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Abstract. High order finite difference approximations are derived for a one-
dimensional model of the shifted wave equation written in second-order form. The
domain is discretized using fully compatible summation by parts operators and the
boundary conditions are imposed using a penalty method, leading to fully explicit
time integration. This discretization yields a strictly stable and efficient scheme. The
analysis is verified by numerical simulations in one-dimension. The present study is
the first step towards a strictly stable simulation of the second-order formulation of
Einstein’s equations in three spatial dimensions.
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1 Introduction

The present study is focused towards the numerical solution of Einstein’s equations,
which describe processes such as binary black holes and neutron star collisions. The out-
come of this kind of simulations is considered to be crucial for the successful detection
and interpretation of gravitational waves, expected to be measured by laser interferom-
eters such as LIGO, GEO600, LISA and others. In turn, measurement of gravitational
waves will constitute a strong, direct verification of Einstein’s theory, and open a new
window to the universe.
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In the harmonic description of general relativity, the principal part of Einstein’s equa-
tions reduces to 10 curved space wave equations for the components of the space-time
metric. Although these equations can be reduced to first-order symmetric hyperbolic
form [7], this has the disadvantage of introducing auxiliary variables with their con-
straints and boundary conditions. The reduction to first-order form is also less attractive
from a computational point of view considering the efficiency and accuracy [12, 19]. The
reasons for solving the equations on first-order form are most likely related to the matu-
rity of CFD, which has evolved during the last 40 years. I.e., many of the stability issues
for first-order hyperbolic problems have already been addressed.

Wave-propagation problems frequently require farfield boundaries to be positioned
many wavelengths away from the disturbance source (for example binary black holes).
To efficiently simulate these problems requires numerical techniques capable of accu-
rately propagating disturbances (such as a gravitational wave) over long distances. It
is well know that high-order finite difference methods (HOFDM) are ideally suited for
problems of this type. (See the pioneering paper by Kreiss and Oliger [14]). Not all
high-order spatial operators are applicable, however. For example, schemes that are G-
K-S stable [9], while being convergent to the true solution as ∆x → 0, may experience
non-physical solution growth in time [5], thereby limiting their efficiency for long-time
simulations. Thus, it is imperative to use HOFDMs that do not allow growth in time;
a property termed “strict stability” [8]. Deriving strictly stable, accurate and conserva-
tive HOFDM is a significant challenge that has received considerable past attention. (For
example, see references [1, 3, 10, 11, 16, 31–33, 38]).

The energy method (see for example [8]) is a common technique to derive well-
posedness for initial-boundary value problems. A very powerful way of obtaining prov-
able strictly stable numerical approximations is to mimic the underlying continuous en-
ergy estimate. A well-proven HOFD methodology that ensures this is the summation-
by-parts simultaneous approximation term (SBP-SAT) method. The SBP-SAT method
simply combines finite difference operators that satisfy a summation-by-parts (SBP) for-
mula [13], with physical boundary conditions implemented using either the Simultane-
ous Approximation Term (SAT) method [5], or the projection method [19, 28, 29]. Exam-
ples of the SBP-SAT approach can be found in references [6,15,17,18,20,22,24–27,34,35].

Deriving strictly stable numerical simulations of Einstein’s equations on second-order
form has proven to be a very difficult task [2, 4, 23, 37], especially for HOFDMs. In the
present study this situation is illustrated by the shifted wave equation in 1-D that cap-
tures most of the stability issues without introducing unnecessary complications. This
1-D problem was analyzed in [37] for a second-order accurate approximation.

For the Einstein’s equations (and the shifted wave equation) written on second-order
form, the regular energy estimate fails in the most interesting applications, which re-
quired the introduction of a modified energy estimate. The existing SBP-SAT method
(here referred to as the standard SBP-SAT method) is based on the regular energy esti-
mates, which means that the standard SBP-SAT method has to be modified in order to fit
the mentioned modified energy estimate.
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The goals of the present study are two-fold. The first one is to develop a systematic
methodology, to guarantee, by construction, strict stability of the shifted wave equation
using a narrow-stencil SBP-SAT method. The term narrow-stencil was introduced in [22]
to define explicit finite difference schemes with a minimal stencil width. This task essen-
tially requires the identification of the conditions that the SBP-SAT method must satisfy
to guarantee strict stability and accuracy.

The second task is to demonstrate the new methodology. To this end, new high-order
accurate finite difference SBP operators are derived suitably for the Einstein’s equations
written on second-order form.

The outline of the paper is the following: in Section 2 we derive the 1-D shifted
wave equation from the Einstein’s equations. The SBP property for the first- and second-
derivative difference operators are discussed in Section 3, and we show an important
relationship between them, referred to as full compatibility. (The term compatible was in-
troduced in [22] as a necessary condition to prove stability for narrow-stencil approxi-
mations of the compressible Navier-Stokes equations. full compatibility is a more strict
condition than compatibility). The first main result in the present study is the derivation
of second-, fourth- and sixth-order accurate fully compatible SBP operators using the
symbolic mathematics software Maple. In Section 4 we analyze the 1-D shifted wave
equation using the energy method and an eigenvalue analysis. The second main result
in this paper is to prove strict-stability using a modified SBP-SAT method combining: 1)
the newly constructed fully compatible SBP operators, 2) SBP preserving artificial dissi-
pation (first introduced in [21]), and 3) the newly derived modified SAT technique for
implementing the physical boundary conditions. Finally, in Section 5, the accuracy and
stability properties of the present method is verified by performing numerical simula-
tions. Conclusions and future work are presented in Section 6.

2 The shifted wave equation

The present study is focused on the numerical stability issues concerning the shifted
wave equation, a 1-D model of Einstein’s equations. To make the connection between
the shifted wave equation in 1-D and Einstein’s equations we make a brief review of the
harmonic description of General Relativity, in which the field equations can be written
as a set of 10 curved wave equations for the space-time metric components. We will then
use that review to argue that the geometric aspects, as well as the stability features of
the problem can be fully captured by analyzing the properties of a shifted scalar wave
equation in 1-D.

Harmonic coordinates xµ≡(t,xi)=(t,x,y,z) satisfy the wave equation in curved space
given by

�gxµ :=
1√−g

∂a(
√

−ggab∂bxµ)=0, (2.1)

where g = det(gab), gab is the inverse metric and �g denotes the wave operator in the
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curved geometry defined by gab. In these coordinates Einstein’s equations reduce to 10
quasilinear wave equations for the metric tensor of the form

�ggab =Sab, (2.2)

where Sab contains the non-linear terms that do not enter the principal part of the equa-
tion, and depends only on first derivatives of the metric. Now, the scalar wave equation
given by

�gu≡ 1√−g
∂a(
√

−ggab∂bu)=0, (2.3)

with u a scalar field, has the same principal part as (2.2) and it therefore represent a
fundamental model that allows us to test the numerical algorithms derived in the present
study, aiming to solve the full non-linear gravitational problem.

Consider, hence, as a first step, a simple 1-D problem (i.e, with one spacial coordinate)
of (2.3). In this case xµ = (t,x) and, by introducing the densitized inverse metric γab ≡√−ggab, the scalar wave equation reduces to

∂t(γtt∂tu)+∂t(γtx∂xu)+∂x(γxt∂tu)+∂x(γxx∂xu)=0. (2.4)

If we now express the metric γab in the usual ADM variables (introduced by Arnowitt,
Deser and Misner) by defining the lapse (N ) and shift (a) functions by means of a foli-
ation of the space-time into spacial hypersurfaces Σt parametrized by a time function t,
then our 1-D (2.4) takes the form of the following shifted wave equation

−∂ttu+∂t(a∂xu)+∂x(a∂tu)+∂x((b−a2)∂xu)=0. (2.5)

Here b is a smooth coefficient (directly related to the lapse N ) assumed to satisfy b>0. In
this expression we have taken for simplicity and without loss of generality γtt =−1 for
the extra term that would otherwise appear in the equation is a lower order term. Hence,
it depends only on the first time-derivative of γtt, and does not enter in the principal part
(it can be absorbed into the tensor Sab).

Remark 2.1. The coefficient b−a2 (≡γxx in general relativity, and ≡c in the present study)
in (2.5) determines the character of the space-time foliation. For example, b−a2

>0 and b>

0 means that the t-foliation is spacial and the space-time metric has lorentzian signature.
There is an event horizon where b = a2 while b−a2

< 0 implies that the time flow vector
(ta) becomes spacial, which would correspond to a region inside the horizon of a black
hole.

