HLL3G scheme is the most dissipative. The HLL3R has bet-
ter resolution than the HLL3L solver for this particular problem, although the differences
are minor.

For this problem a reference solution is not available, and it is common to use the
pressure at the center of the domain as a measure of the accuracy of approximate solu-
tions. In Table 2 we show the maximum pressure for the various solvers on a sequence of
meshes. It is generally assumed that the maximum pressure correlates with the quality
of the approximation. From Table 2, it is clear that the Roe solver is the most accurate.
Among the HLL solvers, the HLL3R solver seems to have the best resolution. However,
when we refine the mesh up to 800 mesh points in either direction, all the solvers except
the HLL3R solver crash on account of negative pressures with the symbol − denoting a
crash of the solver. Even the HLL3R solver crashed on a 1600×1600 mesh.

One possible reason might be the discretization of the divergence constraint [24].
Since none of our solvers are divergence preserving, and although the divergence of B0
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Figure 3: The pressure in the Orszag-Tang vortex at time t=2.85 on a 200×200 mesh. Top left: HLL3L, top
right: HLL3G, bottom left: HLL3R and bottom right: Roe.

Table 2: Maximum pressure for the Orszag-Tang vertex on an M×M grid for t=2.85. A “-” indicates that the
computation was stopped due to negative pressure or density.

M HLL HLL3L HLL3G HLL3R Roe
100 4.00 4.41 4.01 4.90 5.27
200 4.74 4.94 4.73 5.38 5.39
400 5.11 5.21 5.09 5.59 5.88
800 - - - 5.97 -

is zero, for t>0 discretizations of the divergence may not necessarily remain small. It has
been speculated that these divergence errors are the source of the instabilities and neg-
ative pressures and densities experienced with many solvers. Therefore we exhibit the
L1 norm of the central difference approximation to the divergence in Table 3. The diver-
gence errors are quite large. Nevertheless, they do not seem to influence the quality of the
solution (as measured by the maximum pressure). Furthermore, the HLL3R solver had
the largest divergence errors, yet this was the only solver which managed to compute a
solution on the 800×800 mesh. From the available data, it also seems that the divergence
errors decrease with increasing mesh size. These preliminary observations indicate that
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Table 3: The L1 norm of the central discrete divergence for the Orszag-Tang vertex, calculated on a sequence
of meshes.

M HLL HLL3L HLL3G HLL3R Roe
100 1.92 2.81 1.86 9.66 7.77
200 1.77 2.93 1.71 8.28 6.94
400 1.47 2.60 1.44 6.95 5.64
800 - - - 6.03 -

the relationship between accuracy, positivity and divergence preservation is likely to be
a complicated one. Similar features were observed in other two-dimensional numerical
experiments like the Rotor problem [25].

Remark 3.2. We would like to mention that divergence cleaning for MHD is a very ac-
tive research area and many methods to preserve discrete versions of the divergence
constraint have been proposed. See [25] for a comparison of different divergence clean-
ing methods. We do not consider such methods here as it is difficult to design stable
boundary closures for these methods and boundary conditions are key ingredient in our
numerical recipe.

Another approach would be to add the Godunov-Powell source term (see [26]) that
transports divergence errors out of the domain. However, this method requires a very
careful “upwind” discretization of the source term. Furthermore, all divergence cleaning
procedures suffer from stability problems, particularly for strict test cases [27]. Hence,
we restrict ourselves to schemes without any special divergence cleaning in this paper.

3.5 Second-order accurate scheme

The above finite volume (3.2) is first-order accurate in both space and time. Hence, the
schemes were quite dissipative at least on coarse meshes in the numerical experiments
presented above. Most realistic applications require the design of a scheme with higher-
order spatial and temporal accuracy. The semi-discrete form of this scheme is given by

d

dt
Ui,k =F i,k

=− 1

∆x
(Fi+1/2,k−Fi−1/2,k)−

1

∆z
(Hi,k+1/2−Hi,k−1/2), (3.11)

where Ui,k(t) is the cell-average of the unknown at time t. Note that we have dropped
time dependence in (3.11) for notational convenience. We will define the numerical fluxes
F,H below.

It is standard [3] to replace the cell averages Ui,k by non-oscillatory piecewise linear
reconstructions in-order to obtain second-order spatial accuracy. There are a variety of
reconstructions including the popular TVD MUSCL limiters [3]. However, we will use
second-order ENO reconstruction [13] as this procedure can be easily extended to obtain
even higher-order schemes.
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3.5.1 ENO Reconstruction

Given the cell averages Ui,k, define the ENO-gradients in each direction as

DxUi,k =
1

∆x

{

Ui+1,k−Ui,k, if Γx
i,k≤1,

Ui,k−Ui−1,k, otherwise,
(3.12a)

DzUi,j =
1

∆z

{

Ui,k+1−Ui,k, if Γz
i,k≤1,

Ui,k−Ui,k−1, otherwise,
(3.12b)

where

Γx
i,k =

|Ψ(Ui+1,k)−Ψ(Ui,k)|
|Ψ(Ui,k)−Ψ(Ui−1,k)|

, Γz
i,k =

|Ψ(Ui,k+1)−Ψ(Ui,k)|
|Ψ(Ui,k)−Ψ(Ui,k−1)|

,

and Ψ is a global smoothness indicator. We use Ψ(U)= ρ+|B|2 as the smoothness indi-
cator as it provides adequate representation of all the discontinuities in the solution of
the Riemann problem for the MHD equations. Other global smoothness indicators can
also be used. Note that for piecewise linear reconstruction, the ENO procedure reduces
to providing a limiter for the slopes in each direction. The reconstructed piecewise linear
function is each cell is denoted by,

Ui,k(x,z)=Ui,k+DxUi,k(x−xi)+DzUi,k(y−yk). (3.13)

We define the following point values,

UEi,k =Ui,k(xi+1/2,zk), UWi,k =Ui,k(xi−1/2,zk),

UNi,k =Ui,k(xi,zk+1/2), USi,k =Ui,k(xi,yk+1/2).

