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Abstract. Natural cavitation is defined as the phenomenon of the formation of vapor
bubbles in a flow due to the pressure falls below the liquid’s vapor pressure. The in-
ception of the cavitation bubble is influenced by many factors, such as impurities, tur-
bulence, liquid thermal properties etc. In this paper, we simulate a 2D cavitation ”bub-
ble” growth under shear flow in the inception stage by Single-Component-Multiphase
Lattice Boltzmann Model (SCMP LBM). An empirical boundary condition sensitive 2D
bubble growth rate, R∼ et, is postulated. Furthermore, the comparison is conducted
for bubble behavior under different shear rates. The results show that the cavitation
bubble deformation is coincident with prior droplet theories and the bubble growth
decreases slightly with the flow shear rate.
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1 Introduction

Natural cavitation is defined as the phenomenon of the formation of vapor bubbles in
a flow due to the pressure falls below the liquid’s vapor pressure, which can cause the
falling of fluid machinery performance [1, 2], or drag reducing for high speed underwa-
ter vehicles [3]. In the past decades, numerous efforts were contributed to the cavitation
bubble inception [4, 5], which can be treated as the initial condition for the bubble evo-
lution. However, the study shows that the cavitation inception is more complex than we
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described at the beginning of this paragraph. It is influenced by the number and qualities
of the nuclei in the liquids, the flow structure, thermodynamic parameters etc. And dif-
ferent inception forms were found, including bubble band, bubble ring, traveling bubble,
traveling patch, fixed patch, and developed attached cavitation [4].

In addition to the experimental and scaling analyses, numerical simulation is con-
ducted widely as a powerful tool for the cavitation study. Coupling with the thermody-
namic models Vortmann et al. [6] applied the volume of fluid method to predict typical
effects of cavitations. By finite volume method, Chau et al. [7] studied the hydrody-
namic characters of foils. Particular emphasis was placed by Kunz et al. [8] on solve
two-phase Reynolds Averaged Navier-Stokes equations (RANS), which included predic-
tion strategy, flux evaluation, limiting strategies etc. The capabilities of the method were
further validated through a comparison between axisymmetric and 3D RANS simula-
tions by the same group [9]. Senocak and Shyy [10] applied a pressure-velocity-density
coupling scheme to handle the large density ratio cavitating flow. Seo et al. [11] proposed
a density-based homogeneous equilibrium model with a linearly-combined EOS to pre-
dict cavitating flow noise. To capture the acoustic waves in two-phase flow, the central
compact finite difference scheme was implemented. Lu et al. [3] compared different cavi-
tation models numerically. Ventilated and natural cavitation flows were studied. Besides
the class of surface capture methodologies, as mentioned above, surface tracking meth-
ods were applied as well, where the interfaces are treated as time dependent boundaries
of computational domain [12].

For the traditional partial differential equation based numerical simulation, two ma-
jor obstacles should be combatted. The first one is the numerical scheme. Since across
the interface, phase properties, such as density and viscosity, vary steeply, the numerical
schemes should be designed carefully to prevent the nonphysical oscillations. Limiting
strategies, filtering techniques or sophistical interface updating algorithms should be ap-
plied. Secondly, the phase transition model should be postulated correctly according to
the thermodynamic fundamentals.

In recent decades, lattice Boltzmann methods (LBM) emerged as an attractive CFD
method, which bases on the mesoscale particle dynamics [13–15]. Some sophistical flow
phenomena, such as interfacial flow, reactive flow, are simulated successfully by com-
bined with certain particle properties, whose motion is simply divided into ”collision”
and ”stream” loops. Shan and Chen [16] postulated a long range interaction, by which
the liquid phase transition and interfacial tension were simulated perfectly. Swift [17]
coupled Cahn-Hilliard free energy formula with LBM, where phase separation and two-
phase flow modeling were validated to be feasible. The key issue of the two models is
to reproduce the non-ideal gas EOS. Later on, multiphase LBM were applied in many
fields [18–21]. Yuan and Schaefer [22] compared different EOS with Chen-Shan’s model.
Sukop [23] validated the capability of LBM to simulate the cavitation problems by Shan-
Chen’s model. 2D bubble evolution (growth or collapse) were reported.

In this paper, our first goal is to demonstrate the feasibility of LBM on cavitation
simulation further. With LBM, we also intend to study the 2D cavitation bubble growth
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under shear flow during its inception stage, which is of lack for traditional numerical
simulations. The scientific definition of inception is adopted in our work, ”···the initial
rapid growth of vapor- and gas-filled bubbles as a consequence of hydrodynamic forces.” [4]. It
should be noted that, in published SCMP LBM models, both vapor and liquid phase
share the common relaxation time, which leads to the same viscosity [21]. Albeit it could
lead some errors, the simulation results in quiescent liquid agree with Rayleigh-Plesset
model well. In the situation of shear flow, the results are compared with the quiescent
case to analyze the shear flow influences.