To summarize: When harmonic coordinates are introduced, Einstein’s equations re-
duce to a set of curved wave equations whose principal part is identical to that in the
simple model of the shifted wave equation

utt−(aux)t−(aut)x−((b−a2)ux)x =0. (2.6)
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(We have, for compactness, changed the derivative notation to subindex.) As a conse-
quence we will, from now on, refer to (2.6) as a 1-D model of Einstein’s equations, with
the assumption that b is positive. In the present study we will analyze the stability and
accuracy properties of this model, with the intention to generalize it to the full 3-D prob-
lem in a coming study. We note that (2.6) can be written as

(∂/∂t−λ1∂/∂x)(∂/∂t−λ2∂/∂x)u=0, (2.7)

indicating the characteristics. Here

λ1,2 = a±
√

b , −λ1 λ2 =b−a2≡ c. (2.8)

The model (2.6) was analyzed in [37], using a narrow-stencil second-order non-SBP dis-
cretization. Furthermore, only the half-plane problem was analyzed for the case c < 0
(corresponding to a region inside the event horizon) in that study, thus avoiding the
problem of implementing physical boundary conditions. In the present study we want
to extend the analysis in [37] to a higher-order narrow-stencil SBP-SAT method, including
the implementation of the physical boundary conditions (especially for c<0).

3 Definitions

The following definitions are needed in Section 4, to derive and analyze the numerical
approximations of the shifted wave equation. Let the inner product for real-valued func-
tions u,v∈L2[0,1] be defined by

(u,v)=
∫ 1

0
uvwdx, w(x)>0,

and let the corresponding norm be ‖u‖2
w = (u,u). The domain (0≤ x ≤ 1) is discretized

using N+1 equidistant grid points,

xi = ih, i=0,1,··· ,N, h=
1

N
.

The approximate solution at grid point xi is denoted vi, and the discrete solution vector
is vT =[v0,v1,··· ,vN ]. Similarly, we define an inner product for discrete real-valued vector
functions u,v∈RN+1 by

(u,v)H =uT Hv, H = HT
> 0,

with the corresponding norm ‖v‖2
H = vT Hv. The following vectors will be frequently

used:

e0 =[1,0,··· ,0]T, eN =[0,··· ,0,1]T . (3.1)
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3.1 Narrow-diagonal SBP operators

To define narrow-diagonal SBP operators, we present the following definition (first stated
in [22]):

Definition 3.1. An explicit pth-order accurate finite-difference scheme with minimal stencil
width of a Cauchy problem is called a pth-order accurate narrow stencil.

We say that a scheme is explicit if no linear system of equations need to be solved to
compute the difference approximation. Spatial Padé discretizations [16] are often referred
to as “compact schemes”. The approximation of the derivative is obtained by solving a
tri- or penta-diagonal system of linear equations at every time step. Hence, if written
in explicit form, Padé discretizations lead to full-difference stencils, similar to spectral
discretizations.

The following two Definitions are central to the present study (first stated in [22]),

Definition 3.2. A difference operator D1 = H−1Q approximating ∂/∂x, using a pth-order ac-
curate narrow stencil, is said to be a pth-order accurate narrow-diagonal first-derivative SBP
operator, if H is diagonal and positive definite, and

Q+QT = B=diag(−1,0··· ,0,1) .

For hyperbolic problems on second-order form, we need an SBP operator for the
second-derivative. Consider the wave equation (excluding the boundary conditions)

utt =(cux)x. (3.2)

Multiplication of Eq. (3.2) by ut and integration by parts (referred to as”the energy
method”) leads to

d

dt

(

‖ut‖2+‖ux‖2
c

)

=2cutux|10. (3.3)

Definition 3.3. Let D
(c)
2 = H−1(−M+CS) approximate ∂/∂x(c∂/∂x), where c(x) > 0 is a

smooth function, using a pth-order accurate narrow stencil. D
(c)
2 is said to be a pth-order accu-

rate narrow-diagonal second-derivative SBP operator, if H is diagonal and positive definite, M is
symmetric and positive semi-definite, S approximates the first-derivative operator at the bound-
aries and C=diag(−c0,0,··· ,0,cN).

(High-order accurate narrow-diagonal second-derivative SBP operators for constant
coefficients c(x)=1, denoted D2, were constructed in [18].) An example of its use is the

semi-discretization vtt =D
(c)
2 v of Eq. (3.2). Multiplying by vT

t H and adding the transpose
leads to

d

dt

(

‖vt‖2
H +vT Mv

)

=2(vt)N(CSv)N−2(vt)0(CSv)0. (3.4)

Estimate (3.4) is a discrete analog of Eq. (3.3). Notice that obtaining energy estimates for

schemes utilizing both D1 and D
(c)
2 requires that both are based on the same norm H.
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Remark 3.1. The boundary closure for a pth-order accurate narrow-diagonal SBP opera-
tor is of order p/2 (see [18]). This means that the boundary closure for (D1)

2 ≡D1 D1 is
of order p/2−1. Hence, for second-order hyperbolic systems the convergence for wide-
stencil approximations (i.e., by replacing D2 with (D1)

2) drops to (p/2+1)th-order, while
the narrow-stencil formulations are (p/2+2)th-order accurate (see [36] for more informa-
tion on the accuracy of finite difference approximations).

Remark 3.2. An SBP operator is essentially a centered difference scheme with a spe-
cific boundary treatment. In the Appendix we present both finite difference stencils with
and without a SBP closure for the fourth- and the sixth-order accurate cases. The fi-
nite difference stencils without a SBP closure will be referred to as non-SBP operators.
The boundary closures of the sixth-order non-SBP operators are chosen to produce sixth-
order accurate stencils (compared to the third-order accurate boundary closures for the
SBP operators). The fourth-order non-SBP operator is presented in [31], where it is used
to derive HOFDM for the compressible Navier-Stokes equations. (In the present study,
the fourth-order accurate non-SBP operator will be used in a new environment, not orig-
inally intended for. We introduce it here merely to motivate the importance of the SBP
property for numerical simulations of the shifted wave-equation).

There are two options for obtaining a narrow-stencil approximation of (3.2). The
first option (as shown above) is to approximate (cux)x using a narrow-diagonal second-

derivative SBP operator D
(c)
2 , to exactly mimic the continuous estimate (3.3). (A second-

order accurate narrow-diagonal second-derivative SBP operator D
(c)
2 is presented in the

Appendix.) The drawback so far with this approach is that D
(c)
2 is limited to second-order

accuracy. The second approach is to discretize the expanded form cxux+cuxx (using the
constant coefficient narrow-diagonal SBP operators), leading to

vtt = C̄xD1v+C̄D2v= H−1(C̄xQ−C̄M)v+H−1CSv.

The diagonal matrices C̄ and C̄x have the values of c and cx injected on the diagonal. A
sufficient stability condition for this discretization is that the eigenvalues of C̄xQ−C̄M are
non-positive and strictly real (assuming that the boundary conditions are implemented
in a stable way, which will be the task of the coming section). For the constant coefficient
case this condition is guaranteed since M by construction is symmetric and positive semi-
definite. For the variable coefficient case, an eigenvalue analysis (not shown here) for
various test-functions c(x)>0 (and number of unknowns) indicates that the eigenvalues
to C̄xQ−C̄M are non-positive and strictly real using the SBP operators presented in the
Appendix.

Remark 3.3. Definitions 3.1-3.3 were first stated in [22]. To improve readability these
definitions have been repeated in the present study. We now continue this section with
completely new material.

The following definition is crucial to the present study:
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Definition 3.4. Let D1 and D2 be pth-order accurate narrow-diagonal first- and second-
derivative SBP operators in the same norm H. If

D2 = H−1(−DT
1 HD1−R(p)+BD1),

and the remainder R(p) is positive semi-definite, D1 and D2 are called fully compatible.

