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Abstract. We are interested in the modeling of wave propagation in an infinite bilay-
ered acoustic/poroelastic media. We consider the biphasic Biot’s model in the poroe-
lastic layer. The first part was devoted to the calculation of analytical solution in two
dimensions, thanks to Cagniard de Hoop method. In the first part (Diaz and Ezziani,
Commun. Comput. Phys., Vol. 7, pp. 171-194) solution to the two-dimensional prob-
lem is considered. In this second part we consider the 3D case.
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1 Introduction

The computation of analytical solutions for wave propagation problems is of high impor-
tance for the validation of numerical computational codes or for a better understanding
of the reflexion/transmission properties of the media. Cagniard-de Hoop method [1, 2]
is a useful tool to obtain such solutions and permits to compute each type of waves (P
wave, S wave, head wave---) independently. Although it was originally dedicated to
the solution of elastodynamic wave propagation, it can be applied to any transient wave
propagation problem in stratified media. However, as far as we know, few works have
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been dedicated to the application of this method to poroelastic medium. In [3] the ana-
lytical solution of poroelastic wave propagation in an homogeneous 2D medium is pro-
vided and in [4] the authors compute the analytical expression of the reflected wave at
the interface between an acoustic and a poroelastic layer in two dimension but they do
not explicit the expression of the transmitted waves. The coupling between acoustic and
poroelastic media is of high interest for the simulation of wave propagation for seismics
problem in sea bottom or for ultrasound wave propagation in biological tissues, when
the human skin can regarded as a fluid and the bones as a porous medium.

In order to validate computational codes of wave propagation in poroelastic me-
dia, we have implemented the codes Garémore 2D [5] and Garémore 3D [6] which pro-
vide the complete solution (reflected and transmitted waves) of the propagation of wave
in stratified 2D or 3D media composed of acoustic/acoustic, acoustic/elastic, acous-
tic/poroelastic or poroelastic/poroelastic. The 2D code and the 3D code are freely down-
loadable at

http://www.spice-rtn.org/library/software/Gar6more2D
and

http://www.spice-rtn.org/library/software/Gar6more3D.
In previous studies [7-9] we have presented the 2D acoustic/poroelastic and poroelas-
tic/poroelastic cases and we focus here on the 3D acoustic/poroelastic case,the 3D poroe-
lastic/poroelastic case will be the object of forthcoming papers.

The paper is organized as follows. We first present the model problem we want to
solve and derive the Green problem from it (Section 1). Then we present the analytical
solution of wave propagation in a stratified 3D medium composed of an acoustic and a
poroelastic layer (Section 2) and we detail the computation of the solution (Section 3).
Finally we illustrate our results through numerical applications (Section 4).

2 The model problem

We consider an infinite three-dimensional medium (Q = R®) composed of an homoge-
neous acoustic layer O = R?x]0,+co[ and an homogeneous poroelastic layer Q™ =
R?x]—00,0] separated by an horizontal interface I (see Fig. 1). We first describe the equa-
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Figure 1: Configuration of the study.
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tions in the two layers (Section 2.1 and Section 2.2 ) and the transmission conditions on
the interface I' (Section 2.3). Then we present the Green problem from which we compute
the analytical solution (Section 2.4).

The main parts of this section are similar to those of [9]. However, for completeness
we will provide a detail description of formulas and notations.

2.1 The equation of acoustics

In the acoustic layer we consider the second order formulation of the wave equation with
a point source in space, a regular source function f in time and zero initial conditions:

Pt —VHAPT=5.6,6. ,f(t), inQtx]0,T],

U =- +VP+ in O+ x10,T],
%
<'x y’ ) /y/O)—O, ln Q+,
U™ (x,y,0)= O U+(x ¥,0)=0, inQ*,

2.1)

where P is the pressure; U™ is the displacement field; V7 is the celerity of the wave;
and p* is the density of the fluid.
2.2 Biot’s model

In the second layer we consider the second order formulation of the poroelastic equa-
tions [10-12]

( p U, +p; W —V £ =0, in Q~x]0,T],
prUg —i—p;W*—i—%W*—I—VP_:O, in Q™ x]0,T],
ST =A VU L2u e(UD)—p P I, inQx]0,T), .
%P’%—,B’V-LI;-I—V-W*:O, in Q- x]0,T],
U; (x,0)0=0, W~ (x,0)=0, inQ~,
| U, (x,0)=0, W (x,0)=0, in Q)

where I3 is the usual identity matrix of M3(IR),

3 —_

Z ” Vi=1,3,

:1

and ¢(U; ) is the solid strain tensor defined by:

ou; ol
eijf(U)= <Bx] + o, > .
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In (2.2), the unknowns are: U, the displacement field of solid particles; W™ =¢~ (UJ? —
U, ), the relative displacement, u, being the displacement field of fluid particle and
¢~ the porosity; P~, the fluid pressure; and X7, the solid stress tensor. The parameters
describing the physical properties of the medium are given by: p~ = ¢ pf + (1—¢)ps
is the overall density of the saturated medium, with p;” the density of the solid and o5
the density of the fluid; p,, =a~ o5 /¢, where a~ the tortuosity of the solid matrix; £~ =

k= /n~, x~ is the permeability of the solid matrix and 7 is the viscosity of the fluid; m™~
and B~ are positive physical coefficients:

Br=1-Ky, /K, mo=[p /K (B = )/KS |

where K is the bulk modulus of the solid, Kf_ is the bulk modulus of the fluid and K

is the frame bulk modulus; and y~ is the frame shear modulus, and A~ =K, —2u~ /3 is
the Lamé constant.

