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Abstract. The complete analytical solution of the Riemann problem for the homo-
geneous Dispersive Nonlinear Shallow Water Equations [Antuono, Liapidevskii and
Brocchini, Stud. Appl. Math., 122 (2009), pp. 1-28] is presented, for both wet-bed and
dry-bed conditions. Moreover, such a set of hyperbolic and dispersive depth-averaged
equations shows an interesting resonance phenomenon in the wave pattern of the solu-
tion and we define conditions for the occurrence of resonance and present an algorithm
to capture it. As an indirect check on the analytical solution we have carried out a de-
tailed comparison with the numerical solution of the government equations obtained
from a dissipative method that does not make explicit use of the solution of the local
Riemann problem.

PACS: 47.11.-j, 02.70.-c, 47.35.-i

Key words: Riemann problem, Dispersive Nonlinear Shallow Water Equations, compound waves,
resonance.

1 Introduction: The Dispersive Nonlinear Shallow Water

Equations

The most popular approximate model equations for studying nearshore hydrodynam-
ics are the Nonlinear Shallow Water Equations (NSWE) and many available Boussinesq
type equations (BTEs), which all stem from the work of Peregrine [12]. BTEs are capa-
ble to model dispersive effects and are valid throughout a wide portion of the nearshore
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zone, but they cannot directly account for wave breaking and they cannot intrinsically
predict the motion or the position of the shoreline [3]. On the contrary, the classical Non-
linear Shallow Water Equations allow for a simple treatment of wave breaking and of
the shoreline motion, but they cannot model dispersive effects and their validity is lim-
ited to a narrow area close to the shore. In order to combine the advantages of these
models, Antuono, Liapidevskii and Brocchini [1] proposed a new set of depth-averaged
equations, called Dispersive Nonlinear Shallow Water Equations (DNSWE), which are
dispersive and hyperbolic at the same time. These equations, obtained by using a hy-
perbolic approximation of a chosen set of nonlinear and weakly-dispersive Boussinesq-
type equations, provide both a physically sound description of the nearshore dynamics
and a complete representation of dispersive and nonlinear wave phenomena. A detailed
description of the conditioning of the dispersive terms and of the related hyperbolic ap-
proximation can be found in Antuono, Liapidevskii & Brocchini [1]. Here, a complete
description of the main advantages of the DNSWE is also given.

The 1D set of dimensional DNSWE can be written in the following conservative form:











































dt+Qx =0,
[

Q

(

1− hxx

6
d

)]

t

+

(

gd2

2
+

Q2

d
+

Ad2

3
ψ− gh2

x

6
d2

)

x

=
Ahx

3
dψ−g

h3
x

3
d −g

hxhxx

3
d2+ghxd,

φt =ψ,

γψt+Qx =−Aφ,

(1.1)

where Q=ud is the flow rate, A is a positive dimensional parameter ([A]=T−2) generally
set to 1s−2, γ is a positive dimensionless parameter (γ≪1) and φ and ψ are two potential
functions. As shown in Fig. 1, h is the still water level, u is the onshore velocity and d is
the total water depth.
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Figure 1: The reference frame of the DNSWE.
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In the case of smooth bathymetries, i.e. assuming hxx ≪1 and h2
x/3≪1, we get
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The hyperbolic system of balance laws (1.2) can be written as follows:

∂

∂t
U+

∂

∂x
F(U)=S(U). (1.3)

Then, the homogeneous system associated to (1.3) is:

∂

∂t
U+

∂

∂x
F(U)=0, (1.4)

which is a hyperbolic system of conservation laws, while the divergence free system as-
sociated to (1.3) is:

∂

∂t
U=S(U), (1.5)

which is a system of ordinary differential equations. Two processes are involved in the
system of balance laws (1.3): a conservative process associated to the homogeneous part
(1.4) with a characteristic speed ν f and a dissipative/productive process associated to
the divergence-free part (1.5) with a characteristic speed νs. Because of the presence
of the small parameter γ, the ratio ǫ = ν f /νs is very small (ǫ ≪ 1); hence the dissipa-
tive/productive process is much faster than the conservative one and the source term is
said to be stiff.