We use the above defined values to define the second-order numerical fluxes as

Fi+1/2,k = F(UEi,k,UWi+1,k), Hi,k+1/2 = H(UNi,k,USi,k+1),

where F,H are given by any of the HLL2, HLL3L, HLL3G, HLL3R and Roe solvers of
the previous section. This completes the description of the second-order spatial accurate
semi-discrete scheme (3.11).

3.5.2 Second-order time stepping

We augment the second-order spatially accurate scheme (3.11) with the following strong-
stability preserving TVD second-order accurate Runge-Kutta time stepping [14],

U∗
i,k =Un

i,k+∆tnFn
i,k, (3.14a)

U∗∗
i,k =U∗

i,k+∆tnF ∗
i,k, (3.14b)

Un+1
i,k =

1

2
(Un

i,k+U∗∗
i,k ), (3.14c)

where F is the residual in the semi-discrete scheme (3.11). The time step ∆tn is deter-
mined by a standard CFL condition.
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Figure 4: The density and the magnetic field B2 in the Brio-Wu shock tube at time t = 0.35 on a 200 mesh
comparing first and second-order schemes.

3.6 Numerical experiments with second-order schemes

We present a one-dimensional numerical experiment to demonstrate the gain in accuracy
for a second-order scheme. We choose the Brio-Wu shock tube of the previous subsec-
tion and show the results obtained with second-order schemes in Fig. 4. We show the
density and B2 computed on a mesh with 200 points. In-order to prevent cluttering in
the figure, we present the results with just three schemes: HLL2, HLL3L and HLL3R in
both the first-order (spatial and temporal) and second-order (spatial and temporal) ver-
sions. The results show that there is a large gain in accuracy and resolution by going
to second-order. In particular, notice the sharp resolution of the contact discontinuity
(even for the HLL2 solver). Furthermore, the differences between the solvers are far
less pronounced in the second-order versions than in the first-order ones. A quantita-
tive confirmation of the above observations is provided in the error Table 4 where we
present the relative errors in pressure on a sequence of meshes for both the first- and
second-order versions of the HLL-solvers. The results show that the second-order er-
rors schemes have lower errors than the first-order schemes. The different second-order
schemes with HLL2, HLL3L and HLL3R solvers are very similar in their numerical per-
formance. Furthermore, the observed rate of convergence for the first-order schemes is
around 0.7 and for the second-order schemes is around 1.05. This is expected as the pres-
ence of discontinuities in the solution erodes the expected convergence rates. The above
test case serves to demonstrate the improvement obtained by using second-order accu-
rate schemes. We will present two-dimensional second-order numerical results in the
section on wave propagation.

4 Discretization of the source term

In order to complete the description of a finite volume scheme of the last section, it re-
mains to include the gravity source term in (2.1). As stated before, a key issue that has
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Table 4: Relative percentage errors for the pressure in L1 at time t=0.35 and the order of convergence for the
Brio-Wu shock tube for various mesh sizes M taking the HLL3L scheme with 6400 grid points as a reference
solution.

M HLL2 HLL2 (2nd) HLL3L HLL3L (2nd)
50 4.2 3.2 3.4 3.0

100 2.5 0.79 1.4 1.19 2.0 0.76 1.3 1.20
200 1.6 0.64 0.82 0.77 1.3 0.62 0.75 0.8
400 0.90 0.83 0.31 1.40 0.67 0.95 0.28 1.42
800 0.58 0.63 0.17 0.86 0.48 0.79 0.16 0.84

M HLL3R HLL3R (2nd)
50 4.2 3.2

100 2.5 0.69 1.5 1.1
200 1.6 0.8 0.82 0.87
400 0.92 0.75 0.32 1.35
800 0.57 0.64 0.17 0.91

to be considered is to discretize the source term in an appropriate manner so that the up-
dated pressures and densities remain positive and the interesting steady states (2.5) and
(2.6) are preserved to a sufficient degree of accuracy. The source term is included by the
method of fractional steps or operator splitting. In the first step, we need to update the
fluxes in the finite volume scheme.

In this step, we advance the approximate solution Un
i,k by a finite volume method

using the approximate Riemann solvers of the previous section. This results in the fol-
lowing scheme,

Un+1/2
i,k =F

(

Un
i−1,k,Un

i,k−1,Un
i,k,Un

i+1,k,,Un
i,k+1

)

, (4.1)

where F is the update function given in (3.2).
In the next step, we update U by solving the following ordinary differential equation,

Ut =S(U), (4.2)

where S represents the right hand side of (2.1). This means that the cell average Un+1
i,j =

U(∆t) where U is the solution of the differential equation

d

dt
U(t)=S(U(t)), U(0)=Un+1/2

i,k .

