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Abstract. Phase separation of a two-dimensional van der Waals fluid subject to a grav-
itational force is studied by numerical simulations based on lattice Boltzmann methods
implemented with a finite difference scheme. A growth exponent α=1 is measured in
the direction of the external force.
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1 Introduction

Phase ordering in fluids is an important process that still needs to be completely un-
derstood in many cases of practical relevance. When a fluid is quenched from an initial
disordered state into a regime of two-phase coexistence below the spinodal line, domains
of the two phases are formed and grow with time. The typical size R of domains follows
the power law R∼ tα with the growth exponent α being universal in the sense that it does
not depend on the microscopic details of the fluid, assuming only a few values related
to the physical mechanism operating during phase separation [1]. Hydrodynamics is
in general relevant and the coupling with the velocity field can change the value of the
growth exponent α from that of purely diffusive growth [2, 3].

In this paper we consider the ordering of a liquid-vapor system subject to an external
field mimicking the effects of gravity. The role of gravity on phase ordering has been
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more studied in binary systems. In critical quenches, after an initial diffusive growth
with exponent 1/3, there is a viscous growth characterized by α=1 followed by an iner-
tial regime with α=2/3 [4]. Gravity becomes relevant when heavy domains resting on top
of light ones become gravitationally unstable, thus accelerating the domain growth [5].
This occurs at late stages making inertial growth difficult to observe. A theoretical anal-
ysis neglecting hydrodynamical contributions suggests an exponent αz = 1 for the size
of domains in the vertical direction [6]. There are few studies of phase separation for
liquid-vapor systems. In two-dimensional simulations the values α=1/2 for high viscos-
ity fluids and α = 2/3 for low-viscosity fluids have been found [2, 7]. We are not aware
of simulations made on a liquid-vapor system subject to gravity, where the growth expo-
nent is measured.

We address this problem by applying the lattice Boltzmann method (LBM) to simulate
a van der Waals fluid described by the Navier-Stokes and the continuity equation. LBM
have been proved successful in studying fluids with mesoscopic structures (liquid-vapor
interfaces in our case) on large time scales, as it is needed for phase separation [2,4,8–12].
In our approach, the thermodynamic description is based on a free-energy functional
where interfaces are described at a coarse-grained level. The free-energy interface cost is
expressed, as usual in van der Waals-Landau models, in terms of gradients of the den-
sity field. Locally, the fluid satisfies the van der Waals state equation. A finite difference
version of LBM is implemented where the relationship c=δs/δt among the lattice speed
c and the space and time steps δs and δt does no longer hold, as in standard collision
- streaming LBM [8–12]. The rejection of this condition has two advantages. First, this
allows one to further consider multicomponent fluid systems where the masses of the
component particles, as well as the lattice speeds, may be no longer identical [13, 14].
Second, higher order numerical schemes (including flux limiter schemes) may be consid-
ered in order to reduce unphysical effects like the spurious velocity and the numerical
viscosity [7, 13–18]. The use of high order numerical schemes in finite difference LBM
helps further to improve the numerical stability and accuracy [7, 17] while providing a
convenient alternative to interpolation supplemented LBM [19, 20].

Our main results is that the sedimentation process induced by gravity is characterized
by an exponent α=1 independently on the values of viscosity and gravity.

The paper is organized as follows. Our LBM approach is described in Section 2; nu-
merical results are shown in Section 3 and conclusions will be drawn in Section 4.

2 Description of the model

In this paper, we use the D2Q9 isothermal finite difference lattice Boltzmann model in
two dimensions, which is well known in the literature [9–11,15,21]. This model relies on
the following set of N =9 evolution equations for the non-dimensionalized distribution
functions fi(r,t), i =0,1,··· ,N−1, defined in the nodes r=(x,y) of a lattice with Λx×Λy
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nodes [7–12, 18, 21, 22]

fi(r,t+δt)= fi(r,t)−δtei ·∇ fi(r,t)− δt

τ

[

fi(r,t)− f
eq
i (r,t)

]

+
δt

χc2
F· [ei −u(r,t)] f

eq
i (r,t). (2.1)

In this non-dimensionalized model, the mass of particles equals 1. To reduce numerical
errors, the second order Monitorized-Central-Difference flux limiter scheme [7, 13, 18, 23,
24] was used to calculate the space derivative ∇ fi(r,t).