Employing the first-derivative SBP operator twice (leading to a wide stencil) yields
D1 D1 = H−1(−DT

1 HD1+BD1). Hence, for fully compatible pth-order accurate SBP oper-
ators, the following property holds:

D2 = D1 D1−H−1R(p),

where R(p) is symmetric and positive semi-definite.
The first main result in the present study is the derivation of fully compatible SBP op-

erators for the second-, fourth- and sixth-order accurate cases using the symbolic mathe-
matics software Maple. For a detailed study of how to construct the traditional first- and
second-derivative SBP operator see [13] and [18] respectively. SBP operators sometimes
(depending on the order of accuracy) have “free” parameters after the accuracy and SBP
conditions have been enforced. Since the full compatibility relation introduce an extra
(new) condition (defined in Definition 3.4) we need more “free” parameters (compared
to the traditional SBP operators case). This is the reason why the newly constructed
fully compatible SBP-operators incorporate more boundary points (two more at each
boundary to be precise, except for the second-order case) compared to the traditional
SBP operators derived in [13, 18]. The fully compatible SBP operators are presented in
the Appendix.

For the Cauchy problem, i.e., disregarding the one-sided boundary closures of the
SBP operators, the following relations for the remainders R(p) (p=2,4,6,8) hold:

−R(2) =−h3

4
D4,

−R(4) =+
h5

18
D6−

h7

144
D8,

−R(6) =− h7

80
D8+

h9

600
D10−

h11

3600
D12,

−R(8) =+
h9

350
D10−

h11

2520
D12+

h13

14700
D14−

h15

78400
D16,

(3.5)

where D2n =(D+D−)n is an approximation of d2n

dx2n . For example,

1

h2
(D+D−v)j =(vj+1−2vj+vj−1)

is the second-order accurate narrow second-derivative finite-difference approximation.
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The action of a derivative of order n on a pure Fourier mode eiωx, results in (iω)n eiωx.
The second-derivative, for example, gives −ω2 eiωx. Consider the same Fourier mode on
a grid over [−1,1] with grid spacing h. The Fourier mode defined on the grid is given
by ûT =[eiωx0 ,eiωx1 ,··· ,eiωxN ]. It is convenient to introduce a scaled wavenumber k=ωh,
where k∈ [0,π]. The Fourier mode for the wavenumber k=π, is ûT =[1,−1,1,··· ,−1] (the
highest frequency that can exist on the grid). It can be shown that a centered, second-
order accurate difference operator of order n, applied to a Fourier mode results in

Dn û=
(2i

h

)n
û sinn

( k

2

)

.

This shows that −R(p) constitutes only dissipative terms.

Definition 3.5. Let R(p) be the remainder for the Cauchy problem, given by Eq. (3.5). Let R̃(p)

be defined as the minimal stencil, such that R̃(p) û≥R(p) û. Then we say that R̃(p) dominates R(p).

For the Cauchy problem R̃(p) (p=2,4,6,8) is given by:

R̃(2) =
h3

4
D4, R̃(4) =− h5

12
D6, R̃(6) =

17h7

720
D8, R̃(8) =− 2h9

315
D10. (3.6)

Definition 3.6. Let R(p) be the remainder for the boundary-value problem. Let R̃(p) be defined
as the minimal stencil, such that the eigenvalues of (R̃(p)−R(p)) are non-negative. Then we say
that R̃(p) dominates R(p).

For the boundary-value problem, an eigenvalue analysis results in

R̃(2) =1.00
h3

4
DT

2 D2, R̃(4) =1.06
h5

12
DT

3 D3, R̃(6) =2.94
17h7

720
DT

4 D4, (3.7)

where (D2,3,4)v are consistent approximations of uxx,uxxx and uxxxx, respectively (see
[21]).

The compatibility relation so far is defined only for the constant coefficient case. By
employing the first-derivative SBP operator twice (resulting in a wide-stencil approxima-
tion), the semi-discretization of (3.2) is given by

vtt = H−1(−DT
1 C̄HD1+CD1)v,

leading to an energy estimate that exactly mimics the continuous energy estimate (3.3).
By using the split form and the fully compatible first- and second-derivative SBP opera-
tors the semi-discretization of (3.2) is given by

vtt = H−1(C̄xQ−C̄M+CD1)v.

The following definition is central to the present study:
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Definition 3.7. Let D1 and D2 be pth-order accurate fully compatible first- and second-derivative
SBP operators. If

C̄xQ−C̄M=−DT
1 HC̄D1−R

(p)
c ,

and the remainder R
(p)
c is positive semi-definite for c(x)>0, D1 and D2 are called fully compatible

for c(x)>0.

Remark 3.4. D1 = H−1Q and D2 = H−1(−M+CD1) is defined in Definitions 3.2 and 3.3.
(The boundary derivative operator CS in Definition 3.3 is equal to CD1 if D1 and D2 are
fully compatible.) The diagonal matrices C̄ and C̄x have the values of c and cx injected
on the diagonal. The newly constructed fully compatible SBP operators presented in the
Appendix, have been found to be fully compatible for c(x)>0, for various test-functions
c(x)>0.

Definition 3.8. Let R
(p)
c be the remainder for the boundary-value problem. Let R̃

(p)
c be defined

as the minimal stencil, such that the eigenvalues of (R̃
(p)
c −R

(p)
c ) are non-negative. Then we say

that R̃
(p)
c dominates R

(p)
c .

An eigenvalue analysis results in the following operators

R̃
(2)
c =h3DT

2 |C̄|D2, R̃
(4)
c =

h5

4
DT

3 |C̄|D3, R̃
(6)
c =

17h7

120
DT

4 |C̄|D4. (3.8)

4 Analysis

The main motivation of the present study is to analyze and resolve the stability issues for
narrow-stencil approximations of the shifted wave equation (2.6), for the case c < 0. We
will derive the necessary stability conditions using a modified SBP-SAT method, based
on the fully compatible SBP operators constructed in the present study.

4.1 The constant coefficient 1-D problem

We begin studying the constant coefficient problem

utt−2auxt−cuxx =0, (4.1)

(obtained by linearizing and freezing the coefficients in (2.6)), before we go on with the
more interesting non-constant coefficient problem. Artificial boundaries are introduced
at x = 0,1. The energy method in combination with the signs of λ1,2 are used to derive
well-posed boundary conditions. The regular technique (see Section 3) of multiplying
Eq. (4.1) by ut and integrating by parts leads to

d

dt
E0 =2ut(aut+cux)|10, (4.2)
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where

E0 =
(

‖ut‖2+‖ux‖2
c

)

. (4.3)

This is a valid energy for c≥0, but not for c<0. To obtain an energy for c<0, we multiply
Eq. (4.1) by ut−aux and integrate by parts to obtain

d

dt
E1 =

(

λ1

2
(ut−λ2ux)

2+
λ2

2
(ut−λ1ux)

2

)

|10, (4.4)

where

E1 =
(

‖ut−aux‖2+‖ux‖2
b

)

. (4.5)

This is a valid energy for any c, provided b≥ 0. The main focus in the present study is
to devise a stable and accurate narrow-stencil approximation to Eq. (4.1), including the
boundary treatment.

To obtain a well-posed problem we close Eq. (4.1) with appropriate boundary condi-
tions (depending on the sign of c). With no restriction we assume that a > 0 (if a < 0 the
number of boundary conditions to be specified at each boundary is reversed). We have
three different scenarios: c>0, c=0 and c<0.

Case 1, c>0

If c>0 the direction of the characteristics (Eq. (2.7)) – shows that we need to specify one
boundary condition at each boundary. The characteristic boundary conditions (CBC) are
given by

L0u=ut−λ1ux = g0, x=0,

L1u=ut−λ2ux = g1, x=1.
(4.6)

To simplify the analysis we assume that the boundary data is homogeneous (g0 =g1 =0).
The analysis also holds for inhomogeneous data, but introduces unnecessary notation.
The energy method applied to Eq. (4.1) with the CBCs (4.6) leads to

d

dt
E0 =−2

√
b(u0t)

2−2
√

b(u1t)
2, (4.7)

or
d

dt
E1 =−2

√
b

λ1
(u0t)

2+
2
√

b

λ2
(u1t)

2. (4.8)

Here the following notation is used: u0≡u(x=0) and u1≡u(x=1).