The paper is organized as following. In Section 2, the LBM method coupled with
Shan-Chen’s multiphase model is introduced briefly. The flow domain setup is described
in this section as well. In Section 3, the bubble growth under quiescent and shear flow are
analyzed, which are compared with Rayleigh-Plesset and other bubble dynamic models
respectively. Conclusions are drawn in Section 4.

2 Numerical models

2.1 SCMP lattice Boltzmann model

A crucial idea of lattice Boltzmann model is, both the location and velocity of the par-
ticles, which compose the fluids, are discretized (see Fig. 1). The typical LB equation is
presented as,

fi(x+ei∆t,t+∆t)− fi(x,t)=− 1

τ
·( fi(x,t)− f

eq
i (x,t)), i=0,1,··· ,b, (2.1)

where fi denotes the particle velocity distribution function along the ith direction, f
eq
i

the corresponding local equilibrium distribution satisfying Maxwell distribution. x, ei

(i=0,1,··· ,b) are the lattice site coordinates and the particle velocities towards the nearest-
neighboring sites respectively. b is the number of the neighbors. The lattice Boltzmann
equation implies two kinds of particle motions, streaming and collision. On the LHS of
Eq. (2.1), particles jump from local site, x, to its nearest-neighboring sites, x+ei∆t, on each
time step, ∆t≡1. On the RHS, the collision leads loss or gain of the particles with velocity
of ei. On the other hand, after collision, the velocity distribution will relax to equilibrium
distribution, f

eq
i .

In this study, D2Q9 model is applied, which is depicted in Fig. 1. The equilibrium
velocity distribution reads,

f
eq
i (x,t)=wiρ(x)

[

1+3
ei ·u

c2
+

9

2

(ei ·u)2

c4
− 3

2

u2

c2

]

, (2.2)

where the weights wi are 4/9 for the rest particles (i=0), 1/9 for i=1,2,3,4, and 1/36 for
i =5,6,7,8 (as in Fig. 1). u, c are macro-velocity and the lattice speed. The corresponding
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Figure 1: Schematic diagram for D2Q9 model.

macro-variables are defined as,

ρ=
8

∑
i=0

fi, (2.3)

ρu=
8

∑
i=0

( fi ·ei), (2.4)

µ=(2τ−1)/6. (2.5)

For typical LBM, the ideal gas equation of state is satisfied, P=ρ/3.
Following Shan and Chen’s model [16], long range interactions between fluid par-

ticles, or non-ideal gas effects, are applied in our work, which influence the averaged
velocity, u, in Eq. (2.2). The forces actually lead to the phase separation, for both single-
and multi-components, if it’s large enough [24]. In our D2Q9 model, it is given by,

F=−Gψ((x),t)
8

∑
i=1

wiψ(x+ei∆t,t)ei , (2.6)

where G is the interaction strength, with G<0 representing attractive forces. And ψ is the
effective density, namely,

ψ(ρ)=ψ0 exp(−ρ0/ρ), (2.7)

following Sukop’s work [23]. In the equation, ψ0 and ρ0 are the arbitrary constants. There-
fore, after a collision, we have the modified net momentum,

ρu=
8

∑
i=1

fi ·ei +τF. (2.8)
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The simplified pressure is obtained after correlating Eq. (2.1) with the Navier-Stokes
equations by Chapman-Enskog expansion [16],

P=
ρ

3
+
G
6

[

ψ(ρ)2
]

(2.9)

which is not an ideal gas EOS. At the critical point, both first- and second-order pressure
derivatives with respect to the density are zero, i.e.,

(∂P/∂v)T =(∂2P/∂v2)T =0.

The critical value of Gc can be obtained. For G<Gc, at a single pressure, two densities of
the same material can coexist, namely, phase separation. The interfacial tension, which
stems from inter-molecular forces, could be evaluated simply through the pressure dif-
ference of a circular interface.
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Figure 2: Computational domain.

2.2 Computational domain

In this work, the computational domain, 500×400, is set as shown in Fig. 2. The upper-
and down-side boundaries are imposed with constant velocity, which have same values
but opposite directions (vB = ±0.02,±0.05,±0.08,±0.1). Zou-He’s boundary condition
model is applied [25] on these two sides. Left- and right-side boundaries are imposed
with constant density/pressure. The value of the boundary density is set following
Sukop’s procedure [26]. For a certain fluid, phase densities are computed in the flat-
interface liquid-vapor system. The density boundary condition is then set with the val-
ues a little lower than the liquids in the flat interface case. In this study, Sukop’s [23]
parameters are adopted, ρ0 = 200, ψ0 = 4.0, G =−120, while τ = 1.0. Our flat interface
results show the liquid density ρL =524.2 and vapor density ρv =85.7. The density on the
sides is ρBound =500, accordingly.