2.3 Transmission conditions

Let n be the unitary normal vector of I' outwardly directed to. The transmission condi-
tions on the interface between the acoustic and porous medium are [13] :

W n=(U"—U)-n,
p-=p-, 2.3)
Y n=—Ptn.

2.4 The Green problem

We won’t compute directly the solution to (2.1)-(2.3) but the solution to the following
Green problem:

pr—VtiApt =6,6,6. 46, in Q*x]0,T], (2.4a)
. 1 .

it :—p—+Vp+, in Q" x]0,T], (2.4b)
o iy +p; @~ V.0 =0, in O~ x]0,T], (2.5a)
p;u;+p;w*+%w*+v;a*:0, in QO™ x]0,T], (2.5b)
0" =A"Veu, I134+2u e(u; )—p p I3, inQ x]0,T], (2.5¢)
%p_—l—ﬁ_v-u;—l—v-w_zo, in Q™ x]0,T], (2.5d)

and

w n=w"—u;)n, p =p*, 0 n=—p'n, onT. (2.6)
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The solution to (2.1)-(2.3) is then computed from the solution of the Green Problem thanks
to a convolution by the source function. For instance we have:

P*(x,y,t)=p" (x,y,.)*f(.) /P xy,T)f(t—T)dT

(we have similar relations for the other unknowns). We also suppose that the poroelas-
tic medium is non dissipative, i.e the viscosity #~ =0. Using Egs. (2.5¢), (2.5d) we can
eliminate ¢~ and p~ in (2.5) and we obtain the equivalent system:

p*il;—l—pf’ib*—a*V(V-u;)—i—pFVx (Vxu;)—m B~ V(V-w )=0, z<0, -
pf’il;—l-p;ib’—m*,B*V(V-u;)—m*V(V-w*)zo, z<0, @7)
with a*:}\*—l—Zlu*—i—m*,B*z.

Using Eq. (2.4) the transmission conditions (2.6) on z=0 are rewritten as:
o1 3.pt 5
Ug, +W, —_p_+ zP (2.8a)
—m B~ Veuy —m V-w =pT, (2.8b)
0z, +0xu,, =0, (2.8¢)
0z, +0yuy; =0, (2.8d)
(A~ +m B )Veuy +2u dzug +m B~ V-w=—p". (2.8e)

We split the displacement fields #; and w™ into irrotationnal and isovolumic fields
(P-wave and S-wave):

u; =VO, +VxY¥,; w =VO,+VxY,. (2.9)
The vectors ¥,, and ¥, are not uniquely defined since:
Vx (¥, +VC)=VxY,, Vlic{uw},
for all scalar field C. To define a unique ¥, we impose the gauge condition:
V¥, =0.
The vectorial space of ¥, verifying this last condition is written as:

dy 9%,
— — 2 —
Y, =| -0« | ¥, + 9y Y,
0 —0%— 9y,
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where ¥, and ¥, are two scalar fields. The displacement fields u; and w™ are written
in the form:

2, 9y
u; =V0O, + CA Y- | —0x |AY,,
2 2
_a"’; N K (; (2.10)
Xz y
w =VO,+ CA Yo1—| —0x [A¥,,
— 9%, —93, 0

Using this last change of variables, we can then rewrite the system (2.7) in the following

form: .
A®~ —BA®™ =0, z<0,

Y.1— Vs AY, =0, z<0,

¥, ,— Vs AY,,=0, z<0, 211)
o PF
¥o=-Ly 2<0,

Pw

where @ =(0,,,0,)!, A and B are 2 x 2 symmetric matrices:
o pp ( AT +2p"+m(B7)? mT BT )
A= I B=
Pr Pu m-p- m-

Vs = | = Pipw 2
P Pw—Pf

and

is the S-wave velocity.

We multiply the first equation of the system (2.11) by the inverse of A. The matrix
A~1B is diagonalizable: A~!B=PDP 1, where P is the change-of-coordinate matrix,
D= diag(Vl;fz,Vl;sz) is the diagonal matrix similar to A~!B, Vs and V), are respectively
the fast P-wave velocity and the slow P-wave velocity (Vps < Vpy).