We can solve this ODE by any suitable numerical method. However, due to the simple
form of S, we are able to calculate the exact solution as

Un+1
i,k =Un+1/2

i,k +∆t

(

0,0,0,−gρn+1/2
i,k ,0,0,0,−ρn+1/2

i,k u3,n+1/2
i,k g+

ρn+1/2
i,k g2∆tn

2

)

. (4.3)

Remark 4.1. If the update function F in (4.1) is positivity preserving, it is desirable that
the scheme retains this positivity. If we use the exact update, (4.3), a straight-forward
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calculation shows that pn+1
i,k = pn+1/2

i,k , hence positivity still holds. If we use an implicit
Euler method the resulting scheme is positive, while if we use an explicit Euler method,
positivity holds for sufficiently small ∆t.

If W denotes the solution operator of (4.2), then the resulting scheme reads

Un+1/2
i,k =F

(

Un
i−1,k,Un

i,k−1,Un
i,k,Un

i+1,k,,Un
i,k+1

)

,

Un+1
i,k =W

(

Un+1/2
i,k

)

.
(4.4)

Remark 4.2. The above splitting is first-order accurate in time. It is straightforward to
extend it to second-order accuracy by using the fairly standard Strang splitting proce-
dure [3]. However, numerical experiments didn’t show a big improvement using this
procedure and we will show results only with the above splitting, even when second-
order accurate spatial and temporal discretizations are employed for evolving the homo-
geneous part.

5 Non-reflecting characteristic boundary conditions

To complete the description of the numerical scheme (4.4) we now specify boundary
values. As is standard for finite volume methods, this will be done by specifying values
in ghost cells outside the computational domain.

Since we are aiming at modeling a small part of a stratified atmosphere we use peri-
odic boundary values in the x direction. This amounts to setting Un

0,k =Un
I,k and Un

I+1,k =
Un

1,k for k=1,··· ,K.

At the bottom boundary we specify the values in the ghost cells, i.e., we set Un
i,0,

i=1,··· , I. This is supposed to model an inflow situation.

The top boundary has no physical significance, and its placement is a function of com-
putational resources, most notably available storage and computing speed. The values
in the ghost cells at the top of the computational domain are supposed to model the “rest
of space”. Therefore, waves should not be reflected from this numerical boundary, and
we do not wish this boundary to generate any other numerical artifacts. Furthermore, we
have to ensure that no mass leaks out via the top boundary. We also want these boundary
conditions to result in a stable discretization which keeps density and pressure positive.

There is considerable amount of research on numerical boundary conditions. A very
incomplete list includes [28, 29] and references therein. In [15], the author designed
boundary conditions based on the characteristic decomposition for the Euler equations
of gas dynamics. The “no-reflection” property is ensured by discretizing derivatives
suitably. This scheme was extended to multiple space dimensions by a locally one-
dimensional projection. Some further modifications were proposed by [17]. This charac-
teristic based approach is very popular in the computational fluid dynamics community.
They have been advocated as suitable boundary conditions for MHD equations and we
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present a version of this approach to the ideal MHD equations in this paper. Further-
more, we provide an alternative formulation of the characteristic boundary conditions
of [15, 16] in terms of linearized solvers. This alternative formulation is easier to imple-
ment with the finite volume procedure used in the interior of the computational domain.
They also reveal that the resulting schemes may lead to negative pressures and densi-
ties. The resulting boundary conditions are designed to minimize reflections but are not
well-balanced; i.e, don’t ensure mass balance in the domain and lead to leakage of mass.
We introduce a novel modification of the boundary conditions in order to ensure mass
balance in the domain. This modification implies that there are some reflections from the
boundary as information has to be propagated to the interior in order to preserve mass
balance. Therefore this modification must be made in a such a way that the magnitude
of reflections remains small. We begin with a description of the characteristic boundary
conditions below.

5.1 Characteristic boundary conditions

Consider the partially linearized equations (2.1) in the primitive form,

Ut+AUz = S̄(U), (5.1)

where

S̄(U)=S(U)− f (U)x,

and A is the Jacobian dh(U0) evaluated at some constant U0. We consider this equation
for z = Z, i.e., at the top boundary. Let R and R−1 be an orthonormal eigensystem corre-
sponding to A. Then we can diagonalize (5.1) by introducing the vector of characteristic
variables W = R−1U. The equations decouple to yield,

Wt+ΛWz = R−1S̄, (5.2)

where Λ = diag
{

λ1,λ2,··· ,λ7
}

. We can use the Roe-Balsara eigensystem of Section 2.3

as the orthogonal eigensystem of A. Let ĵ be such that λj ≤ 0 for j ≤ ĵ and λj > 0 for

j > ĵ. If j ≤ ĵ the characteristics of the jth equation of (5.2) are moving in the negative
z-direction, i.e., they are incoming. Similarly, for j > ĵ the characteristics associated with
the jth equation in (5.2) are outgoing. The basis of the characteristic boundary conditions
of [15, 16] is to discretize the z-derivative based on the direction of the characteristics. If
the characteristic is outgoing, then we use an upwind derivative. This is possible as all
the information is taken out of the domain. While if the characteristic is incoming, infor-
mation is supposed to flow into the domain. However, we don’t want any information
to go into the domain, and we will set the derivative in the incoming characteristics to
zero. This is the basis of the “no incoming wave” philosophy of the characteristic type
boundary conditions. When implementing this in practice, we use a single row of ghost
cells, located at k=K+1. This row is updated using a discretized version of (5.2) or (5.1),
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where we specify values for the characteristic variables in the ghost cells depending on
the direction of the corresponding characteristics.