A semi-discretization of (4.1) using narrow-diagonal SBP operators D1, D2, and the
SAT method to impose the CBCs (4.6), can be written as

vtt−2aD1vt−cD2v=SAT0+SAT1, (4.9)
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where the penalty terms above are given by SAT0 = τ0H−1e0(LT
0 v−g0) and SAT1 =

τ1H−1eN(LT
1 v−g1) with e0 and eN given by Eq. (3.1). The discrete versions of the CBCs

(4.6) are

LT
0 v=vt−λ1(Sv)0 = g0,

LT
1 v=vt−λ2(Sv)N = g1.

(4.10)

Lemma 4.1. The scheme (4.9) with homogeneous data is stable for c > 0, if D1,2 are narrow-
diagonal SBP operators, τ0 =λ2 and τ1 =−λ1.

Proof. Let g0=g1=0. Multiplying Eq. (4.9) by vT
t H from the left and adding the transpose

leads to

d

dt
(‖vt‖2

H +cvT Mv)=2(v0t)
2(−a+τ0)+2(vNt)

2(a+τ1)

−2(v0)t(Sv)0(c+τ0λ1)+2(vN)t(Sv)N(c−τ1λ2),

assuming that M is symmetric. To obtain an energy estimate requires that M is positive
semi-definite, τ0 =−c/λ1≡λ2 and τ1 = c/λ2≡−λ1. This leads to

d

dt
(‖vt‖2

H +cvT Mv)=−2
√

b(v0t)
2−2

√
b(vNt)

2,

which exactly mimics the continuous estimate (4.7). By assumption, D2 is a narrow-
stencil SBP operator, meaning that M is both symmetric and positive semi-definite.

For the present case c > 0 the standard SBP-SAT method leads to an energy estimate
that exactly mimics the continuous energy estimate, thus proving strict-stability. It is
presented here for completeness. It is important to remember that the SBP-SAT method
consists of two parts. The first part is the SBP property of the finite difference stencils D1,2.
(An SBP operator is essentially a centered difference scheme with a specific boundary
treatment.) In Fig. 1 we display the eigenvalues to Eq. (4.9) (with a=1, b=2 and N =51)
using both SBP and non-SBP operators D1,2 for the sixth-order case. The treatment of the
physical boundary conditions using the SAT technique is kept identical for the SBP and
non-SBP cases, to isolate the effect of the SBP property. All operators are presented in
Appendix.

Lemma 4.1 shows that the energy (and thus the solution) is bounded when employing
the SBP-SAT method, implying that the eigenvalues to (4.9) must be non-positive. This is
also verified in Fig. 1, where the largest real part is 3.40·10−14 for the SBP-SAT method.
The corresponding result when using the non-SBP operators results in eigenvalues with
positive real part (the largest real part is 60.44), thus resulting in an unstable scheme.
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Figure 1: The eigenvalues to Eq. (4.9) for the sixth-order case, comparing a SBP closure (left) and a non-SBP
closure (right). b=2, a=1, N =51.

Case 2, c=0

If c=0, Eq. (4.1) reduces to a hyperbolic first-order problem. In this case λ2 =0 and λ1 >0
(for a>0), meaning that we need to specify only one boundary condition ut = g, at x=0.
The energy method applied to Eq. (4.1) leads to

d

dt
‖ut‖2 =2a(g2−(v0t)

2). (4.11)

A semi-discretization of (4.1) is given by

vtt−2aD1vt =−2aτH−1e0((vN)t−g), (4.12)

and, by applying the energy method to this expression, we obtain

d

dt
‖vt‖2

H =2a

(

τ2

2τ−1
g2−(v0t)

2−(2τ−1)

(

(vN)t−
τ

2τ−1
g

)2
)

.

An energy estimate exists for τ >1/2. The choice τ =1 yields

d

dt
‖v‖2

H =2a
(

g2−(v0)
2−((vN)t−g)2

)

,

which is a discrete analog of the integration by parts formula Eq. (4.11) in the continuous
case, where the extra term ((vN)t−g)2 introduces a small additional damping.

Case 1, c<0

If c <0, an energy estimate can be derived considering the energy E1 shown in Eq. (4.5),
which is obtained by multiplying Eq. (4.1) by ut−aux and integrating by parts. For the
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semi-discrete approximation, this complicates the imposition of boundary conditions us-
ing SAT. We begin studying this case with the exclusive usage of first-derivative SBP
operators (here referred to as the wide-stencil approximation), to show that the stability
problems are not restricted to the narrow-stencil approximation (although the narrow-
stencil approximation introduces some additional complications, shown later in this sec-
tion).

With c<0 we need to specify two boundary conditions at x=1. No boundary condi-
tions should be given at x = 0 (with a < 0 it is the other way around, i.e., two boundary
conditions at x=0 are needed). Well-posed boundary conditions are given by

L11u=ut = g11, x=1,

L12u=ux = g12, x=1,
(4.13)

or, alternatively, we can impose CBCs of the form

L13u=ut−λ1ux = g13, x=1,

L14u=ut−λ2ux = g14, x=1.
(4.14)

To simplify the analysis we assume homogeneous boundary data (once more, the anal-
ysis holds for inhomogeneous data, but introduces unnecessary notation.) The energy
method applied to Eq. (4.1) with the boundary conditions (4.13) leads to

d

dt
E1 =−

(

λ1

2
(ut−λ2ux)

2+
λ2

2
(ut−λ1ux)

2

)

∣

∣

∣

x=0
. (4.15)

The wide-stencil approximation of (4.1) employing the SBP-SAT method to impose the
boundary conditions (4.13) can be written as

vtt−2aD1vt−cD1D1v=SAT2. (4.16)

The penalty term is given by

SAT2 =τ11H−1eN(LT
11v−g11)+τ12H−1eN(LT

12v−g12)

where the discrete approximations of the boundary conditions (4.13) are given by

LT
11v=(vN)t = g11,

LT
12v=(D1v)N = g12.

(4.17)

To simplify the analysis we assume that the boundary data is homogeneous. (The
analysis holds for inhomogeneous data, but introduces unnecessary notation.) Multiply-
ing Eq. (4.16) by vT

t H−avTQT from the left and adding the transpose leads to

d

dt
(E1)H = xT

N R̃N xN−xT
0 R0x0,
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where we have introduced the discrete energy

(E1)H =(‖vt−aD1v‖2
H +b‖D1v‖2

H). (4.18)

Here xT
0,N =[(v0,N)t, (D1v)0,N ] and

R̃N =

[

a+2τ11 c−aτ11+τ12

c−aτ11 +τ12 −ac−2aτ12

]

, R0 =

[

a c
c −ac

]

. (4.19)

Since R0 is positive definite, stability follows if R̃N can be made negative semi-definite by
proper tuning of the penalty parameters τ11 and τ12. However, it can be shown (although
not displayed here) that it is not possible to make R̃N negative semi-definite with only
these two penalties.

By introducing the auxiliary variable w≡vt, Eq. (4.16) can be re-written as

vt =w,

wt =2aD1w+cD1D1v+SAT2,
(4.20)

where
SAT2 =τ11H−1eN(wN−g11)+τ12H−1eN((D1v)N−g12).

The reason for introducing the approach (4.20) is twofold, namely: 1) we would like
to employ a Runge-Kutta method to time-advance the semi-discrete problem, and 2)
we need to consider another penalty SAT1 to turn R̃N negative semi-definite. The new
penalty term is given by

SAT1 =τ13H−1DT
1 eN((D1v)N−g12),

and should be added to the first equation in the system (4.20); i.e., we obtain the modified
problem

vt =w+SAT1,

wt =2aD1w+cD1D1v+SAT2.
(4.21)

The energy method on Eq. (4.21) leads to

d

dt
(E1)H = xT

N RNxN−xT
0 R0x0≡BT,

where, now,

RN =

[

a+2τ11 c−aτ11+τ12

c−aτ11+τ12 −ac−2aτ12 +2τ13

]

. (4.22)

Lemma 4.2. The scheme (4.21) with homogeneous data is stable for c < 0, if D1 is a narrow-
diagonal SBP operator, and τ11 =−a, τ12 =2c+a2, τ13 =−h2a hold.
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Proof. The energy method in combination with a more careful eigenvalue analysis (not
shown here) show that the following parameter choice

τ11 =−a, τ12 =2c+a2, τ13 =−h2a, (4.23)

leads to non-positive eigenvalues for Eq. (4.21), provided that D1 is a narrow-diagonal
SBP operator.
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Figure 2: The eigenvalues to Eq. (4.21) for the fourth-order case, comparing a SBP closure (left) and a non-SBP
closure (right). b=1, a=5, N =51.