In order to solve systems of balance laws with stiff source terms, splitting schemes
are very commonly used (see [2, 5, 6, 10]). These schemes consist in iteratively solving
the associated system of conservation laws with a classical finite volume scheme and
the associated system of ordinary differential equations with an appropriate numerical
tool. In particular, powerful numerical fluxes to solve hyperbolic systems of conserva-
tion laws, like (1.4), are based on the solution of the Riemann problem for the system of
conservation laws, for example the fluxes of Godunov [7], Osher [4, 11] and Roe [14] (for
a review see [16]). Hence, the aim of the present work is to propose the exact solution
of the Riemann problem for the homogeneous part of the DNSWE (1.2). In Section 2 the
eigenstructure of the homogeneous DNSWE is studied, in Section 3 the canonical wave
structure of the solution of the Riemann problem is shown, while in Section 4 the res-
onance phenomenon is analyzed in depth to obtain the related wave configuration. In
Sections 5 and 6 a solution strategy is proposed, while in Section 7 the dry-bed Riemann
problem is studied in detail. Section 8 presents a comparison of the proposed analytical
solution with numerical solutions of the problem. In Section 9, a summary with conclu-
sions and future research goals is given.
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2 The Riemann problem for the homogeneous DNSWE

The Riemann problem for the homogeneous part of system (1.2) is defined as the initial-
value problem

PDEs: Ut+F(U)x =0,

ICs : U(x,0)=

{

UL if x<0,
UR if x>0,


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(2.1)

where U and F are the vector of the unknowns and the flux vector
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are constant vectors and represent conditions at time t = 0 to the left of x = 0 and to the
right of x = 0, respectively. Although the third equation of the system gives the trivial
solution φ = const., we still keep it, as its contribution is not negligible when coupled to
the respective equation of system (1.5).

2.1 Eigenvalues and Eigenvectors

In order to solve the Riemann problem (2.1), it is necessary to study the eigenstructure of
the equations, i.e. compute the eigenvalues and eigenvectors of the system (1.4). In fact,
these quantities allow to understand the mathematical character of the governing equa-
tions and the physical character of free-surface waves. For more details on the hyperbolic
theory see [15, 16].

Let us write equations (1.4) in the form:

∂tU+A∂xU=0, (2.4)

where A is the jacobian matrix of F, i.e. Aij =
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The eigenvalues of A are:
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while the right eigenvectors associated to the previous eigenvalues are:
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Since

∇λi(U)·R(i)(U) 6=0,∀U∈R
m for i=1,4, (2.8)

and

∇λi(U)·R(i)(U)=0,∀U∈R
m, for i=2,3, (2.9)

(where R
m is the set of real-valued vectors of m components, called the phase space),

the λ1 and λ4 characteristic fields are said to be genuinely nonlinear, while the λ2 and
λ3 characteristic fields are said to be linearly degenerate. More details on the hyperbolic
structure and on the dispersive character of the DNSWE can be found in [1].

3 Wave solutions for the Riemann problem

The solution of the Riemann problem for the DNSWE involves four waves: two waves are
associated with the genuinely nonlinear eigenvalues λ1 and λ4 and can be shock waves or
rarefaction waves, while the other two waves are associated with the linearly degenerate
fields λ2 and λ3 and are two superimposed contact discontinuities lying on the t-axis.
These four wave families separate four constant states denoted, from left to right, by UL,
U∗L, U∗R and UR. The types of non-linear left and right waves are determined by the
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following entropy conditions:

λ1(UL)>S1 >λ1(U∗L) : left wave is a shock wave,

λ1(UL)<λ1(U∗L) : left wave is a rarefaction wave,

λ4(U∗R)>S4 >λ4(UR) : right wave is a shock wave,

λ4(U∗R)<λ4(UR) : right wave is a rarefaction wave.


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(3.1)

More details on the conditions satisfied by the different waves can be found in [8, 16].