This update of the ghost cells is consistent with the direction of the flow and implies
that there are no “incoming” waves into the domain and reflections are small. The algo-
rithm for the update of the ghost cells reads

Algorithm 5.1:

Step 1 Given Un
i,K and Un

i,K+1, choose a suitable Jacobian matrix An
i,K+1/2 determined by these two

values. Two examples are the Jacobian evaluated at the average of Un
i,K and Un

i,K+1 and the Roe matrix

given in [11].

Step 2 Compute the Roe-Balsara eigensystem

Rn
i,K+1/2 and

{

λ1,n
i,K+1/2,··· ,λ7,n

i,K+1/2

}

from An
i,K+1/2. Using this eigensystem, compute the characteristic variables

Wn
i,K = R−1,n

i,K+1/2Un
i,K and Wn

i,K+1 = R−1,n
i,K+1/2Un

i,K+1.

Step 3 Compute the vector dn
i,K+1/2 =

{

d1,n
i,K+1/2,··· ,d7,n

i,K+1/2

}

by

d
j,n
i,K+1/2 =







λ
j,n
i,K+1/2

W
j,n
i,K+1−W

j,n
i,K

∆z if λ
j,n
i,K+1/2 >0,

0 otherwise,

where W
j,n
i,k is the characteristic weight in the (i,K) cell for the j-th characteristic field at the n-th

timestep.

Step 4 The update of the ghost cells then reads

Un+1
i,K+1 =Un

i,K+1−
∆tn

∆x

(

Fn
i+1/2,K+1−Fn

i−1/2,K+1

)

−∆tnRn
i,K+1/2dn

i,K+1/2+∆tnS
(

Un
i,K+1

)

. (5.3)

The above algorithm describes the implementation of the characteristic boundary
conditions for the ideal MHD equations with the gravitational source term. The key step
is step 3 above where the spatial derivative at the boundary is computed. Note that this
is based on the “no incoming wave” philosophy of [15, 16]. It turns out that this bound-
ary condition can be formulated in an alternative manner. This alternative formulation is
easier to use and more revealing about what happens when we use non-reflecting char-
acteristic boundary conditions. We give the alternative formulation below.
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Algorithm 5.2:

Step 1 Compute Λn
i,K+1/2 and Rn

i,K+1/2 as in Algorithm 5.1.

Step 2 Set

W
j,n
i,K+1/2 =







W
j,n
i,K if λ

j,n
i,K+1/2 >0,

W
j,n
i,K+1 otherwise,

and set Un
i,K+1/2 = Rn

i,K+1/2Wn
i,K+1/2.

Step 3 The update of the ghost cells then reads

Un+1
i,K+1 =Un

i,K+1−
∆tn

∆x

(

Fn
i+1/2,K+1−Fn

i−1/2,K+1

)

− ∆tn

∆z
An

i,K+1/2

(

Un
i,K+1−Un

i,K+1/2

)

+∆tnS
(

Un
i,K+1

)

. (5.4)

In this formulation we see that what we are doing is adding (yet) another ghost cell at
(i,K+2), setting the value at this ghost cell to Un

i,K+1 and then updating Un
i,K+1 via a Roe

type solver.
Thus, the “non-reflecting” characteristic boundary conditions in this formulation are

based on linearizing the equations at the boundary and using a Neumann-type boundary
condition as the normal derivative is taken to be zero by putting the same value on the
second ghost cell. In the lemma below we show that Algorithms 5.1 and 5.2 give the same
result.

Lemma 5.1. Let Un
i,K and Un

i,K+1 be given and An
i,K+1/2 be the linearization defined above. Let

dn
i,K+1 be calculated as in Step 3 of Algorithm 5.1 and Un

i,K+1/2 be defined as in Step 2 of Algo-
rithm 5.2. Then

An
i,K+1/2(Un

i,K+1−Un
i,K+1/2)=∆zRn

i,K+1/2dn
i,K+1/2, (5.5)

and thus the two algorithms give the same result.

Proof. For clarity, we momentarily suppress “i” and “n” in our notation. Set

ĵ=argmax
j

{

λ
j
K+1/2≤0

}

,

and set ĵ=0 if λ
j
K+1/2 >0 for all j. Then

WK+1−WK+1/2 =
{

0,··· ,0,W
ĵ+1
K+1−W

ĵ+1
K ,··· ,W7

K+1−W7
K

}

.

From Step 3 of Algorithm 5.1 we get

∆zdK+1 =
{

0,··· ,0,λ
ĵ+1
K+1/2

(

W
ĵ+1
K+1−W

ĵ+1
K

)

,··· ,λ7
K+1/2

(

W7
K+1−W7

K

)

}

.
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Therefore,

AK+1/2(UK+1−UK+1/2)= RK+1/2ΛK+1/2R−1
K+1/2(UK+1−UK+1/2)

= RK+1/2ΛK+1/2(WK+1−WK+1/2)

= RK+1/2dK+1.