Using the change of variables

O =(0p, Pp,) =P 'O, (2.12)
we obtain the uncoupled system on fast P-waves, slow P-waves and S-waves:
&~ —DADP =0, z<0,
(Y _2 _ .
Y, —Vs _A‘I’u/i:O, i=1,2, z<0, (2.13)
_ Pf o
Yo =Ly z<0.
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Using the transmission conditions (2.8¢)-(2.8d), we obtain:
207,0, +0,(92,—A L)Y, —0;,AY,,=0, onT, (2.14a)
20;,0, +0,(92,— AL )Y, +0%,AY,,=0, onT, (2.14b)

with A =07, 497,. Applying the derivative 9, to Eq. (2.14a), 9, to Eq. (2.14b) and sub-
tracting the first obtained equation from the second one, we get:

(3:A,)AY,,=0, onT. (2.15)

Moreover, using that ¥, , satisfies the wave equation:

T _2 _
Y,,—Vs AY, ,=0, z<0,
and that u; and w™ satisfy, at t=0, u; =i, =w™ =w~ =0, we obtain:
¥,,=0,2z<0,

and from (2.14) we deduce the transmission condition equivalent to (2.8c) and(2.8d):

2020, + (3%, —A,)¥, =0, onT. (2.16)
Finally, we obtain the Green problem equivalent to (2.4), (2.5), (2.6):
pr—ViApt =6,8,6. 10, 2>0,

& -V ’A®; =0, ie{Pf,PsS}, z<0, (2.17)
B(p",@ps Pp,, P5) =0, z=0,

where we have set &, =Y | in order to have similar notations for the Pf, Ps and S waves.
The operator B represents the transmission conditions on I':

F = i
N p_+az (P11+Pa1) 03, (P1a+Pa) 03, (p_{_ )a%tAL pt
p w _
B CDIEf _ 1 (B 7i112+7)21) 2 m—(B 7334_7322) 2, 0 Ppy
CDBS VPf VPS cDl;s
@ 0 2P110; 2P129; 2 —A, o
L By Bas —2u7 90 S

where Py, i,j=1,2 are the components of the change-of-coordinates matrix P, By, and
Bz are given by:
- (A~ +m7,372)7311 +m~ B Py

)
fo

()\_+m_,3_2)7312+m_‘3_7322

_2
VPs

Of+2u” P1o%,

Biz = Of+2p~ P120Z,.
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To obtain this operator we have used the transmission conditions (2.8a), (2.8b), (2.16),
(2.8e), the change of variables (2.9) and the uncoupled system (2.13).

Moreover, we can determine the solid displacement u; by using the change of vari-
ables (2.9) and the fluid displacement u™ by using (2.4).

3 Expression of the analytical solution

Since the problem is invariant by a rotation around the z-axis, we will only consider the
case y =0 and x > 0, so that the y-component of all the displacements are zero. The
solution for y #0 or x <0 is deduced from the solution for y =0 by the relations

p(xy,z,t)= p(\/ x24+y2,0,2,t), (3.1)

X
usx(x,y,2,t) = —— musx(\ [x2412,0,z,1), (3.2)
usy( ’y’z t) \/71/[535 \/ x2+y210121t)/ (3.3)

usz(x,y,z,t) =us: (/X2 +12,0,z,1). (3.4)

To state our results, we need the following notations and definitions:

1. Definition of the complex square root. For 4, € C\IR™, we use the following definition

of the square root (g, ) =g%/?:

g(qx)*=q: and Re[g(qx)]>0

The branch cut of ¢(gx) in the complex plane will thus be the half-line defined by {g. €
IR™} (see Fig. 2). In the following, we'll use the abuse of notation g(gy) =1i,/—¢x for
gx€IR™.

Figure 2: Definition of the function x— (x)1/2,
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2. Definition of the fictitious velocities. For a given g € IR, we define the fictitious
velocities V*(q) and V;” (q) foric {Pf,Ps,S} by

1 1
VE=Vt(q) =V [———— and V=V (q)=V, | ——.
(4) Vi =V @)=Y, 1V 2

These fictitious velocities will be helpful to turn the 3D-problem into the sum of 2D-
problems indexed by the variable 4. Note that V*(0) and V" (0) correspond to the real
velocities V' and V™.

3. Definition of the functions " and x; . Fori€ {Pf,Ps,S} and (g,q,) €C xIR, we define
the functions

1 1/2 1 1/2
K" =17 (qa, =<—+ i 2> ==+
(0x0y) = 52+ 4y gy
1 1/2 1 1/2
K i=x; (qx,qy) = (F-l—qi-l-qj) = <V2<q )+q§> .
i i y

4. Definition of the reflection and transmission coefficients. For a given (g,,q,) €C XIR,
we denote by R(qx,qy), Tpf(9x,9y), Tps(qx,q9y) and Ts(qx,qy) the solution of the linear
system

- - ro_+ 1
R(qx,4y) *(qxy)
p+
Tpr(qx.qy) 1 1
A(x,qy) e — , (3.5)
ﬂs(qx,qy) 2K+<qx1qy)V+ 0
L T5(qx,9y) | I 1 |

where the matrix A(qy,qy) is defined by:

A(qx,qy) =

) (D Py (gay) (Pra+ )i (0,0y) (1-5) (@+43) _
1 %2 (B~ P11+Pa) "/’gz (B~ P1a+Pr2) 0 ’
0 2P (9:,0y) 2P (00 0y) K5 (Gudy) + A

1 As2(9x,9y) As3(9x.9y) 2p~ (g5 +a3)xs (9x.9y) |




454 J. Diaz and A. Ezziani / Commun. Comput. Phys., 7 (2010), pp. 445-472
with

(A‘—I—m_ﬁ_z) 7311+m_ﬁ_7321

_ 2
Ayo(qx,9y) = V-2 +2u Kps (qx,9y) P11,
Pf
</\’—|-m*,572) Piot+m p~Pn
A4,3(‘7Xr51y): V-2 +2p" Kpg (9x,qy) Pra2-
Ps