3.1 Rarefaction waves

If the λi-wave is a rarefaction, we can apply the constancy of the generalized Riemann
invariants:
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and for a left rarefaction we get

φ=const., d∗L−γψ∗L =dL−γψL =C0 (3.3)
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with

b1 =

(

g− 2

3

C0A

γ
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A

γ
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Eq. (3.4) can be summarized in the following form:

f (d,b1,b2)+u=const., (3.6)

i.e.,

uL+ f (dL,ψL)=u∗L+ f (d∗L,ψ∗L), (3.7)

that is

u∗L =uL− fR(d∗L,dL,ψL) with fR(d∗L,dL,ψL)= f (dL,ψL)− f (d∗L,ψ∗L). (3.8)

Note that ψ∗L can be expressed in terms of dL, d∗L and ψL, according to Eq. (3.3).
Analogously, if the right wave is a rarefaction, by applying the constancy of the gen-

eralized Riemann invariants we obtain

φ=const., d∗R−γψ∗R =dR−γψR =C1 (3.9)
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and
f (d,b2,b3)−u=const., (3.10)

with
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Eq. (3.10) can be summarized in the following form:

u∗R =uR− fR(d∗R,dR,ψR). (3.13)

3.2 Shock waves

If the left wave is a shock, the Rankine-Hugoniot conditions

F(U∗L)−F(UL)=V1(U∗L−UL) (3.14)

hold true across the discontinuity. In order to facilitate their application, we introduce a
frame of reference moving with the shock speed VL. Then the relative velocities are:

ûL =uL−VL, û∗L =u∗L−VL. (3.15)

By re-writing the original Rankine-Hugoniot conditions

Q∗L−QL =V2(d∗L−dL), (3.16a)
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With some algebra, the following equation can be finally obtained:

u∗L=uL−(d∗L−dL)

√

1

d∗LdL
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1

2
g(dL+d∗L)+

A

3

[

ψL (dL+d∗L)+
d2
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γ
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, (3.18)

(for details in the computation see [16]) or, in a more compact form:

u∗L =uL− fS(d∗L,dL,ψL), (3.19)

with the obvious definition for fS.
Analogously, if the right wave is a shock, we can apply the Rankine-Hugoniot condi-

tions and obtain

u∗R=uR+(d∗R−dR)

√

1

d∗RdR
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g(dR+d∗R)+

A

3

[

ψR(dR+d∗R)+
d2
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γ
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, (3.20)

or, in a more compact form:

u∗R =uR+ fS(d∗R,dR,ψR). (3.21)

3.3 Contact discontinuities

In the linearly degenerate fields i=2 and i=3, two coincident contact discontinuities are
generated. If we superimpose the results obtained by applying both the constancy of the
Riemann Invariants and the Rankine-Hugoniot conditions for i = 2 and i = 3, we finally
get:

[F1]=0, and [F2]=0. (3.22)

Since λ2 = λ3 ≡ 0, the contact discontinuity is always located at x = 0, that is, along the
t-axis.

4 Resonance in the solution

Thanks to a richer hyperbolic structure, the solution of the Riemann problem for the
homogeneous DNSWE shows a behavior which is generally more complex than that of
the NSWE. In particular a resonance phenomenon can occur when one of the genuinely
nonlinear fields crosses the zero value. The resonance is, therefore, generated by the non-
linear interaction between the linearly degenerate field λ3 and the genuinely nonlinear
field crossing zero and is a consequence of a local lack of hyperbolicity of the system.
However, as shown by Isaacson [9], the solution of the Riemann problem still preserves
uniqueness and existence and can be represented in a “canonical way”, that is, through
shock waves, rarefaction waves and contact discontinuities. In this case the resonance is
identified by a compound wave, that is, a wave made by a contact discontinuity and a
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rarefaction fan joined together. Finally, we underline that the crossover of the zero value
is only a necessary condition for the occurrence of the resonance and, therefore, proper
conditions for the compound wave generation are needed.

Here we propose the solution of the Riemann problem for the DNSWE in a neighbor-
hood of a state at which one of the nonlinear waves assumes a zero speed. According to
the work of Isaacson and Temple [9], we can state that the nature of the wave interaction
is given by the solution of the Riemann problem, which is proved to exist, to be unique
and to have a fixed structure under some generic conditions on the fluxes.