This completes the proof of the lemma.

Hence, both the above formulations are equivalent. The second formulation based
on linearization and zero Neumann boundary conditions is very easy to use with the
finite volume framework of this paper. Numerical non-reflecting boundary conditions
for finite volume methods often use zero Neumann boundary conditions in ghost cells
(see [3]). The above lemma establishes that the characteristic boundary conditions of [15–
17] are of the same spirit and one has to replace the finite volume solver at the boundary
with a Roe solver to obtain the characteristic boundary conditions. This also paves the
way for further analysis of these boundary conditions in the finite volume framework.
Furthermore, it exposes a potential problem. As we discovered the Roe solver is not
positivity preserving, so using it at the top boundary where the pressures are expected to
be very low might lead to instabilities. Hence, characteristic boundary conditions might
run into problems near low pressures. We will investigate this issue further in numerical
experiments.

5.2 “Balanced” boundary conditions

When simulating stratified atmospheres we expect the density and pressure to be very
low near the top boundary of the computational domain. Furthermore, we desire to
preserve the steady states (2.5) and (2.6) at least approximately also in our numerical
approximations. This means that mass should not “leak” from the top boundary, since
such leakage is likely to lead to negative pressure or density. Hence, we have to balance
the boundary conditions suitably.

The strategy to “balance” the boundary conditions at the top boundary is based on the
following argument. The crucial step in Algorithm 5.1 is Step 3 where the vector dn

i,K+1

is computed. If the j-th characteristic is outgoing, then using a upwind discretization is
consistent with the direction of propagation.

If the j-th characteristic is incoming, we set d
n,j
i,k+1 = 0. The reasoning behind this is

based on the “no incoming wave” philosophy. However, in order to balance the bound-
ary conditions, we need to introduce some information from outside the domain. One
reasonable way of doing so is to put conditions on the incoming characteristics. A (semi)
discrete discretization of the jth equation of (5.2) reads

dW
n,j
i,K+1

dt
+d

n,j
i,K+1 =

(

Rn,−1
i,K+1/2S̄

)j
.



500 F. G. Fuchs et al. / Commun. Comput. Phys., 7 (2010), pp. 473-509

Since, we aim to preserve the steady states (2.5), (2.6), and calculate perturbations of
them, it is reasonable to enforce the following steady state condition for the incoming
characteristics,

dW
n,j
i,K+1

dt
=0,

which is obtained by setting,

d
n,j
i,K+1 =

(

Rn,−1
i,K+1/2S̄

)j
.

This modification ensures some form of mass balance across the boundary as the incom-
ing characteristic variables are kept steady, and will only affect Algorithm 5.1 in Step 3,
whose modified version now reads:

Step 3, balanced Set

S̄n
i,K+1 = Rn,−1

i,K+1/2

(

S
(

Un
i,K+1

)

−
Fn

i+1/2,K+1−Fn
i−1/2,K+1

∆z

)

.

Then

d
j,n
i,K+1/2 =







λ
j,n
i,K+1/2

W
j,n
i,K+1−W

j,n
i,K

∆z if λ
j,n
i,K+1/2 >0,

S̄
j,n
i,K+1 otherwise.

Note that we enforce the steady state condition only on the incoming characteristic vari-
ables. No conditions are imposed on the outgoing characteristic variables. The non-zero
values for the incoming characteristic variables ensure the mass-balance, and (unfortu-
nately) this means that the “no-reflection” condition is violated and there will be some
reflections from the top boundary.

Remark 5.1. The second-order version of the characteristic-boundary conditions is much
more involved [17] and requires using second-order differences in Step 3 of Algorithm
5.1. We will not consider the second-version in the remaining part of the paper as it led
to numerical instabilities.

5.3 Simple boundary conditions

Lemma 5.1 provided a connection between characteristic boundary conditions and zero
Neumann boundary conditions. Characteristic boundary conditions are equivalent to
zero Neumann boundary conditions if the given finite volume solver is replaced at the
boundary by a Roe solver. We can also use the zero Neumann boundary conditions by
specifying the ghost cell value to be the same as the value in the last physical cell of the
domain. However, this boundary implementation is not balanced. We can balance it by
the following simple modification. We compute the ghost cell values as follows,

ρn+1
i,K+1 =ρ0

i,K+1, Pn+1
i,K+1 = P0

i,K+1,

Bn+1
i,K+1 =B0

i,K+1, un+1
i,K+1 =un+1

i,K ,
(5.6)
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where U0
i,K+1 are the values of the variables initially in the ghost cell. These conditions

imply that ρ, P and B in the ghost cells are set to their initial values. This step ensures
mass and magnetic field balance across the boundary. Furthermore, we put Neumann
boundary conditions for the velocity u which should minimize reflections when waves
from the interior reach the top boundary. It is quite straight-forward to extend (5.6)
to second-order accurate schemes. For second-order schemes, we need to specify val-
ues in two layers of ghost cells in each boundary. Periodic boundary conditions along
the x-boundary are trivial to implement in the second-order version. The above simple
boundary conditions lead to the following values in the outermost ghost layer at the top
boundary,