The local values of the fluid quantities (particle number density n and velocity u) are
derived from the distribution functions, as follows

n(r,t)=
N−1

∑
i=0

fi(r,t), (2.2)

u(r,t)=
1

n(r,t)

N−1

∑
i=0

fi(r,t)ei. (2.3)

The velocity vectors {ei} are given by

e0 =0, (2.4a)

ei =

(

cos
π(i−1)

2
, sin

π(i−1)

2

)

c for i = 1,··· ,4, (2.4b)

ei =

(

cos
π(2i−9)

4
, sin

π(2i−9)

4

)

c
√

2 for i = 5,··· ,8, (2.4c)

where c= c/cR=
√

θ/χ is a non-dimensionalized speed, θ=T/TR is the non-dimensiona-
lized system temperature, and χ = 1/3. As discussed in [15, 25], the following reference
quantities nR = NA/Vmc, TR = Tc and cR =

√
kBTc/mR, where NA is Avogadro’s number,

Vmc is the molar volume at the critical point of temperature Tc, mR is the mass of the fluid
particles and kB is Boltzmann’s constant, may be used to get the non-dimensionalized
values of the particle number density, temperature and speed, respectively. The system
size is chosen as reference length lR, the reference quantities tR and aR for time and accel-
eration follow from

tRcR

lR
= 1,

aRtR

cR
= 1. (2.5)

Since we use finite difference schemes [7, 13, 15, 22, 23] to evolve the particle distribution
functions according to Eq. (2.1), the lattice spacing δs and the time step δs are no longer
related to the lattice speed c as in standard lattice Boltzmann models [8–11], the temper-
ature θ is now a control parameter in our simulations. This feature of the finite difference
approach allows us to change the system temperature θ (and hence also the lattice speed
c) while preserving the lattice spacing δs and the system size in each direction (i.e., the
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corresponding number of lattice nodes). In such models there is more freedom to choose
the discrete velocity set, as done recently in a thermal model [26] where the possibility of
having different sets of velocities allows to release the constraint of constant temperature.

The equilibrium distribution functions f
eq
i = f

eq
i (r,t) that appear in the evolution equa-

tion (2.1) of the D2Q9 model are expressed as series expansion up to second order with
respect to the fluid velocity u [9–11, 21]

f
eq
i = win

[

1+
ei ·u
χc2

+
(ei ·u)2

2χ2c4
− (u)2

2χc2

]

, (2.6)

where the weight coefficients are

wi =



























4

9
, i = 0,

1

9
, i = 1,··· ,4,

1

36
, i = 5,··· ,8.

(2.7)

The force F in Eq. (2.1) is introduced to recover the macroscopic equations of an
isothermal van der Waals fluid subjected to the gravitational acceleration a. When us-
ing the reference pressure pR =mnRc2

R, this force has the Cartesian components [7, 15, 25,
27–29]

Fα =
1

n
∂α(pideal − pwaals )+κ∂α (∇2n)+ aα, (2.8)

where
pideal = nθ (2.9)

is the ideal gas pressure and

pwaals =
nθ

1−bn
− an2 (2.10)

is the van der Waals fluid pressure in non-dimensionalized form, κ is a constant which
controls the surface tension and a is the gravitational acceleration. The parameters a and
b are given by

a=
9

8

θc

nc
, (2.11)

b=
1

3nc
, (2.12)

where nc is the particle density at the critical temperature θc =1. In the following we will
consider nc =1 so the van der Waals fluid pressure reads

pwaals =
3nθ

3−n
− 9

8
n2. (2.13)
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Note that the force (2.8) was already used in [7, 15, 18, 25] to investigate the dynamics
and morphology of phase separation in liquid-vapour systems in the absence of gravity
(a=0).

A Chapman-Enskog expansion shows that the continuity and Navier-Stokes equa-
tions are recovered in the continuum limit:

∂tn+∂β(nuβ)=0, (2.14)

∂t(nuα)+∂β(nuαuβ)=−∂α pwaals+κn∂α(∇2n)+naα+ν∂β[n(∂αuβ+∂βuα)], (2.15)

with kinematic viscosity ν = θτ. The terms −∂α pwaals +κn∂α(∇2n) at the r.h.s. of the
Navier-Stokes equation can also be written in the form −∂βPαβ where the pressure tensor
Pαβ is related to the free energy functional of the van der Waals fluid [30]

Ψ=
∫

dr
[

ψ(n,θ)+
κ

2
(∇n)2

]