In particular, the homogeneous part of the original set of the DNSWE (1.2) can be
written in the following form (for the homogeneous problem the third equation is trivial
and, therefore, will not be considered in the following):
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Eq. (4.1) reduces to the form suggested by Isaacson and Temple [9]:

Ut+F(U)x =0, U=(W,K), F(U)=(G(K,W),0), (4.2)
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λ1 =
Q

d
−

√

gd+
Ad2

γ
+

2

3

AdK

γ
, (4.6a)

λ2≡λ0 =0, (4.6b)

λ3 =
Q

d
+

√

gd+
Ad2

γ
+

2

3

AdK

γ
. (4.6c)



G. Grosso, M. Antuono and E. Toro / Commun. Comput. Phys., 7 (2010), pp. 64-102 73

The left and right eigenvectors are:
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1
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Note that we define as λ0, L0 and R0 the eigenvalue and the left and right eigenvectors
associated with the linearly degenerate field. Let us denote with L̄1,··· ,L̄n the left eigen-
vectors normalized so that L̄j ·Rj =1 for j=1,··· ,n. We want to study the system (4.2) in a
neighborhood of a state US =(KS,WS) at which one of the nonlinear wave families of the
system has a zero speed. Hence, we assume that:

λk(US)=λ0 =0. (4.8)

It is possible to demonstrate that, for the system under consideration, the following con-
ditions are satisfied:

∇λk ·Rk(US) 6=0 (4.9)

and
L̄k ·FK(US) 6=0 (4.10)

(nondegeneracy assumption), where FK is ∂F/∂K. As stated by Isaacson and Temple [9],
assumptions (4.8), (4.9) and (4.10) guarantee that, in a neighborhood of the state US, the
Riemann problem has an unique solution with a canonical structure. In the specific, as-
sumption (4.9) guarantees that equation λk = 0 defines a smooth n-dimensional surface
locally in R

n+1, which passes through the state US and which we call I. Since the eigen-
vector Rk points along the hyperplane K = const, condition (4.9) guarantees that the in-
tegral curve of Rk cuts the transition surface I transversely. Condition (4.10), instead,
implies that the n×(n+1) matrix ∂G/∂W has a maximal rank n at WS. Hence ∂F/∂U

has the Jordan normal form for every U ∈ I in a neighborhood of US, as the condition
(4.10) is an open one. This also implies that the eigenvectors R0 and Rk can be chosen off
I, so that they have smooth extensions that agree on I, i.e. R0 continues smoothly to Rk

on I. Finally, condition (4.9) implies that the integral curves for both R0 and Rk cut the
surface I transversely near the state US. In particular, the integral curves of R0 that pass
through the states U0 ∈I in a neighborhood of US do not cross the hyperplane K =K0 at
U0, but they must cross the hyperplane K=const. exactly twice at values of K on one side
of K =K0 (see Fig. 2).

In conclusion, let us consider two generic constant states UL and UR, lying respec-
tively on the left and on the right of the contact discontinuity and on the same integral
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Figure 2: Sketch of the integral curves of R0 and of the surface I.

curve of R0. If the system was strictly hyperbolic, we would have expected a 0-wave (i.e.
a wave of the family associated to the eigenvalue λ0) coinciding with the integral curve
of R0 to collect such states together. However, since the system (4.1) is not strictly hyper-
bolic when λk crosses the zero, a 0-wave that connects them on the same integral curve
of R0 by a contact discontinuity of speed zero is admissible only if the integral curve of
R0 does not cross the transitional surface I between UL and UR. Otherwise, if the 0-wave
coincided with the integral curve, we would have the generation of inadmissible shocks,
like the rarefaction shock shown in Fig. 3, where λk(UL < 0) and λk(UR) > 0. As a con-
sequence, the 0-wave cannot coincide with the integral curve itself, but it interacts with
the k-wave (i.e. the wave associated to the eigenvalue λk) and gives rise to a compound
wave (see [9]).

Using all this information, it is possible to construct the solution of the Riemann prob-
lem in a neighborhood of the state US. In the following, we assume the existence of a state
at which λ1 =0 and analyze the construction of the solution of the Riemann problem for
the homogeneous DNSWE (2.1) in detail. In particular, recall that, if both the states U∗R

and UR lie on the surface K = KR, the 4-wave connecting them has to move on such a
surface and the 0-wave cannot be traveled over anymore. For this reason, the behaviour
of the solution is not affected by a new change in the sign of the eigenvalue λ1, while
passing through the 4-wave.

Here we show the solution of some typical cases containing a state at which λ1 = 0.
For the sake of simplicity, the eigenvalue λ4 is assumed to be always positive.

Example 4.1. If

KL >KR and







λ1(UL)<0,
λ1(U∗L)>0,
λ1(U∗R)>0,

(4.11)

the solution exhibits the pattern shown in Fig. 4. The 1-wave interacts with the 0-wave on
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Figure 3: If the 0-wave that connects the two states UL and UR coincides with the integral curve, an inadmissible
rarefaction shock is generated.