ρn+1
i,K+2 =ρ0

i,K+2, Pn+1
i,K+2 = P0

i,K+2,

Bn+1
i,K+2 =B0

i,K+2, un+1
i,K+2 =un+1

i,K−1.
(5.7)

5.4 Extrapolated Neumann boundary conditions

Numerical experiments will show that the simple Neumann boundary conditions (5.6)
presented above lead to large reflections and the characteristic type boundary conditions
are potentially unstable (due to the lack of positivity), particularly for magnetic fields.
Hence, we design a different set of boundary conditions that are stable, preserve the mass
balance and keep reflections at the top boundary low. These boundary conditions are
inspired by the specific structure of the exponentially decaying steady state pressure and
density profiles in (2.5) and (2.6). The first-order version of these extrapolated boundary
conditions are of the form,

ρn+1
i,K+1 =ρn+1

i,K e−
∆z
H , Pn+1

i,K+1 = Pn+1
i,K e−

∆z
H , ∀i,

un+1
i,K+1 =un+1

i,K , Bn+1
i,K+1 =Bn+1

i,K .
(5.8)

The above boundary conditions extrapolate the pressure and density in the ghost cells
based on the exponential decay profile in (2.5),(2.6). The velocity and magnetic fields
are simply mirrored in the ghost cells. The differences between the extrapolated bound-
ary conditions in (5.8) and the simple boundary conditions in (5.6) lies in the way the
pressure and the density are extrapolated from the interior by using a exponential decay
rather than keeping the pressure and density fixed to their initial values. Furthermore,
a Neumann condition is used for the magnetic field rather than keeping it fixed to the
initial value. The second-order version of these boundary conditions are based on speci-
fying the following values at the outermost ghost layer of the top boundary,

ρn+1
i,K+2 =ρn+1

i,K e−
2∆z
H , Pn+1

i,K+2 = Pn+1
i,K e−

2∆z
H , ∀i,

un+1
i,K+2 =un+1

i,K−1, Bn+1
i,K+2 =Bn+1

i,K−1.
(5.9)

Note that the above boundary condition is very simple to implement.
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6 Wave propagation: Numerical experiments

In this section, we use the complete scheme including approximate Riemann solvers for
the numerical fluxes, proper discretization of source terms and boundary conditions to
simulate wave propagation in an idealized solar atmosphere. We present four different
sets of experiments, two without the magnetic field and two including the magnetic field.

6.1 Hydrodynamics: Steady state

We begin with simulations of the hydrodynamic steady state (2.5). The computational
domain is [0,4]×[0,1]. The initial conditions are given by the steady state (2.5) with scale
height H = 0.158, initial pressure p0 = 1.13 and gravitational constant g = 2.74. Periodic
boundary conditions are used for the x-boundary. We test with the first- and second-
order versions of all the schemes proposed in this paper and with all three boundary
conditions at the top and bottom boundaries i.e, the characteristic type boundary con-
ditions, the Neumann-type simple boundary conditions (5.6), (5.7) and the extrapolated
Neumann boundary conditions (5.8), (5.9). The aim of this experiment is to see if the
steady state is preserved to a reasonable degree of accuracy.

Table 5: Absolute errors in p and the rate of convergence for first- and second-order versions of the HLL3G and
HLL3R schemes for the hydrodynamic steady state at t=1.8 on a 4M×M mesh.

M HLL3G HLL3G (2nd) HLL3R HLL3R (2nd)
50 4.7e+1 2.1e−1 2.4e+1 1.6e−1
100 6.2e−0 2.9 4.9e−2 2.09 4.0e−0 2.58 3.8e−2 2.07
200 1.6e−0 1.9 1.2e−2 2.09 1.2e−0 1.73 9.5e−3 2.0
400 6.2e−1 1.36 3.1e−3 1.95 4.9e−1 1.29 2.4e−3 1.98

The exact form of boundary conditions didn’t matter in this steady state experiment
and different boundary conditions led to similar qualitative results. Hence, we present re-
sults only with the extrapolated boundary conditions in Table 5. In this table, we present
absolute errors in L1 for the pressure at the final time with the first- and second-order
versions of the HLL3G and HLL3R solvers. The results show that the steady state is
not preserved exactly. For the first-order schemes, the errors are quite large (of order
one). The HLL3R solver is slightly more accurate than the HLL3G solver. However, the
gain in accuracy obtained by using a second-order scheme is considerable. The errors
are reduced by two or three orders of magnitude and are quite low when one uses the
second-order schemes in this case. Also, the table demonstrates that the second-order
schemes result in the expected rates of convergence 2 in this case. The rates of conver-
gence with the first-order schemes show large variability (mostly due to the large errors)
and the trend suggests that we get a rate of close to one by refining the mesh further. We
are not presenting the corresponding results with the HLL2, HLL3L and Roe solvers as
these solvers gave very similar results. The HLL2 solver was slightly less accurate than
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the HLL3G or HLL3R solvers and the HLL3L and Roe solvers were slightly more accu-
rate. The differences were much less pronounced when using the second-order versions
of these solvers. Similarly, the mass balance in the boundary conditions was absolutely
essential. Using any of the boundary conditions without the balance led to errors, sev-
eral orders of magnitude more than the errors with the balanced versions of the boundary
conditions.