We also denote by Viax the greatest velocity in the two media:
Vinax :max(v+,vl;f,vl;s,v_;).
We can now present the expression of the solution to the Green Problem:

Theorem 3.1. The pressure and the displacement in the top medium are given by

d§+
+ o+ ref
p (x,O,z,t)—pinC(x,z,t)-i- Tt (x,z,t), (3.6)
ut(x,0,z,t) = ui;c(x,z,’c)dr-l—u;ref(x,y,r)dr, (3.7)

and the displacement in the bottom medium is given by
u; (x,0,z,t)= uljf(x,z,t) +up(x,z,t)+ug (x,2,t),
where

e pi" and u."  are respectively the pressure and the displacement of the incident
inc 7 Yinc
wave and satisfy:

6(t—to)
+ R
pinc(x’z’t) Co4nv+e

_ xtH(t—to)
tine )=

L (Z—h)tH(t—to)
incz (%21 = 4V +2p3p+

where 6 and H respectively denote the usual Dirac and Heaviside distributions. More-
over we set r = (x>+(z—h)?)/2 and ty=r/V™* denotes the time arrival of the incident
wave at point (x,0,z).
+ + . . PR . .
o gre ¢ and U of AT€ respectively the primitive of the pressure with respect to the time
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and the displacement of the reflected wave and satisty :

7

HSS T(v(t,q))R(v(t,
ot /Om mic* (v(t)R(v(£,9)] "

w2y +af (1)
e Smiv(t,q)x* (0(1,0)) R(v(10))|
0

+
ref

+
u
refx

(x,z,t)= dq,

2ot /a2 +q5(t)
() Sm |k (v(t,)) R(v(1,9))
u;fef (x,z,t) /Oq { ]

L b)=— dq/
| 2t /4245 (t)

lfth <t<tpand % >Vax

§+ (xlzlt :_/ d[]+
ref ) qo(t) m2ry /g2 A1) 721\ /q3 (1) — 2
t

(r2,8) = - /f“ [<w<fq> LR

dq
o(t) n27p+ / q(z)

(o) Re [iv (L) (v(£3)) R(1(t9))]
ol

7‘[21’p \/7 dq,

+
u
ref x

) Sm [ (0(,) R(0(4,0)) | /qom Re[c (1) R ()]
0

ut . (x,zt :—/
I'ef,y( ) q0(t) 7'[27'6)""1 /

if tg<t<t, and %>y,

2oty /() —q?

7

o(t) Re |k (v (£,q) )R (7 (t,
;ef(x,z,t):/ﬂ) e[K (r(tq))R(v(t q))} n
’ 2/ 45(t) 42
ol(f Re |i , + : R ;
(xzt):/om e[iv () (v(£0) R (1 (t,9))]

daq,
2ot [a5(t) — g2

e /qom Re k2 (1 (1) R(7(1))]
0

dq,
et g5 (8) =4

1fth <tand >y — or1ft0<tand <—and

+
u
refx

u
refy

Cref(x,y,t) =0 and u o¢(x,y,t) =0 else.

(1) Sm |+ (o(t, q))R( ( ,q>>} e /qom Rel PO ROO)]
0

455



456 J. Diaz and A. Ezziani / Commun. Comput. Phys., 7 (2010), pp. 445-472

We set here = (x?>+(z+h)?)1/? and ty=r/V* denotes the arrival time of the reflected
body wave at point (x,0,z),

1 1 | x|
b =GN S T v T

max

(3.8)

denotes the arrival time of the reflected head-wave at point (x,0,z) and

r 1 1
b, = z+h \/ V+2 - V2.« (39)

denotes the time after which there is no longer head wave at point (x,0,z), (contrary to
the 2D case, this time does not coincide with the arrival time of the body wave). We also
define the functions v, v, g0 and q; by

xt  z+h |2 1
ve {FEIRIE o xR Comy () =15 7V,

[ z+h 1 2 x
v {tE]R\thl<t<th2}><IR»—>C._v(t,qy)_—1< — - V+2(qy)_r_2+r_2t>’

|
2 42

—\ 2
1 1 1 1

Remark 3.1. For the practical computation of the pressure, we won’t have to explicitly
compute the derivative of the function C;fe ¢ (which would be rather tedious), since

qo- H{HH{:IQOU) =

4

Preg*f =0t rog*f =i
Therefore, we will only have to compute the derivative of the source function f.

ou, f(x,z,t) is the displacement of the transmitted Pf wave and satisfies:

_ P q(t) . v

g l2t) == [ e i0(60) Ty o000 57 1)

-~ P q1(t) _ av

g x) = 23 [ e e (000 Ty o) 57 1) i,
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if ty, <t<tgand |Sm[y(t,0)]|> ¢,