In Fig. 2 we compare the eigenvalues to Eq. (4.21) for the fourth-order SBP and non-
SBP cases, where b=1, a=5, N =51. (The penalty parameters are given by Eq. (4.23). The
non-SBP operator is presented in [31] and is presented in Appendix for completeness).
The largest real part of the eigenvalues is −1.81·10−10 for the SBP-SAT method. The
corresponding non-SBP scheme results in eigenvalues with positive real part (the largest
real part is 265.29), thus rendering the scheme unstable.

The main focus in the present study is to derive stability conditions for a semi-
discretization of (2.6) using narrow-diagonal SBP operators D1 and D2. Consider the pth
order accurate narrow-stencil approximation (compare with corresponding wide-stencil
approximation Eq. (4.21))

vt =w+ ˜SAT1+D̃I1v,

wt =2aD1w+cD2v+ ˜SAT2+D̃I2w,
(4.24)

where

˜SAT1 =τ13H−1STeN((Sv)N−g12),

˜SAT2 =τ11H−1eN(wN−g11)+τ12H−1eN((Sv)N−g12).
(4.25)

Here we have added two new operators:

D̃I1 = cσ1H−1R̃(p)+cσ2H−1DT
1 R̃(p)D1,

D̃I2 = cσ3H−1R̃(p),
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where R̃(p) is a dissipation operator (see Definition 3.5). Possible formulations of R̃(p) are
given in Eq. (3.7).

Remark 4.1. The ˜SAT1 penalty in (4.24) introduces ST, implying that the Neumann
boundary condition will be imposed weakly at all points used in the reconstruction of
the boundary derivative (Sv)N . The boundary derivative approximation of the fourth-
order accurate S operator (see Appendix) requires five points in the reconstruction. This
means that the five points closest to the boundary will be penalized, with the weights
given by the coefficients in S.

The first main result of this paper is stated in the following Lemma:

Lemma 4.3. The pth-order accurate scheme (4.24) is stable if D1 and D2 are fully compatible,
σ1 =σ2 = a, aσ3 =1, and Lemma 4.2 holds.

Proof. By multiplying the first row in Eq. (4.21) by vT H from the left and the second row
by wTH−avT QT and adding the transpose, we obtain

d

dt
(E1)H = BT,

where BT corresponds to the boundary terms. By Lemma 4.2 BT is non-positive. For
fully compatible pth-order accurate SBP operators, the following property holds: D2 =
D1 D1−H−1R(p), where R(p) is positive semi-definite. This means that the energy method
applied to Eq. (4.24) leads to

d

dt
(E1)H = BT+cyT Ay,

where

y=





v
D1u

w



, A=





2σ1 R̃(p) aR(p) −R(p)

aR(p) 2σ2 R̃(p) −aσ3 R̃(p)

−R(p) −aσ3 R̃(p) 2σ3 R̃(p)



.

Since R̃(p) dominates R(p), the matrix A is positive semi-definite if

Ã=





2σ1 a −1
a 2σ2 −aσ3

−1 −aσ3 2σ3





is positive definite, which is true if σ1 =σ2 = a, aσ3 =1 hold.

A more careful eigenvalue analysis (not presented here) reveals that we can use
slightly less artificial dissipation to maintain strict stability. By using fully compatible
SBP operators it is found that Eq. (4.24) is stable if

σ2 =0, σ1 =σ3 =h. (4.26)
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Remark 4.2. A semi-discretization of (2.6) using a narrow-stencil approximation will re-
quire the addition of artificial dissipation also for the Cauchy problem. Possible formu-
lations of R̃(p) are then given in Eq. (3.6).

In Fig. 3 we compare the eigenvalues to Eq. (4.24) for the sixth-order SBP and non-SBP
cases, where b = 1, a = 1.01, N = 51. The penalty parameters are given by Eq. (4.23), and
the dissipation parameters are given by Eq. (4.26).
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Figure 3: The eigenvalues to Eq. (4.24) for the sixth-order case, comparing a SBP closure (left) and a non-SBP
closure (right). b=1, a=1.01, N =51.

The largest real part of the eigenvalues is −7.83·10−13 for the SBP-SAT method. The
corresponding non-SBP scheme results in eigenvalues with positive real part (the largest
real part is 55.264), thus rendering the scheme unstable. (The only difference between the
SBP and non-SBP implementations of (4.24) above is the difference operators D1,2, i.e.,
the penalties SAT1,2 and the dissipation operators DI1,2 are kept identical to isolate the
effect of the SBP closures).

Remark 4.3. The eigenvalue analysis (not presented here) reveals that stability of
Eq. (4.21) and Eq. (4.24) are highly sensitive to slight deviations from the stability re-
gion of the penalty- and dissipation-parameters given by (4.23) and (4.26) respectively.
This is also verified by the simulations done in Section 5. For example, if we set
τ12 =(2c+a2)·1.3 instead of τ12 =2c+a2, the largest part of the eigenvalues becomes 0.34
instead of −7.83·10−13 for the SBP-SAT method.

4.2 The non-constant coefficient 1-D problem

We will now modify the newly derived SBP-SAT technique to account for non-constant
coefficients. We will limit the analysis to the two cases c(x,t)>0 and c(x,t)<0. A more
suitable form of Eq. (2.6) is found by a time-splitting (aux)t = atux+auxt, which yield the
equivalent (to Eq. (2.6)) form

utt−atux−auxt−(aut)x−((b−a2)ux)x =0. (4.27)
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Case 1, c>0

Multiplying (4.27) by ut and integrating by parts leads to

d

dt
E0 =2ut(aut+cux)

∣

∣

1

0
+RT0, (4.28)

where E0 is the same as in (4.3) and the remaining terms are given by

RT0 =
∫ 1

0
2atutux+ct(ux)

2 dx. (4.29)

By applying the CBCs (4.6) we obtain

d

dt
E0 = BT0+RT0, (4.30)

where the boundary terms are given by BT0 =−2
√

b(u0t)2−2
√

b(u1t)
2. The inequality

2uv≤u2+v2 gives

2atutux+ct(ux)
2≤
(

|at|√
c
+

√

|ct|
c

)

((ut)
2+c(ux)

2)≤K0E0, (4.31)

where K0 is a constant. Integration of (4.30) leads to (E0)t≤K0E0+BT0, so that

E0−
∫ t

0
BT0eK0τ dτ≤ (E0)0eK0t, (4.32)

with (E0)0 the initial energy.

Remark 4.4. The energy estimate (4.32) is not sharp. We have only a upper bound of
K0. By mimicking the energy estimate (4.30), the discrete approximation will mimic the
time-growth of (4.32). If at = ct =0, K0 =0 and we can prove energy conservation.

Hence, compared to the constant coefficient case (4.7), there are potential time-growth
situations, depending on at.

A semi-discretization of (4.27) using first-derivative SBP operators, and the SAT
method to impose the CBCs (4.6), can be written as

vtt− ĀtD1v− ĀD1vt−D1Āvt−D1C̄D1v=SAT0+SAT1. (4.33)

The matrices Ā, Āt and C̄ have the values of a, at and c injected on the diagonal. The
penalty terms in Eq. (4.33) are identical to those in (4.9).

Lemma 4.4. The energy method applied to (4.33) leads to an energy estimate that mimics (4.30),
if c(x,t)>0, D1 is a narrow-diagonal SBP operator, τ0 =λ2 and τ1 =−λ1.
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Proof. Let g0 = g1 =0. Multiplying (4.33) by vT
t H from the left and adding the transpose

leads to

d

dt

(

‖vt‖2
H +(D1v)T HC̄(D1v)

)

=2(v0t)
2(−a+τ0)+2(vNt)

2(a+τ1)−2(v0)t(D1v)0(c+τ0λ1)

+2(vN)t(D1v)N(c−τ1λ2)+(D1v)T HC̄t(D1v)+vT
t ĀtHD1v+vT HĀtD1vt.

To obtain a non-growing energy requires τ0 =−c/λ1 ≡ λ2 and τ1 = c/λ2 ≡−λ1, which
inserted in the above expression yields

d

dt

(

‖vt‖2
H +(D1v)T HC̄(D1v)

)

=−2
√

b(v0t)
2−2

√
b(vNt)

2+(D1v)T HC̄t(D1v)+vT
t ĀtHD1v+vT HĀtD1vt.