With these parameters, the bubble will collapse if the initial size is smaller than Rcrt=
6 due to the large interfacial tension. To catch the shear flow influence on the bubble



X. P. Chen / Commun. Comput. Phys., 7 (2010), pp. 212-223 217

growth, Rini = 8 is chosen. The initial density condition is set ρin = 80 inside the bubble
and ρout=ρBound=500 outside the bubble. The velocity is initialized with fully developed
shear flow profile (as in Fig. 2), and the velocity distribution function, fi, is calculated
through Eq. (2.2).

3 Results and analysis

3.1 Bubble growth in quiescent domain

The bubble growth in quiescent liquid is calculated as benchmark, and the results are to
be compared with the shear flow cases. In this section, the simulation is implemented
with two domain size, 300×300 and 500×400 respectively. The purpose is to check the
domains size influences, as discussed below.
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Figure 3: Bubble growth in rest liquid, � : 500×400, © : 300×300, ···: Runge-Kutta simulation.

The bubble radius revolution is plotted in Fig. 3. The behavior of a single bubble in
an infinite domain of liquid at rest far from the bubble and with uniform temperature far
from the bubble can be described by Rayleigh-Plesset equation [1], namely,

pB(t)−p∞(t)

ρL
= R

d2R

dt2
+

3

2

(

dR

dt

)2

+
4νL

R

dR

dt
+

2S

ρLR
, (3.1)

where ρ represents density, the subscripts B, L, ∞ the bubble, liquid and infinity respec-
tively. R is the bubble radius, and S interfacial tension. p is pressure. In our case, the
domain is 2D, and therefore the equation is modified as following.

The symbols are defined as same as in chapter 2 of Brennen’s textbook [1]. In the
liquid, the conservation of mass requires that,

ur(r,t)=
F(t)

r
, (3.2)
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where F(t) is related to R(t) by a kinematic boundary condition at the bubble surface.
And at bubble surface, we also have u(R,t)=dR/dt. Therefore,

F(t)= R
dR

dt
. (3.3)

In cylindrical coordinate, Navier-Stokes equation for motion in the r direction,

∂ur

∂r
+ur

∂ur

∂r
=− 1

ρL

∂p

∂r
+··· . (3.4)

Substituting Eq. (3.2) into Eq. (3.4) and integrating the resulting equation from R to r∞,
we obtain

ln
( r∞

R

)

· dF

dt
− F2(t)

2r2
=

p−p∞

ρL
, (3.5)

which implies, in 2D situations, the bubble growth is boundary condition sensitive. Fur-
thermore, a pressure boundary condition on the bubble surface can be achieved,

(

−p− 2µL

ρLR

dR

dt
+pB−

S

R

)
∣

∣

∣

∣

r=R

=0. (3.6)

Substituting Eqs. (3.3) and (3.6) into Eq. (3.5) yields,

ln
( r∞

R

)

·
(

Ṙ2+RR̈
)

− Ṙ2

2
+

2µL

ρLR
Ṙ− S

ρLR
=

pB−p∞

ρL
. (3.7)

In our simulations, the far field boundary varies from 10R∼16R, corresponding to

ln
( r∞

R

)

=2.3∼2.8,

during t = 0 ∼ 700. Hence, the ln r∞

R could be treated as piecewise constants approxi-
mately. Runge-Kutta method is applied to solve Eq. (3.7) numerically with ln

(

r∞

R

)

≡2.5.
Other parameters are calculated through Eq. (2.3) to Eq. (2.9). And the result is plotted
in Fig. 3, which agrees well with the LBM simulations. The largest deviation occurs at
the beginning stage (less than 10%), which may be caused by the unprecise initial density
condition, when the interface density profile relaxation couples with the bubble growth.

Furthermore, we discuss the following equation which keeps the terms of high orders
of Eq. (3.7),

Ṙ2+RR̈+
Ṙ

R
=0, (3.8)

which yields lnR∝t. Through Fig. 3, the computational results fit the relation lnR∝t quite
well. In Fig. 3, the results with different domain size are compared, where only slightly
discrepancy is found at around t=1000.

At last, it should be pointed out that, in Rayleigh-Plesset model ρv/ρL is sufficiently
small, while in our case it is close to 0.16. Further study should be implemented in the
future.
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3.2 Bubble growth under shear flow

The nonspherical cavitation bubble inception plays important roles in the wake cavita-
tion, where high shear rate flow couples with vortex evolution. Moreover, bubble defor-
mation in a second immiscible liquid is full of scientific and technical values [27]. In this
section, we focus on the bubble growth in pure shear flow.