( _ Pll qO(t)

upf,x(x,z,t) ==/,

Re [i7(0.) Ty (1000 51 01|

. av
3 [0 e o) Top(ot) 5 ()| o

o) = 28 [ Re gy (100 Tosa o) G | dy

q1(t)
L Pu fn

7 Jgo(t)

Re | (0(0,0) To(w(0.0) 5 )|,

if to <t <t,, and |Sm[y(to,0)]| >

Vmax 4

izt == 20 [ Re [y (6) T ) S ) g,

o zt) = 2 [ e (10 T ) S )|

if tp, <tand |Sm[y(to,0)]| > ﬁ or if ty < t and |Sm[y(to,0)]| < anmx and uljf(x,z,t) =0
else.
to denotes here the arrival time of the Pf body wave at point (x,0,z) (we recall in

appendix the computation of ty),

1 1 1 1 | x|
th, =hy| —= — 1
" \/V+2 Vf%ax Z\J V_ 2 Vr%ax + Vmax (3 0)

pf

denotes the arrival time of the Pf head wave at point (x,0,z),

W +z2—hz (%—1_%) +x?
th, = T2 (3.11)
C1 C2

denotes the time after which there is no longer head wave at point (x,0,z), where

c ! ! and c L !
1 pu— —_— 2 p—
V Vr%ax Vlgf Vr%lax

The function qo : [to; +00] — IR™ is the reciprocal function of fj: IR" +—: [ty,+0o0], where
to(g) is the arrival time at point (x,0,z) of the fictitious Pf body wave, propagating at a
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velocity V*(q) in the top layer and at velocity V, £(q) in the bottom layer (we recall in
appendix the computation of #o(q)).
The function g1 : [t1;to] — IR T is defined by

i | [ [ )
ql xz Vp_fz VI%Iax V+2 Vr%ax Vr%ax .

The function 7: {(t,q) €IR" xIR™ |t > y(g) } — C is implicitly defined as the only root of
the function

1 1
F(y.qt)=—z +2 +h< +7Z> +iyx—t,
VEfZW) V+3(q)

whose real part is positive.
The function v: E{ UE; — C is implicitly defined as the only root of the function

1/2 1/2
1 1
F(vqt)=—z +v? +h< +v2> +ivx—t,
(Vp *(9) V+2(q)

such that Sm[o;v(t,q)] <0, with

Elz{(t,q)EIRerIl?*‘ by, <<t and0<q<q0(t)},

EZ:{(t,q)EIR+><IR+‘ to<t<ty and qo(t)<q<q1(t)}.

o u, (x,z,t) is the displacement of the transmitted Ps wave and satisfies:

P

uljslx(x,z,t) ==

/Oql(t) Re {iv(t,q)%s(v(t,q))z—?(t,q)] dg,

uljslz(x,z,t) =7 ;

e (0(0)) Toc(w(0:) 5 1) o,
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if ty, <t<tgand |Sm[y(t,0)]|> ¢,

pa(izt)= =22 [ e firt) Tortriea) S )] o,
=22 [ e ot Tttt 5 )]
i) = 22 [ e[, 01000 B0 L 1) a
\ + 22 [ e o0 o060 G 0,

if to <t <t,, and |Sm[y(to,0)]|>

Vimax ”
p(zt) = =22 [ e [in() Tt G 0

0 =22 [ e i (o) Tt S 00

if ty, <tand [Sm[y(t,0)]| > 2= or if tg <t and |Sm [ (t,0)]| < v2= and up,(x,2,t) =0
else. ty denotes here the arrival time of the Ps body wave at point (x,0,z),

/ Mt
3.12
Vr%ax V 2 max Vmax ( )

denotes the arrival time of the Ps head wave at point (x,0,z) and

P+ —hz (24242
by, = 0 (3.13)
a o

denotes the time after which there is no longer head wave at point (x,0,z), where

I I N Y IS SN
v V2, 2T\ VE VR

The function go: [to; +00] —IR ™ is the reciprocal function of fy:IR " +:[ty,+o0], where £y (q)
is the arrival time at point (x,0,z) of the fictitious Ps body wave, propagating at a velocity
VT (g) in the top layer and at velocity V. (g) in the bottom layer.
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The function g1 : [t1;to] — IR T is defined by

ql (t B (t + M max V Vr%lax ) max .

The function «: {(t,q) € IR" x IR |t > Fy(g) } — C is implicitly defined as the only root of
the function

1 1/2 1 1/2
f(%q,t)z—2< +72> +h< +7> +iyx—t,
Vi () V+(q)

whose real part is positive.
The function v: E; UE; — C is implicitly defined as the only root of the function

, 1/2 . 1/2
F(v,q,t) :—z< 5 —1—02) —|—h< 5 —|—vz> +ivx—t,
Vs (49) V*(q)

such that Sm[o;v(t,q)] <0, with

Ei={(tq) eIR* xIR" |t;,, <t <tpand 0<g<qo(t)},
Ey={(t,q) eIR" xIR"|tg <t <ty and qo(t) <g<qi1(t)}.

oug (x,z,t) is the displacement of the transmitted S wave and satisfies:

otz == [ e[ () B0l S 0)] o,

sz =5 [ Re (20 + AT 0000 G ) o,

if ty, <t<tgand |Sm[y(t,0)]|> 2,
) 1 o) ) d
izt = = [ Re[irtba)s () TG T )| dy

1(t)
o [ (e (0000 T, G ) |

us q0(t)

o(t)
ez = o [ e )+ AT G ()]

1 ()
us q0(t)

e [<v2<t,q>+q2>fs< ()2 q)} 4
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if to <t <t,, and |Sm[y(to,0)]| >