6.2 Hydrodynamics: Wave propagation

The next step is to numerically simulate a hydrodynamic wave propagation model. The
computational domain is the same as in the previous experiment and we use a balanced
form of the boundary conditions at the top boundary. The propagation of waves is initi-
ated by sending in a sinusoidal (in time) sequence of waves from the bottom boundary
and letting them propagate across the domain and (hopefully) exit at the top. The hy-
drodynamic steady state (2.5) serves as the background for the propagation of waves. At
the bottom boundary, the pressure, density and tangential velocities are specified by a
simple boundary condition analogous to (5.6). The waves are modeled by the following
boundary conditions for the normal velocity at the bottom,

u3,n+1
i,−1 = csin

(

6πtn+1
)

χ[1.85,1.95]. (6.1)

Hence, we model the bottom boundary as a localized piston in the interval [1.85,1.95]
sending in sinusoidal waves. These waves move up the domain and are modified by
the flow equations. In Fig. 5 we show u3 at t = 1.8 computed using different solvers
and boundary conditions. The results presented in Fig. 5 show that there is very little
difference between the HLL3G and HLL3R solvers when the boundary condition is fixed.
In fact all the five solvers showed very similar results for a given boundary condition
and we choose to present the results with the HLL3G and HLL3R solvers. However, the
differences in boundary conditions at the top boundary are much more pronounced. The
simple boundary conditions (5.6) reflect the waves considerably and are quite unsuitable
for simulating wave propagation. The reflection is reduced quite a bit by employing
either the characteristic boundary conditions or the extrapolated boundary conditions
(5.8). The results with the characteristic and extrapolated boundary conditions are a bit
different, on account of differences in the bottom boundary conditions. It is difficult to
decide which one is better in the current example although the extrapolated boundary
conditions seem to be slightly better at reducing reflections.

The effect of using second-order schemes is shown in Fig. 6 in which we present u3

at time t =1.8 with the first- and second-versions of the HLL3G and HLL3R solvers and
the extrapolated Neumann type boundary conditions (5.8), (5.9). This figure shows that
the second-order results are much less dissipative and the wave fronts are resolved quite
sharply at this resolution. The reflections are also quite low indicating the robustness
of the extrapolated boundary conditions. Summarizing, the hydrodynamic simulations
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(a) HLL3G,Simple (b) HLL3R,Simple

(c) HLL3G,Characteristic (d) HLL3R,Characteristic
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Figure 5: u3(x,z,1.8) for the hydrodynamic wave propagation with the HLL3G and HLL3R schemes with different
boundary conditions at the top boundary on a 400×100 mesh.
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(a) HLL3G,first-order, Extrapolated
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(b) HLL3R,first- order, Extrapolated
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Figure 6: Results for u3 at time t=1.8 for the hydrodynamic wave propagation on a 400×100 mesh with the
first- and second-order versions of the HLL3G and HLL3R solvers with the extrapolated Neumann type boundary
conditions.
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suggest that the HLL solvers are quite robust and the steady state is preserved reasonably
well, at least with the second-order accurate schemes. However, the boundary condi-
tions at the top boundary have to chosen carefully. The simple Neumann type boundary
conditions (5.6) preserve mass balance but lead to high reflections. The reflections are
reduced somewhat for the characteristic-type boundary conditions but these are compli-
cated to implement and expensive (at least for the second-order versions). The extrap-
olated boundary conditions (5.8), (5.9) are very simple to implement and have at least
as low reflections as the characteristic boundary conditions. Furthermore, they allow ro-
bust and accurate simulations of waves when combined with second-order spatially and
temporally accurate schemes.

6.3 Magneto-hydrodynamics: Steady states

A realistic model of the solar atmosphere must account for the magnetic field. To test the
boundary conditions of the last section on this more complicated problem, we first ex-
amined how the various methods manage to preserve the magnetohydrodynamic steady
state (2.6). The hydrodynamic variables and the computational domain were the same as
in the previous section, while the magnetic field was given in terms of its Fourier compo-
nents, see (2.6). These are listed in (6.2). (The X in (2.6) is in this case equal to 4.)

{ f0, f1,··· , f14}=10−1
{

0.21,−0.10,0.11,−0.11,0.10,−0.08,0.07,−0.05,

0.03,−0.02,0.01,−0.008,0.005,−0.002,0.001
}

. (6.2)

The above magnetic field is both divergence and curl free and is complicated on account
of the Fourier modes. However, the coefficients of the larger modes are very small and the
initial modes dominate. We choose such a magnetic field to test whether the schemes can
handle a realistic configuration. Our aim is to test the solvers (in both first- and second-
order versions) and the boundary conditions. The results were very different from the
hydrodynamic case, particularly with regards to stability.

First, the characteristic type boundary conditions were quite unstable and led to
crashes due to oscillations and negative pressures. This is not entirely unexpected as
the alternative characterization of the characteristic boundary conditions in Lemma 5.1
shows that these boundary conditions use the Roe solver at the boundary. The Roe solver
is known to have problems with low pressures and densities, as is the case at the top
boundary. Hence, the characteristic boundary condition (used with any of the solvers) is
quite unstable with magnetic fields. The simple boundary conditions (5.6) are more sta-
ble but lead to large errors. The extrapolated Neumann boundary conditions (5.8) were
found to the most stable among the three alternatives as well as the most accurate.