, (2.16)

ψ(n,θ) being the bulk free energy density

ψ(n,θ)=nθ ln(
3n

3−n
)− 9

8
n2. (2.17)

The pressure tensor is [31]

Pαβ = pδαβ+κ∂αn∂βn (2.18)

with

p= pwaals−κn∇2n− κ

2
(∇n)2, (2.19)

where

pwaals =nψ
′
(n)−ψ

is the equation of state with the critical point at nc =1, θc =1.
In the sequel, we will consider the case of an acceleration directed upwards: ax =

0, ay = g. Periodical boundary conditions were considered in the horizontal direction
and standard bounce back boundary conditions [8–12] were imposed on top and bottom
walls.

3 Numerical results

In this section we report the results of our simulations. For runs we used either a square
lattice with Λx = Λy = 1024 or a rectangular one with Λx = 512 and Λy = 4096, lattice
spacing δs = 1/256 and time step δt = 10−5, as in [7]. All quenches below the critical
temperature θc = 1 were to the temperature θ = 0.79 where the coexisting densities are
nliquid = 1.956 and nvapor = 0.226. Each simulation was started with small fluctuations
(0.1%) in the density about a mean value n̂ that was either symmetric (n̂ = 1.09, liquid
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fraction β=0.5) or slightly off-symmetric (n̂=1.0, β=0.45). The parameter κ controlling
the surface tension was set to 5×10−6 to have an interface thickness of ∼6 lattice spacings.
The corresponding value of the surface tension σ was evaluated by using the Laplace law
[25] and a value σ=2.0×10−3 was measured. The value of the constant g controlling the
external acceleration, was varied in the range [0.0001,0.005]. Results were not dependent
on its specific value as shown in the following. The viscosity was varied by changing
τ. We used the values τ = 10−4 and τ = 10−3, which allow us to access low and high
viscosity regimes, respectively, as shown in a previous work where the present model
without gravity was used to study the phase separation in liquid-gas systems [7].

The process of phase separation depends on the interplay among three main driving
forces: The viscous one Fv = nνlRcR, the gravity one Fg = ngl3

R, and the surface tension
one Fs=σlR. It may be then useful to evaluate their relative contributions introducing the
Bond number

Bo=
Fg

Fs
=

ngl2
R

σ
,

the capillary number

Ca=
Fv

Fs
=

nνcR

σ
,

and the ratio
Bo

Ca
=

Fg

Fv
=

gl2
R

νcR
.

The choice of the input parameters is such to access the ranges 0.05≤Bo≤2.5, 0.04≤Ca≤
0.4, and 0.13≤Bo/Ca≤65.

After the initial stages when the phases start to separate, the effect of the gravitational
force is to accumulate material at walls: The heavy phase (liquid) is moved to the top
wall and the light phase (vapor) stays at the bottom wall. The evolution of domains
in the cases at high (τ = 10−3) and low (τ = 10−4) viscosities is shown in Figs. 1-2 for
g = 0.005. At intermediate times between t ≃ 3 and t ≃ 10, anisotropic patterns can be
observed in the bulk region far from the walls, with domains slightly elongated along
the vertical direction. The main difference that can be observed between the two figures
is the presence of many droplets in the case at high viscosity as compared to the case
at low viscosity. The reason is due to the fact that in the latter case hydrodynamics is
effective in coalescing droplets, thus producing a more homogeneous pattern.

In order to gain some insight into the law governing the accumulation of material
at walls, we measured the average thickness L of layers adjacent to the walls. For each
column of the lattice we looked for all the sites next to the walls where there was an
interface between the liquid and vapor phases. To be more specific we found all the
lattice sites along the x-direction with the smallest distance y∗b(x) to the bottom wall such
that

[n(x,y∗b (x))−n̂][n(x,y∗b (x)+1)−n̂]<0
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t = 2

t = 14

t = 22

t = 6

t = 18

t = 26

Figure 1: Contour plots of the density n in the case with τ=10−3, g=0.005 and β=0.5. Color code: white/black
→ liquid/vapor.

with y∗b(x)< Λy/2 and all the sites with the smallest distance Λy−y∗t (x) to the top wall
such that

[n(x,y∗t (x))−n̂][n(x,y∗t (x)−1)−n̂]<0

with y∗t (x)>Λy/2. We defined

L=
1

2Λx

Λx

∑
x=1

[y∗b(x)+(Λy−y∗t (x))]<
Λy

2
. (3.1)