This exactly mimics the continuous estimate (4.30).

A narrow-stencil discretization of (4.27) using SBP operators requires the split form
of the second-derivative term, i.e., (cux)x =cxux+cuxx. As before we use the SAT method
to impose the CBCs (4.6), and the resulting semi-discrete scheme can then be written as

vtt− ĀtD1v− ĀD1vt−D1Āvt−C̄xD1v−C̄D2v=SAT0+SAT1. (4.34)

Lemma 4.5. The energy method applied to (4.34) leads to an energy estimate that mimics (4.30),
if c(x,t)>0, D1 and D2 are fully compatible for c(x)>0, τ0 =λ2 and τ1 =−λ1.

Proof. The proof follows directly from the proof of Lemma 4.4 and the fact that D1 and
D2 are fully compatible, meaning that C̄xD1v+C̄D2v=−D1C̄D1v−CH−1Rc, where Rc is
positive semi-definite for c(x)>0.

Case 1, c<0

Multiplication of Eq. (4.27) by ut−aux and integration by parts yield

d

dt
E1 =

(

λ1

2
(ut−λ2ux)

2+
λ2

2
(ut−λ1ux)

2

)

|10+RT1, (4.35)

where E1 is given by (4.5) and the remaining terms are

RT1 =
∫ 1

0
(−(bt+acx−axc)(ux)

2+ax(ut)
2−2aaxuxut)dx. (4.36)

By applying the boundary conditions (4.13) we obtain

d

dt
E1 = BT1+RT1, (4.37)
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where the boundary terms are given by

BT1 =−
(

λ1

2
(ut−λ2ux)

2+
λ2

2
(ut−λ1ux)

2

)

|x=0.

The inequality 2uv≤u2+v2 leads to

−(bt+acx−axc)(ux)
2+ax(ut)

2−2aaxuxut

≤
(

ax+
|acx +b2+2a2ax|

b

)

E1≤K1E1, (4.38)

where K1 is a constant. Integration of (4.37) gives (E1)t≤K1E1+BT1, so that

E1−
∫ t

0
BT1eK1τ dτ≤ (E1)0eK1t, (4.39)

with (E1)0 the initial energy. Hence, compared to the constant coefficient case (4.15), we
face potential time-growth problems.

By introducing the auxiliary variable w≡vt, a semi-discretization of (4.27) using only
the first-derivative SBP operator D1, and the SAT method to impose the boundary condi-
tions (4.13), can be written as

vt =w+SAT1,

wt = ĀtD1v+ ĀD1w+D1Āw+D1C̄D1v+SAT2,
(4.40)

where the penalty terms (which are identical to the constant coefficient case) are given by

SAT1 =τ13H−1DT
1 eN((D1v)N−g12),

SAT2 =τ11H−1eN(wN−g11)+τ12H−1eN((D1v)N−g12).
(4.41)

Lemma 4.6. The pth-order accurate scheme (4.40) is stable if D1 is a narrow-diagonal SBP
operator and Lemma 4.2 holds.

Proof. Multiplying the first equation in (4.40) by vT H, and the second by (w− ĀD1v)T H
from the left, and adding the transpose, leads to

d

dt
(E1)H = BT+RTH,

where the boundary term is BT = xT
N RN xN−xT

0 R0x0, with xT
0,N = [(w, (D1v)]0,N and the

matrices RN and R0 are defined in (4.19) and (4.22). By Lemma 4.2 BT is non-positive.
The discrete energy is given by

(E1)H =(‖w− ĀD1v‖2
H +(D1v)T HB̄(D1v)), (4.42)
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while the remaining terms are

RTH =(Dv)T(C̄QĀ− ĀQC̄)D1v−(D1v)T H(ĀQĀ− Ā2Q)w

−w(ĀQT Ā−QT Ā2)D1v−(D1v)T HB̄tD1v. (4.43)

The remaining terms RTH can be shown to mimic the remaining terms (4.36) of the con-
tinuous case.

Consider now the narrow-stencil approximation

vt =w+SAT1+DI1,

wt = ĀtD1v+ ĀD1w+D1Āw+C̄xD1v+C̄D2v+ ˜SAT2+DI2,
(4.44)

where

DI1 =σ1H−1R̃
(p)
c +σ2H−1DT

1 R̃
(p)
c D1,

DI2 =σ3H−1R̃
(p)
c .

(4.45)

Possible formulations of R̃
(p)
c are given in Eq. (3.8).

The following lemma is the extension of Lemma 4.3 to the variable coefficient case:

Lemma 4.7. The pth-order accurate scheme (4.44) is stable if D1 and D2 are fully compatible for
c(x)>0, and Lemma 4.3 hold.

We omit the proof, since it is completely analogous to the proof of Lemma 4.3.
The eigenvalues of Eq. (4.44) using the fully compatible sixth-order accurate SBP

operators for two different cases are presented in Fig. 4. In the first case b = 1, a =
1.5+0.1cos(4πx), N = 51 (corresponding to case 2 in Section 5). In the second case
b=1, a=1.2+0.3cos(4πx), N =51 (corresponding to case 3 in Section 5).
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Figure 4: The eigenvalues to Eq. (4.44) for the sixth-order case, comparing two different settings with b=1, N=51
and: a=1.5+0.1cos(4πx) (left), a=1.2+0.3cos(4πx) (right).
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5 Computations

To test the accuracy of the newly developed SBP-SAT technique, we perform numerical
simulations of the variable coefficient equation (2.6). Three different cases are tested,
namely: 1) c > 0, 2) c < 0 everywhere, and 3) c < 0 at the boundaries, and changing sign
in the interior. We have implemented a mechanism by which the dissipative operator is
“switched on” whenever c<0.

To further elucidate the favorable stability and accuracy properties of a narrow-stencil
approximation compared to the corresponding wide-stencil approximation we will com-
pare each result using both schemes (wide and narrow). In the first test we compare
accuracy. In the second test we compare the stability properties when the solution is
non-smooth (corresponding to case 3 below).

For the time integration we use the standard explicit fourth-order Runge-Kutta
method. The time-step is kept small enough not to interfere with the spatial discretiza-
tion error ( dt/dx is roughly 0.04, for the chosen parameter setting.) The normalized
initial data used in the computations (we chose highly smooth functions, to keep the
errors derived from lack of smoothness to the minimum) is given by:

u(t=0)=1.099×1012 (x−0.25)10(x−0.75)10, for x∈ [0.25,0.75],
u(t=0)=0, otherwise;
ut(t=0)=0.

We use homogeneous boundary conditions (i.e. g0 = g1 =0) in all cases.
The convergence rate is calculated as

Q= log

(

‖v−v(h1)‖l2

‖v−v(h2)‖l2

)

/log(h1/h2), (5.1)

where v(hi) is the numerical solution with grid spacing hi and v is a numerical solution
calculated for an extremely fine resolution (N=1601) which can, for every practical pur-
pose, be considered as the “exact solution” (since we have stability proofs). The discrete
l2-error for a given grid size h is obtained as ‖v−v(h)‖l2 . In all the cases, except the last
case, the l2-error is recorded at t=0.4 (for the last case, the evaluation is made at t=0.24,
for reasons that will become clear later). For simplicity and without loose of generaliza-
tion, we set b=1, so that the function c is completely determined by the shift a.

Case 1, c>0 at the boundary

In this case, the penalty operators are given just below Eq. (4.9). We chose a(x) =
0.5cos(2πx), which yields c>0 in the whole domain. Convergence studies for the second-,
fourth- and sixth-order accurate narrow-stencil approximations are shown in Table 1.
The corresponding results using second-, fourth- and sixth-order accurate wide-stencil
approximations are show in Table 2.
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Table 1: log(l2−errors), and convergence rates for the second-, fourth- and sixth-order narrow-stencil approx-
imations of the shifted wave equation for case 1 (c>0).

N logl
(2)
2 Q(2) logl

(4)
2 Q(4) logl

(6)
2 Q(6)

101 -2.77 -3.97 -3.78
201 -3.38 2.04 -5.16 3.93 -6.07 7.62
401 -3.99 2.01 -6.35 3.95 -7.95 6.24
801 -4.59 2.00 -7.55 3.99 -9.80 6.14

Table 2: log(l2−errors), and convergence rates for the second-, fourth- and sixth-order wide-stencil approxi-
mations of the shifted wave equation for case 1 (c>0).