1
Vmax ’

usp(zt) == [ e [rtains o0 e S )| g

szt =5 [ Re 200+ T ) B )| o,

if t, < tand |Sm[y(to,0)]] > ﬁ or if tg <t and |Sm[y(t,0)]| < ﬁ and up(x,z,t) =0
else. ty denotes here the arrival time of the S body wave at point (x,0,z) (we recall in
appendix the computation of ty),

L
|z (3.14)
Vr%lax Vﬁ 2 max Vmax

denotes the arrival time of the S head-wave at point (x,0,z) and

W +2z2—hz <§—f—|—§—;> +x?
y, = — (3.15)

1 2

denotes the time after which there is no longer head wave at point (x,0,z), where

,/ —— and o= 1/
Vr%ax Vr%ax

The function gq: [to; +00]—IR™ is the reciprocal function of fy:IR " +:[ty,+00], where £y (g)
is the arrival time at point (x,0,z) of the fictitious S body wave, propagating at a velocity
V*(g) in the top layer and at velocity Vg (g) in the bottom layer (we recall in appendix
the computation of #o(q)).

The function g1 : [t1;to] — IR T is defined by

q1 ( t = t+z .
x2 < VI%laX Vl’%\ax maX

The function 7y: {(t,q) e IR xIR" |t >y(g) } — C is implicitly defined as the only root of
the function

1 1/2 1 1/2
F(rqt)=—z ( +72> +h ( +72> +iyx—t,
Vi2(q) V+3(q)

whose real part is positive.
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The function v: E; UE; — C is implicitly defined as the only root of the function

, 1/2 . 1/2
f(v,q,t):—z< 5 —1—02) —|—h< 5 —|—vz> +ivx—t,
Vs (q) V*(q)

such that Sm[o;v(t,q)] <0, with
E1={(t,q) eIR" xIR*|t), <t <tgand 0<g<qo(t)},
Ey={(t,q) eIR* xIR" |to <t <ty and qo(t) <qg<qa1(t)}.

4 Proof of the theorem

To prove the theorem, we use the Cagniard-de Hoop method (see [1, 2, 14-16]), which
consists of three steps:

1. We apply a Laplace transform in time,

—+o0
i(x,y,2,3) :/ u(x,y,z,t)e*dt,
0

and a Fourier transform in the x and y variables,

“+o00 —+o0 )
i (ky,ky,z,5) :/ / ﬁ(x,y,s)e‘(k’f”kyy) dxdy

to (2.17) in order to obtain an ordinary differential system whose solution _C';(kx,ky,z,s)
can be explicitly computed (Section 4.1);

2. we apply an inverse Fourier transform in the x and y variables to G (we recall that
we only need the solution at y=0:

+00 +oo
ikx
G(x,0,25) = 2/ | Gtk z)e k.

Moreover, using tools of complex analysis, we turn the inverse Fourier transform in the
x variable into the Laplace transform of some function H(x,k,,z,t) (Section 4.2):

+o00 —+00
G(x,0,25) = 2/ / H(xky,z,t) e dtdky; 4.1)

3. the last step of the method consists in inverting the order of integration in (4.1) to

obtain
G(x,0,2,5) = — /+w</+q(t)ﬁ< k t)dk) sty
x,0,z,s x,ky,z, e )
4 ) ! !

Then, using the injectivity of the Laplace transform, we identify G(x,0,z,t) to

1 / ey ) d
xl /Z/
4r? J gt g g

(see Section 4.3).
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4.1 The solution in the Laplace-Fourier plane

Let us first apply a Laplace transform in time and a Fourier transform in the x and y
variables to (2.17) to obtain

( 2 2 5+
s 2 2\ At OP 6(z—h)
( +2+k"+ky>p+_ 922 y+r ' y=0
s2 N ‘ 4.2
<ﬁ+ki+k5> by~ =0, ic{PRPsS),  y<0, 2
B(p*, &5, 05, 5) =0, y=0,

where B is the Laplace-Fourier transform of the operator B.
From the two first equations of (4.2), we deduce that the solution (p*,(d; )ie{Pf,Ps,s})
is such that

_ ke Ky
ﬁ+:ﬁﬂ1c+ﬁ:ef’ ﬁ;erR(kx,ky,s)e = S'Sj>,
At 1 7s|z h\K*(ks" k%’)
, (4.3)
Pinc = SV+25ct (?x y
—T(kx,ky,s) ( "(5 §>>, ie{Pf,Ps,S},

where the coefficients R and T; are computed by using the last equation of (4.2):

ci)l;s'ﬁ)g) = _B( i

pinCIOIOI O)/

B(ﬁlfef’é)l;f’

or, from( 4.3):

e—shK*(%" k{)
B[R(kx,ky,s), Tps(kx,ky,s), Tps (ks ky,s), Ts (kx,ky )| = =B | ————-,0,0,0 | .