The time evolution of L is reported in Fig. 3 for different values of τ and g. We have
a clear and convincing indication that in all the cases the growth is consistent with a
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t = 2

t = 14

t = 22

t = 6

t = 18

t = 26

Figure 2: Contour plots of the density n in the case with τ=10−4, g=0.005 and β=0.5. Color code: white/black
→ liquid/vapor.

power law with growth exponent α=1 which depends neither on g nor on τ. The growth
is observed over almost two time decades until the system is entirely separated in two
parts of different composition. In particular, we want to stress the fact that the exponent
α =1 is observed in both cases, when the gravitational force Fg is small compared to the
surface tension force Fs (Bo < 1), as well as when Fg is small compared to the viscous
one Fv (Bo/Ca < 1). This indicates that the existence of the same scaling exponent α
in the gravity direction is exclusively due to the presence of the gravity force Fg > 0.
Our result is in agreement with previous studies of mixtures where hydrodynamics was
neglected [6,32–34]. In another study on the phase separation of binary fluids [35] where
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Figure 3: Time evolution of the average thickness of layers at walls in the cases with g =
0.0001(△),0.001(�),0.005(◦) for τ = 10−3 (filled symbols), 10−4 (empty symbols) and β = 0.5. The solid
line is a guide to the eye and has slope 1.

hydrodynamic effects were considered, it was argued that the growth exponent is α =
0.6±0.1 and is not affected by the presence of gravity. The present study shows that
the value of the growth exponent is independent on the value of the viscosity and of
the gravity. Similar results were obtained when considering the case of a slightly off-
symmetric mixtures with β=0.45.

In order to better characterize the morphology of domains we simulated the be-
haviour of a very large system with symmetric composition (β=0.5) and size 512×4096,
for g = 0.005 and τ ∈ {10−4, 10−3}. Also in this case we found that L grows with the
exponent 1. In order to estimate the domains size in the two spatial directions, due to
the anisotropy induced by gravity, we computed the inverse of the first moment of the
structure factor [36, 37]

Rx(t)=π

∫

dkC(k,t)
∫

dkkxC(k,t)
(3.2)

and similarly for the y direction where

C(k,t)=< ñ(k,t)ñ(−k,t)> (3.3)

with ñ(k,t) the spatial Fourier transform of n(r,t)−n̂. The results are shown in Fig. 4.
Along the gravity direction, we see that Ry starts to grow with the same exponents as
in the case without gravity: 1/2 for τ = 0.001 and 2/3 for τ = 0.0001 [7]. The transition
to a regime consistent with the growth exponent 1 is observed at later times. Along the
horizontal direction, we get Rx ∼ t1/2 in the high viscosity case (τ = 0.001), a behaviour
that is similar to the case when the system is subjected to no gravity. However, at low
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Figure 4: Time evolution of the size of domains Ry (left panel) and Rx (right panel) in the case with g=0.005

for τ =10−3 (•), 10−4 (◦) and β=0.5 on a lattice 512×4096. The lines serve as eyeguide and have the slopes
1/2 (dotted line), 2/3 (dashed line), and 1 (full line).

viscosity (τ =0.0001) the growth exponent along the horizontal direction in the presence
of gravity is smaller than the expected value 2/3, which is achieved without gravity. It
is interesting to note that similar conclusions were drawn in the case of phase separa-
tion of binary mixtures under gravity [38]. In their study, the authors observed that in
the diffusive and viscous regimes the growth exponent is always equal to 1 along the
vertical (gravity) direction, while in the horizontal direction there is a slowing down of
the growth rate with respect to the case without gravity [38]. In order to better elucidate
these features one would need to perform higher resolution simulations to access a wider
range of length scales.

4 Conclusions

In this paper we have introduced an external gravitational force in an isothermal lattice
Boltzmann model for the van der Waals fluid. We have studied phase separation in sys-
tems with different viscosities and various values of the gravitational acceleration. In
the absence of gravity, the growth exponent is known to have specific values [7], which
depend on the fluid viscosity. When the liquid-vapor system was subjected to the grav-
itational force, we measured the evolution of the characteristic size (along the gravity
direction) of the growing domains and found the same exponent α = 1 for all the cases
considered, even if the fluid viscosity and the gravitational acceleration were different.
Further extension of our parallel computing code to three dimensions would allow to
evaluate the growth exponents in a more realistic case.
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