N logl
(2)
2 Q(2) logl

(4)
2 Q(4) logl

(6)
2 Q(6)

101 -1.90 -3.00 -3.39
201 -2.48 1.95 -4.18 3.92 -5.38 6.60
401 -3.09 2.00 -5.38 3.98 -7.24 6.18
801 -3.69 2.00 -6.58 3.99 -8.74 5.01

The evolution of the pulse is displayed in Fig. 5.
The convergence results in Tables 1-2 are consistent with theory (see [36] for more in-

formation on the accuracy of finite difference approximations) except for the sixth-order
case (narrow-stencil) which shows one order higher than the expected fifth-order conver-
gence. By comparing Table 1 and Table 2 the gain of using a narrow-stencil approxima-
tion for this case is evident.
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Figure 5: Evolution of the initial pulse for different instants of time, case 1.

Case 2, c<0 in the whole domain

For this case, we use a(x)=1.5+0.1cos(4πx) such that c is negative in the whole domain,
including the boundaries (hence the appropriate SAT treatment is given by (4.41)). Con-
vergence studies for the nth-order accurate narrow-stencil approximation (n =2,4,6) are
presented in Table 3. The corresponding results using second-, fourth- and sixth-order
accurate wide-stencil approximations are show in Table 4.

The convergence results in Table 3 show that the sixth-order method yields a conver-
gence closer to seven (as compared to the expected fifth-order convergence). We have
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Table 3: log(l2−errors), and convergence rates for the second-, fourth- and sixth-order narrow-stencil approx-
imations of the shifted wave equation for case 2 (c<0).

N logl
(2)
2 Q(2) logl

(4)
2 Q(4) logl

(6)
2 Q(6)

101 -1.67 -2.73 -3.19
201 -2.38 2.37 -4.14 4.68 -5.19 6.64
401 -3.08 2.32 -5.52 4.57 -7.28 6.93
801 -3.80 2.39 -6.81 4.29 -9.35 6.88

Table 4: log(l2−errors), and convergence rates for the second-, fourth- and sixth-order wide-stencil approxi-
mations of the shifted wave equation for case 2 (c<0).

N logl
(2)
2 Q(2) logl

(4)
2 Q(4) logl

(6)
2 Q(6)

101 -1.81 -3.18 -3.50
201 -2.41 1.99 -4.31 3.77 -4.66 3.85
401 -3.01 2.00 -5.35 3.45 -5.63 3.20
801 -3.61 2.00 -6.23 2.92 -6.54 3.04

no explanation to this super-convergence behavior. For this case the gain (in accuracy)
using a narrow-stencil approximation is clearly seen for the sixth-order case, but not as
clear for the second- and fourth-order cases.

The evolution of the pulse is displayed in Fig. 6.
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Figure 6: Evolution of the initial pulse for different instants of time, case 2.

Case 3, c<0 at the boundary, changing sign in the interior

In the last case we study the effect of c changing sign, testing the artificial dissipation
mechanism implemented in the code, namely, a method by which the artificial dissipa-
tion is “switched on” whenever c<0. We set a(x)=1.2+0.3 cos(4πx), leading to a c that
is negative at both boundaries (so the SAT treatment is given by (4.41)), and changes sign
four times in the interior. Convergence studies for the nth-order accurate narrow-stencil
approximations (n = 2,4,6) are shown in Table 5. The results using the corresponding
wide-stencil approximations are shown in Table 6.

The l2−errors are now recorded at t = 0.24 (instead of t = 0.4 used for the previous
cases). The reason for this is that the solution yields an increasing sharpness of the peak
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Table 5: log(l2−errors), and convergence rates for the second-, fourth- and sixth-order narrow-stencil approx-
imations of the shifted wave equation for case 3 (c<0 at the boundary, changing sign in the interior).

N logl
(2)
2 Q(2) logl

(4)
2 Q(4) logl

(6)
2 Q(6)

101 -1.87 -2.73 -2.85
201 -2.56 2.29 -4.08 4.47 -4.60 5.81
401 -3.23 2.23 -5.50 4.74 -6.65 6.82
801 -3.94 2.34 -6.81 4.33 -8.73 6.89

Table 6: log(l2−errors), and convergence rates for the second-, fourth- and sixth-order wide-stencil approxi-
mations of the shifted wave equation for case 3 (c<0 at the boundary, changing sign in the interior).

N logl
(2)
2 Q(2) logl

(4)
2 Q(4) logl

(6)
2 Q(6)

101 -2.00 -3.20 -3.64
201 -2.62 2.06 -4.36 3.85 -4.84 3.99
401 -3.23 2.04 -5.48 3.70 -6.03 3.97
801 -3.84 2.01 -6.50 3.41 -7.24 3.99

(see Fig. 7). After t∼ 0.25 one of the modes starts to “pile up” (this happens at a point

where c changes sign and therefore the mode with eigenvalue λ2 = a−
√

b has vanishing
velocity). At t=5 the pulse has transformed into a step function with decreasing ampli-
tude.
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Figure 7: Evolution of the initial pulse for different in-
stants of time, using the sixth-order accurate narrow-
stencil formulation and N = 1601 for case 3. Notice
the increasing (with time) sharpness of the pulse.
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Figure 8: Solution at t = 5, comparing the sixth-order accurate narrow-stencil (left column) and wide-stencil
(right column) formulations for case 3. Spurious oscillations are present (right column).

To capture this solution using much less (than N = 1601) grid-points is a challeng-
ing problem, without the introduction of a shock-capturing technique. (That is however
out of the scope of the present study.). The leading motives in [22] of using a narrow-
stencil approximation was to have: 1) natural damping of the highest frequency mode,
and 2) more accurate approximations. The spurious oscillations are often triggered by
unresolved features in the solution (like a shock).

In Fig. 8 comparison is done between the sixth-order accurate narrow- and wide-
stencil SBP-SAT methods using N = 101 and N = 401 grid-points. The wide-stencil ap-
proximation clearly cannot capture this solution and leads to an unstable solution. The
corresponding narrow-stencil approximation have no difficulty capturing this solution,
even with as few as N = 101 grid-points. The wide-stencil approximations clearly need
artificial dissipation (AD) to damp the highest frequency mode. However, the addition
of AD can easily destroy the stability properties of the original scheme when c<0 (see the
remark at the end of Section 2 concerning the sensitivity of the penalty- and dissipation-
parameters, to obtain stability).
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6 Conclusions and future work

We have proven that narrow-stencil approximations of the shifted wave equation writ-
ten on second-order form are strictly stable, if the first- and second-derivative finite dif-
ference operators are fully compatible, and a suitable amount of artificial dissipation is
added. Our approach has been to use SBP operators and the SAT technique to enforce
the boundary conditions. We have seen that the penalty (SAT) operators needed to im-
plement these conditions must be carefully chosen for c<0 at the boundaries.

The numerical code developed using the above mentioned SBP-SAT method leads to
time evolution that faithfully reproduces the physical behavior of the wave, and has the
desired accuracy, both for the constant and the variable coefficient cases, especially for the
difficult case where c<0 at the boundaries and changing sign in between (corresponding
to case 3 in Section 5).

The more complex case of time-dependent coefficients will be dealt with in a coming
study. The case where c changes sign in the interior performs with the expected order
of accuracy (except the sixth-order case which yield super-convergence) and leads to a
stable evolution. At later times the solution has an increasingly sharp gradient, but the
code resolves this quite nice.

It is of outmost importance to have a stable scheme for situations where c<0, which
would correspond to a region inside the event horizon. The present study is the first step
towards a code that will make it possible to derive a strictly-stable narrow-stencil ap-
proximation to the full non-linear 3-D problem inside (and outside of) the event horizon.