+ (ke by
st (k%)

After some calculations that we do not detail here, we obtain that R(ky,ky,s), Tp f (kx,ky,s),
Tps(kx,ky,s), and Ts(ky,ky,s)) are solution to

_ - i ke kv
R(ky Ky ,5) ot (5%)
. pr
k_x k_y SZTpf(kx,ky,S) o e*Sh’ﬁ(k?'Ty 1
A s ) = TR R\oo2 . (4.4)
s°Tps(ky,ky,s) 25K (f,?) 1% 0
3
| S Ts(kx,ky,s) ] 1 |
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From the definition of the reflection and transmission coefficients we deduce that

_ - [ ke k
R(ky,ky,5) R(:%)
Kk,
SZTpf(kx,ky,S) B 1 E’f (?'TJ) efshk+<k4)
PTnlkokys) | | Too(5%)
3
| S Ts(kx,ky,s) i I %(k?xlks_y> ]
Finally, we obtain:
At st At
p _Pinc+Pref’
pt = ! sl (4,2)
e Ve (%,ks—y>
At :172 k_x k_y —S(Z+h)K+(kTX %)
ref S S / S ’
.1 k, k ol (e R et (e Ry )
b)), o,
b5 =1 (1 1) 22) e (5
15 s’s
and
At At At
(1 _uinc+uref’
+ ( ks ky
k K (?f?)
T At At
uinc,x_1p+szpinc’ uinc,z_SIgn(h_Z) ots Pines
(ke by
At =i ke oy ot :K (S,S)A-‘r
ref x pts? Pref’ refz pts Pref’

i, = —iky P11®ps —iky Proadp, —iskikg

m|f

o

R . )
iy, =SKpy <?x,?y> Pr®p+skp, (f,%) Pradp+ (4K )P .

(4.5)

(4.6)

(4.7)

In the following we only detail the computation of fi__ p. = —ikyP12Pp,, since the compu-

tation of the other terms is very similar.
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4.2 The Laplace transform of the solution

We apply an inverse Fourier transform in the x and y variable to 71_, ,. and we set k, =qs
and ky, =qys to obtain (we recall that we consider y=0)

“+00 +o00
Ty ps(%,0,2,5) = / / quPu Tos (s, )¢ (37000 (g2 41055) g g
P [T +°°H
] | B o,

<7x/qy) _IQx%s,‘(%c/qy) s(=2ps(qxy)+hx" (g, qy))ﬂqxx)

with
Let us now focus on the integral over g, for a fixed g,

+00 400
/_ E(qx,qy)dqx = /_ 1qx’]jps(qx,qy) ( 2K pg (G, +hx T (g2, ‘1y))+1‘1xx) dqx (48)

This integral is very similar to the one we have obtained in 2D [7], therefore, using the
same method, we have:

o if |7(qy.t0)| < m’

oo _ oo 9y(qy.1)\
/_ E(qx,9y) dqx—Z/ Re (17(%, )Tps(qy,7(qy,t)) thy >e stdt,

o if [v(qy.f0(7) | > 5y

fo(q

h(Qy)
+oo

. 0y(qy.t)\ _s
+2/ )%e<1’Y(‘Jyft)71’s<[1yr’7<‘1yft)) <aq: )>€ ‘dt,

Fo(qy

g 2 dv(qy )\
/_ B, qy) g =2 Re <1U(‘7y/ )Zps(qy,v(qy,t)) gty )e stdt

where Vnay is greatest fictitious velocity defined by:

1

Vimax = Vmax<q) = Vinax m/

fo is the fictitious arrival time of the Ps body wave we have defined in the theorem, f;(g,)
the fictitious arrival time of the Ps head wave defined by

VPSR i s S s s s
V+ (q) Vmax(q) Vl;s (6]) Vmax(q) Vmax(ﬂ)
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fJmax qy

Figure 3: Functions f; (dotted line) and f;, (solid line).

Let us recall [17] that the condition |y(qy,f0(qy))| > is equivalent to

Vmax(q Vinax (4y)

"7<O/t0)’ >

! and |gy| <
Vmax dy| = qmax,

with

r2 1
() a7 Ve

2 2 _2
v+ Vmax VPS Vmax

Gmax =

Moreover, £}, is bijective from [0; gmax] to [to; 1 (gmax)] and we denote its inverse by g;:

qh (t) B (t—l_ M max v Vr%ax > max .

Let us also recall that for g, =qmax, the arrival times of the fictitious head and body waves
are the same: fj,(gmax) = fo(gmax)- As an illustration, we represent the functions fy (the
dotted line) and #;, (the solid line) in Fig. 3.

We then deduce that

o if [y(0,t0)| <

Vmax 4

/ zE(qx'%)dqdey

ov(qy,t)\ _
—2/ /t ?Re(w qy.t) Tps(qy, 7 (qy.t ))%)e “dtdgy;
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Al T Al
to ——+ fo qo(t)
fo(gy)
> >
Ty Ty
Figure 4: Integration first over gy then over  for the Figure 5: Integration first over f then over gy for the
body wave. body wave.

o if [7(0,10)| > 7L,
/ , 2(qx,qy) dqxdqy
Hmax - rfof q/ v (qy,t)\ _
/ /t <1v 9y,t) Tps(qy,0(qy.t ))%)e “dtdq,

Jmax

0y(qy,t)\ s
+2/ /tq %e(w 9y:t) Tes (9, (qy.t ))Ty>e ' dtdg,.
0(qy)

4.3 Inversion of the integrals

The key point of the method is the inversion of the integral with respect to g, with the
integral with respect to t. For the body wave we have (see Figs. 4 and 5), after having
remark that the integrand is even with respect to g

oo 0y (qy.t)\ -
[ e (it ) et

o 7)) -
:Z/t 0 Re (1’)/(qy/t)7}s(%/,’)/(¢7y,t))%> e Stdqydt’_
0

and for the head wave (see Figs. 6 and 7):