As described in Section 2, the cavitation bubble is undergone a shear flow with the
shear rate

G=
vB

h
∝ vB,

where h is the gap size between the upper and down walls. A typical bubble growth
sequence is shown in Fig. 4.
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Figure 4: Bubble deformation in shear flow with G=0.05. The interval between each subfigure is 200 steps.

Two parameters may be worthy to be compared, i.e., the deformation and growth
rate. Here, the vapor and liquid interface is defined as ρ = 297.1, which equals to
(ρv+ρL)/2, t = 50. Following Rallison [27], we define a dimensionless deformation D
by

D=(l−b)/(l+b), (3.9)

where l and b are the largest and smallest distance from the bubble center to the interface,
respectively. The deformation for all sliding velocities and time instants are plotted in
Fig. 5, where Ca=µGa/S is the capillary number, which denotes the ratio of shear force
to the interfacial tension. Both of the characteristic viscosity µ and the interfacial tension S
are set as 1, since they keep constant for all cases. And a is set as l. The linear relationship
between Ca and D implies that, in the inception stage, the viscous and interfacial tension
effects predominate the bubble deformation, which is the characters of small size scale
flow [27]. In Fig. 5, the fitting line does not pass the origin of the coordinate, which is led
by the initial phase densities relaxation, and the discrepancy can be ignored.
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Figure 6: Bubble growth in shear flow. Inset: bubble volume at t=1500.

In Fig. 6, the volume (Vol, the area for ρ<297.1) evolution is compared under different
shear rates. The results show little, but nonzero, discrepancy among the different G (as
in the inset of Fig. 6). It is interesting to compare the details among the cases, as in
Table 1, where the subscript C denotes the bubble center and mass = ρC×Vol. In Fig. 7,
the pressure distribution inside the bubbles at t=1500 is depicted. It is observed that the
shear flow rises the bubble pressure. This can not be due to the bubble size variety purely,

since the mean interface curvature (∝
√

Vol) of the bubble varies by 1% from G = 0.0 to
G=0.1, while that of the pressure varies only by 0.1%. It contradicts the results in Section
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Figure 7: Bubble pressure distribution for G=0.02 (left) and G=0.08 (right), t=1500.

Table 1: Data comparison for t=1500.

G ρC pC mass
0.00 83.50 25.174 862972
0.02 83.51 25.176 862408
0.05 83.54 25.182 858373
0.08 83.60 25.192 854476
0.10 83.66 25.203 849233

3.1, namely, the bubble growth is driven by the bubble pressure.
Two possible reasons may lead to the above phenomenon: (i) One is the numerical

errors, either inherent, such as semi-incompressibility, vanishing Mach number assump-
tion, or errors during post-processes, such as the identify of interface (the flow condition
causes the variety of equilibrium phase density, and thus the real interface location); (ii)
another one, as mentioned at the end of Section 3.1, is that the density ratio between va-
por and liquid is large, and mass rate of evaporation, or the mass flow of liquid inward,
should not be ignored (as in [1]). The higher bubble pressure will decelerate the rate of
phase transition and thus the growth rate.

4 Conclusions and discussions

In this paper, we simulate the cavitation bubble growth in rest and in shear flows with
Shan-Chen’s SCMP lattice Botlzmann model. The feasibility of the model is validated.
The conclusions can be drawn as:
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• In quiescent environment, cavitation bubble grows with lnR ∝ t approximately,
which is in agreement with deduced 2D Rayleigh-Plesset model. Different to 3D
Rayleigh-Plesset model, the bubble growth is boundary condition sensitive in 2D.

• In shear flow, the bubble will be stretched and the deformation D ∝ Ca, which is
coincident with normal bubble dynamics. By increasing the shear rate, the bubble growth
rate will slightly decrease. The possible reason may be due to the numerical errors or the
high ρv/ρL ratio.

According to our results, the following aspects can be improved in the further study,
although the lattice Boltzmann methods can be used to capture many cavitation phenom-
ena:

• The ρv/ρL should be decreased further by applying a better multiphase LB model;

• Variable viscosities should be set differently to vapor and liquid phases in simula-
tions for practical purposes;

• Larger shear rate can be applied to obtain a larger bubble deformation to get a more
clear picture of the shear rates influences during bubble inception. In this work, the vB is
set with the limitation of Ma≪1;

• For real cavitation flow, thermal effects, bubble-bubble and bubble-solid interac-
tions, bubble-vortex interaction all play important roles. These effects should be consid-
ered as well.
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