The present technique can be extended to the full non-linear 3-D problem. With this
in mind, the present study can be regarded as the first step towards a high-order accurate
numerical formulation of Einstein´s Equations written in second-order form, with the aim
of simulating processes such as binary black holes and neutron star collisions. Notice also
that, to address many of the more challenging (interesting) problems, will require a multi-
block approach (see for example [15, 20]) in combination with an adaptive grid method
(see for example [30]), to efficiently capture all the relevant solution features. These issues
will be the grounds for future work.
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Appendix: Fully compatible SBP operators

We now present the specific form of the fully compatible SBP operators used in the anal-
ysis. We consider the second-, fourth- and sixth-order accurate discretizations.
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Second-order accurate case. For the second-order case we get

D2 = H−1(−DTRD+BS),

where

D2 =
1

h2















0 0 0
1 −2 1

. . .
. . .

. . .

1 −2 1
0 0 0















, S=
1

h















−1 1
1

. . .

1
−1 1















,

D=
1

h















−1 1
−1 1

. . .

−1 1
−1 1















,

and

H =h×diag
( 1

2
,1,··· ,1,

1

2

)

,

R=h×diag(1,1,··· ,1,0).

For the second-order case we have also shown that we can use this factorization to
construct a narrow-diagonal second-derivative operator for variable coefficient (cux)x

terms. The form is then given by

D2 = H−1(−DTC̃D+BS),

where C is given by Definition 3.3 and

C̃=
h

2
×diag(a0 +a1,a1+a2,··· ,aN−1+aN ,0).

This yields a second-order accurate narrow-diagonal variable coefficient SBP operator.

Fourth-order accurate case. Fully compatible SBP operators, i.e.,

D2 = D1D1−H−1R, R>0.

The discrete norm is given by

H =h×diag
( 4567

14400
,
799

576
,

913

1440
,
1769

1440
,
2659

2880
,
14543

14400
,1,···

)

.
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The left boundary closure of Q is given by:

q1,1 =− 1
2

q1,2 = 27029
43200

q1,3 = 373
28800

q1,4 =− 3169
14400

q1,5 = 7037
86400

q1,6 =0

q2,3 = 2219
8640

q2,4 = 10907
17280

q2,5 =− 7
24

q2,6 = 2533
86400

q3,4 = 41
480

q3,5 = 4963
17280

q3,6 =− 1481
14400

q4,5 = 3907
8640

q4,6 = 1277
28800

q5,6 = 26461
43200

q5,7 =− 1
12

q6,7 = 2
3

q6,8 =− 1
12

In the interior we have the skew-symmetric stencil

(Qv)j =
1

12
vj−2−

2

3
vj−1+

2

3
vj+1−

1

12
vj+2.

The left boundary closure of hM is given by

m1,1 = 8749651054597963342645801183
7556066004062039897230790400

m1,2 =− 1180616687613067774141978181
944508250507754987153848800

m1,3 =− 18883688819587215872115121
1259344334010339982871798400

m1,4 = 139858319277357462065055433
944508250507754987153848800

m1,5 =− 310281974994757550797728473
7556066004062039897230790400

m1,6 =0

m2,2 = 123741900007909671527923849
55970859289348443683191040

m2,3 =− 95388620876161928526271007
188901650101550997430769760

m2,4 =− 481638743882887273221761447
755606600406203989723079040

m2,5 = 3090522673018052558724997
15741804175129249785897480

m2,6 =− 111741609336578818053437977
7556066004062039897230790400

m3,3 = 340684459738290240675700111
377803300203101994861539520

m3,4 =− 334870272816940831505053
2098907223350566638119664

m3,5 =− 220131161524191541333881031
755606600406203989723079040

m3,6 = 65250296322637253690816237
944508250507754987153848800

m4,4 = 602192042096985972563580527
377803300203101994861539520

m4,5 =− 169996643830882136900510203
188901650101550997430769760

m4,6 =− 56820203658905657689306769
1259344334010339982871798400

m5,5 = 1096729657465374268315319633
503737733604135993148719360

m5,6 =− 1156576071070311350524593169
944508250507754987153848800

m5,7 = 1
12

m6,6 = 18628351534348955410397982047
7556066004062039897230790400

m6,7 =− 4
3

m6,8 = 1
12

In the interior we have the symmetric scheme:

h(Mv)j =
1

12
vj−2−

4

3
vj−1+

5

2
vj−

4

3
vj+1+

1

12
vj+2.

The fourth-order accurate boundary derivative operator is given by:

BS=
1

h







7200
4567 − 27029

13701 − 373
9134

3169
4567 − 7037

27402

0
. . .






.
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The fourth-order accurate non-SBP operator. In this case, we have

D1 =
1

h










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−11 18 −9 2
−2 −3 6 −1

1
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. . .
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











.

The sixth-order accurate non-SBP operators. In this case, we have

D1 =
1

60h
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The sixth-order accurate case. Fully compatible SBP operators, i.e.,

D2 = D1D1−H−1R, R>0.

The left boundary closure for the norm is given by:

H =diag
( 7493827

25401600
,
5534051

3628800
,
104561

403200
,
260503

145152
,

43237

103680
,
514081

403200
,
3356179

3628800
,
25631027

25401600

)

.
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The left boundary closure of Q is given by:

q1,1 =− 1
2

q1,2 = 144243419
217728000

q1,3 =− 100087
6096384

q1,4 =− 3349159
16934400

q1,5 =− 8487881
152409600

q1,6 = 49651253
304819200

q1,7 =− 111
2000

q1,8 =0

q2,3 = 3554293
21772800

q2,4 = 13951541
21772800

q2,5 = 885133
4838400

q2,6 =− 54569873
108864000

q2,7 = 24209
129600

q2,8 =− 1
100

q3,4 = 9146267
43545600

q3,5 =− 140959
777600

q3,6 = 88913
403200

q3,7 =− 2877293
21772800

q3,8 = 1810337
60963840

q4,5 = 31487
145152

q4,6 = 3410983
5443200

q4,7 =− 911107
4838400

q4,8 =− 338713
152409600

q5,6 = 906379
43545600

q5,7 = 654643
3110400

q5,8 =− 1158071
16934400

q6,7 = 59430457
108864000

q6,8 =− 5026031
152409600

q6,9 =− 1
60

q7,8 = 30506159
43545600

q7,9 =− 3
20

q7,10 = 1
60

In the interior we have the skew-symmetric stencil

(Qv)j =− 1

60
vj−3+

3

20
vj−2−

3

4
vj−1+

3

4
vj+1−

3

20
vj+2+

1

60
vj+3.

The left boundary closure of hM is given by:

m1,1 =1.2000574331050846310

m1,2 =−1.3493191282870869603

m1,3 =0.070178887841234707543

m1,4 =0.069590525249539236244

m1,5 =0.067470908000967733967

m1,6 =−0.078177900310564991388

m1,7 =0.020199274400825642921

m1,8 =0

m2,2 =2.3771262429420204291

m2,3 =−0.67656041117548601149

m2,4 =−0.17119675741265170011

m2,5 =−0.49114472782781516546

m2,6 =0.41999078952455211907

m2,7 =−0.11648186968013573680

m2,8 =0.0075858619166030259199

m3,3 =1.6154560822068650044

m3,4 =−1.9194919233346676031

m3,5 =1.5610425124000178977

m3,6 =−0.90541517327846378866

m3,7 =0.29650034382549239075

m3,8 =−0.041710318484992597153

m4,4 =4.4952269369790344874

m4,5 =−3.1817949974047985393

m4,6 =1.0808018521848171469

m4,7 =−0.45961997566890306308

m4,8 =0.086484339407630035030

m5,5 =3.7441205742402132321

m5,6 =−2.2187585468457396535

m5,7 =0.60169480955006113403

m5,8 =−0.082630532112906639616
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m6,6 =3.3035989548189179514

m6,7 =−1.7308643575320354723

m6,8 =0.13993549254962779959

m6,9 =− 1
90

m7,7 =2.6978965450148505391

m7,8 =−1.4482136587990443235

m7,9 = 3
20

m7,10 =− 1
90

m8,8 =2.6996599266341938109

m8,9 =− 3
2

m8,10 = 3
20

m8,11 =− 1
90

In the interior we have the symmetric scheme:

−h(Mv)j =
1

90
vj−3−

3

20
vj−2+

3

2
vj−1−

49

18
vj+

3

2
vj+1−

3

20
vj+2+

1

90
vj+3

The fourth-order accurate boundary derivative operator is given by:

BS=









12700800
7493827 − 1009703933

449629620
2502175
44962962

913407
1362514

8487881
44962962 − 49651253

89925924
7048944

37469135

0
. . .









.
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