Furthermore, the HLL3L and Roe solvers fail to be stable with this magnetic field
(even on the coarsest mesh) resulting in crashes due to negative pressures. This was
independent of the boundary condition used. The HLL2 solver is stable but inaccurate.
The best results were obtained with the HLL3G and HLL3R solvers, together with the
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Table 6: Absolute errors in p and the rate of convergence for first- and second-order versions of the HLL3G
and HLL3R schemes for the magneto-hydrodynamic steady state at t = 1.8 on a sequence of meshes with the
extrapolated Neumann boundary conditions.

Mesh HLL3G HLL3G (2nd) HLL3R HLL3R (2nd)
200×50 2.3e+1 1.5e−1 2.5e+1 1.6e−1

400×100 4.2e+0 2.45 3.6e−2 2.05 4.0e+0 2.64 3.8e−2 2.07
800×200 1.5e+0 1.48 9.0e−3 2.0 1.3e+0 1.62 9.2e−3 2.04

extrapolated boundary conditions (5.8), (5.9) and we show results obtained with them in
Table 6.

The pressure errors shown in Table 6 establish that the differences between the HLL3G
and HLL3R solvers are minor in this case. However, the errors are large and of the order
one for the first-order schemes. The convergence rates for first-order schemes are better
than expected, probably on account of the large errors on these meshes. The second-order
schemes are much more (two to three orders of magnitude) accurate in this case and the
expected rates of convergence are obtained. Observe that the errors are very similar to
those obtained for the hydrodynamic steady case (Table 5).

6.4 Magneto-hydrodynamics: Wave propagation

We use the same initial condition as the steady state computation (2.6) and introduce
waves by sinusoidally perturbing the bottom boundary like in (6.1). The wave propaga-
tion results are presented by showing u3 at time t = 1.8 with the HLL3G solver (in both
first- and second-order versions) and the extrapolated Neumann type boundary condi-
tions (5.8), (5.9) in Fig. 7. The norm of the magnetic field |B|2 is also shown in the Fig. 7.
We present the results only with the HLL3G solver as the second-order version of HLL3R
solver crashed on some meshes in this case. From 7, the HLL3G solver and the extrapo-
lated boundary conditions seem to be robust in simulating the waves. Observe that the
magnetic field is perturbed on account of the waves. The second-order scheme is more
accurate and resolves the wave-fronts sharply.

7 Conclusion

Summing up, we proposed a model for wave propagation in stratified magneto-
atmospheres. The model was based on the ideal MHD equations with gravitational
source term. The object of interest was to simulate waves by perturbing steady states.
Both hydrodynamic and magneto-hydrodynamic steady states were considered and
waves introduced by perturbing the bottom boundary. Numerical difficulties included
employing appropriate approximate Riemann solvers, suitable discretizations of the
gravity source term and design of numerical boundary conditions to maintain stability,
mass balance and reduce reflections at the top boundary.
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Figure 7: Results for u3 and |B|2 at time t=1.8 for the magneto-hydrodynamic wave propagation on a 400×100
mesh with the first- and second-order versions of the HLL3G solver with the extrapolated Neumann type
boundary conditions.

We implemented various approximate Riemann solvers of both the HLL-type and
Roe-type. Second-order accuracy in space was obtained by using a ENO-type limiter.
Temporal accuracy was increased to second-order by employing Runge-Kutta discretiza-
tions. No special form of divergence cleaning was used in this paper. The solvers were
compared on some benchmark one-dimensional and two-dimensional test cases.

The gravity source term was discretized by using a fractional steps method that pre-
served positivity. The choice of source discretization didn’t influence the results to a great
extent. A critical issue was the use of numerical boundary conditions at the top bound-
ary. A characteristic type boundary condition was used (together with modifications
to ensure mass balance). This boundary condition was characterized in terms of a Roe
solver, thus revealing a potential problem with preservation of positive densities and
pressures. A simple Neumann type boundary condition (fixing density and magnetic
fields at the boundary to their initial value) was also used. A novel extrapolated Neu-
mann type boundary condition was proposed. This boundary condition extrapolated
(by a hydrostatic profile) the values of the density and pressure along with Neumann
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type conditions for the velocity and magnetic fields.
Computations with the hydrodynamic steady state showed a considerable improve-

ment in accuracy by using second-order schemes. Hydrodynamic wave propagation re-
vealed that the extrapolated boundary condition was as good as the characteristic bound-
ary condition with the added advantages of being cheaper to implement and faster to
runs. The differences between the solvers for hydrodynamics were minor.

The magneto-hydrodynamic computations (for steady states as well as waves) were
much more difficult on account of numerical instabilities. The HLL3L and Roe solvers
crashed in most cases. Similarly, the characteristic boundary conditions were quite un-
stable. On the other hand, the HLL3G and HLL3R solvers, together with the extrapolated
Neumann boundary conditions were quite robust, particularly at second-order. The er-
rors were however larger than in the hydrodynamics cases. Another problem was insta-
bilities when strong magnetic fields were used. All the solvers and boundary conditions
led to instabilities in this case. These could be on account of divergence errors or the
fact that the schemes didn’t preserve a discrete version of the steady state exactly. These
questions are going to be addressed in a forthcoming paper.
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