+amax  fo( qj av( ot .
/ /t ( ‘7y/ )7}15(‘7% (‘7yz )) gty )>€ tdtdqy
h

Jmax
to ran(t av(qy,t)\ _,
:2// §Re<iv(qy,t)’]}as(qy,v(qy,t)) (gf ))e ‘dg,dt
ty, J0
d

tp qh(t) v ,t s
w2 [ [ e (10000 T 00000 22 ) gy
to go(t) t
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AL _
to (qmax) =ty (EImax) = thz

!
!
!
to ! to
!
Z !
tny tn(qy) ! ty
L——> >
Jmax Qy Qy
Figure 6: Integration first over gy then over  for the Figure 7: Integration first over ¢ then over gy for the
head wave. head wave.
We thus have:

I, 0,z,8)= s 0,z,t)e S dt
usx,Ps(x’ /Z/S)_ 0 usx,Ps<xl 12, )e

and we conclude by using the injectivity of the Laplace transform.

5 Numerical illustration

To illustrate our results, we have computed the green function and the analytical solution
to the following problem: we consider an acoustic layer with a density p* =1020kg/m3
and a celerity V*=1500m/s on top of a poroelastic layer whose characteristic coefficients
are: the solid density p; =2500kg/m?; the fluid density oy =1020 kg/m?; the porosity
¢~ =0.4; the tortuosity a~ =2; the solid bulk modulus K; =16.0554GPa; the fluid bulk
modulus K}? =2.295GPa; the frame bulk modulus K;" =10GPa; and the frame shear mod-

ulus = =9.63342GPa. As a result, the celerity of the waves in the poroelastic medium
are: for the fast P wave, VP_f =3677m/s; for the slow P wave, V,.=1060m/s; and for the

Y wave, Vg =2378m/s.
The source is located in the acoustic layer, at 500m from the interface. It is a point
source in space and a fifth derivative of a Gaussian of dominant frequency fo =15Hz:
s
fln=2"

() )]

We compute the solution at two receivers, the first one is in the acoustic layer, at 533 m
from the interface; the first one is in the poroelastic layer, at 533m from the interface;
both are located on a vertical line at 400m from the source (see Fig. 8). To compute the
integrals over g and the convolution with the source function, we used a classical mid-
point quadrature formula.

2
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Receiver 1
Source
400m
arf 533
500m m
QO 533m
Receiver 2

Figure 8: Configuration of the experiment.
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Figure 9: The z component of the green function associated to the displacement at receiver 1 (left picture) and
2 (right picture).
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Figure 10: The z component of the displacement at receiver 1 (left picture) and 2 (right picture).

We represent the z component of the green function associated to the displacement
from t =0 to t =1.2s on Fig. 9 and the displacement in Fig. 10. The left picture represents
the solution at receiver 1 while the right picture represents the solution at receiver 2. As
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all the types of waves are computed independently, it is easy to distinguish all of them,
as it is indicated in the figures. solution.

6 Conclusion

In this paper we have provided the complete solution (reflected and transmitted wave)
of the propagation of wave in a stratified 3D medium composed of an acoustic and a
poroelastic layer. In a forthcoming paper we will extend the method to the propagation
of waves in bilayered poroelastic medium in three dimensions.
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Appendix: Definition of the fictitious and real arrival times of the
body waves

We detalil in this section the computation of the fictitious and real arrival times of the
transmitted Ps wave at point (x,0,z). For a given g, € IR, we first determine fastest path
of the wave from the source to the point (x,0,z), travelling at a velocity V*(g,) in the
upper layer and at a velocity V, (qy) in the bottom layer: we search a point ¢y on the
interface between the two media which minimizes the function

_VEAR V(x5 42
V*(qy) Vl;s(cly)

(see Fig. 11). This leads us to find ¢y such that

o N Co—x .
V+<ﬂy)\/ﬂ Vs (qy)\/ (x—Go)? 422

From a numerical point of view, the solution of this equation is done by computing the
roots of the following fourth degree polynomial

1 1 1 1
- X*42 - X3
<v+2<qy> vpfwy)) +x<vpf(qy> v+2<qy>>

2.2 212 2 21,2
+< x+;|-z B xf:—h >X2+ 7x2h Xt iczh ,
VHi(ay) V. (gy) Vps (qy) Vps (qy)

t(¢)

t'(8o) = (A1)
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Source

(0,0,h) 4 Medium 1
VH(gy
(¢,0,0)
Vi (qy)
Medium 2
(x,0,2)

Figure 11: Path of the transmitted i wave.

¢o is thus the only real root of this polynomial located between 0 and x which is also
solution of (A.1). Once ¢y is computed, we can define

[E2 4 K2
£ ) §0+ + (x—CO)Z—i—zz and t():fo(()).

W)=y T Ve

Let us remark that

Property A.1. Since the fictitious velocities are smaller than the real one, the fictitious
arrival times are greater than the real one. Moreover, since the fictitious velocities are
even functions decreasing on IR", f; is an even function, increasing on IR,

Corollaire A.1. The function fj is bijective from IR to IR™.
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