Figure 4: Wave pattern in Example 4.1: the 1-wave and the 0-wave interact giving rise to a resonant behaviour
of the solution on the left of the contact discontinuity.

the left of the contact discontinuity, giving rise to a rarefaction fan attached to a contact
discontinuity: in fact, as in A the R1 eigenvector coincides with the R0 one, the 1-wave is
smoothly connected to the 0-wave, giving rise to a unique path, called compound wave.
To see it, recall that the 0-wave coincides with the integral curve of R0; moreover, in A the
1-wave coincides locally with the integral curve of R1, λ1 being equal to zero. Therefore,
in A the 1-wave is locally superimposed to the 0-wave and the transition between the two
waves is smooth. Hence moving from the left state UL to the right state U∗R we encounter
a rarefaction fan immediately followed by a contact discontinuity (the compound wave),
the constant state (U∗L) and a rarefaction or a shock 1-wave. The constant state (U∗R), the
rarefaction or shock 4-wave and the right constant state (UR) follow.
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Figure 5: Wave pattern in Example 4.2: no interaction between the 1-wave and the 0-wave.

Example 4.2. If

KL >KR and







λ1(UL)>0,
λ1(U∗L)>0,
λ1(U∗R)<0,

(4.12)

the solution exhibits the pattern shown in Fig. 5. In this case, the solution does not present
a resonant behavior, as the 1-wave does not interact with the 0-wave. In fact, as λ1(UL)>0
and λ1(U∗L) > 0, the solution is forced to encounter the 0-wave first, without passing
through the interaction point A. The U∗L constant state, the shock 1-wave, the U∗R con-
stant state, the rarefaction or shock 4-wave and the right constant state UR follow. Since
λ1(U∗L)>λ1(U∗R), the 1-wave is forced to be a shock.

Example 4.3. If

KR >KL and







λ1(UL)<0,
λ1(U∗L)<0,
λ1(U∗R)>0,

(4.13)

the solution exhibits the pattern shown in Fig. 6. The 1-wave interacts with the 0-wave on
the right of the contact discontinuity, giving rise to a contact discontinuity attached to a
rarefaction fan. In fact, as λ1(UL)<0 and λ1(U∗L)<0, the solution is forced to encounter
the rarefaction or shock 1-wave first, reaching the constant state U∗L. Then it moves
on the 0-wave, until it passes through the interaction point A, where the path smoothly
moves on the 1-wave again, until the U∗R constant state is reached. Incidentally, we note
that if we assume λ1(UL) > 0, the solution pattern is the same shown in Fig. 6. In fact,
as a consequence of the entropy condition in (3.1), the 1-wave connecting UL and U∗L is
a shock with speed S < 0. This implies that the constant state U∗L must lie on the plane
K =KL.
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Figure 6: Wave pattern in Example 4.3: the 1-wave and the 0-wave interact giving rise to a resonant behaviour
of the solution on the right of the contact discontinuity.

Example 4.4. If

KR >KL and







λ1(UL)>0,
λ1(U∗L)>0,
λ1(U∗R)<0,

(4.14)

the solution exhibits the pattern shown in Fig. 7. In this case, the solution does not present
a resonant behaviour, as the 1-wave does not interact with the 0-wave. In fact, as λ1(UL)>
0 and λ1(U∗L) > 0, the solution is forced to encounter the 0-wave first. After the plane
K =KR is reached, the 0-wave cannot be traveled anymore. As a consequence there is no
interaction between the 1-wave and the 0-wave in the point A. The U∗L constant state,
the shock 4-wave and the U∗R constant state follow. Notice that, as λ1(U∗L) > λ1(U∗R)
the 1-wave is forced to be a shock.

Example 4.5. If

KR >KL and







λ1(UL)<0,
λ1(U∗L)<0,
λ1(U∗R)>0,

(4.15)

the solution presents the pattern shown in Fig. 8. In this resonant case, the two states
UL and U∗R cannot be connected by the same 0-wave; hence the solution moves through
a 1-wave towards the intermediate 0-wave that encounters the transition interface on
the hyperplane KR. Here we find the constant state U∗L. In the interaction point A, the
contact discontinuity and the rarefaction 1-wave are smoothly connected and the solution
reaches the constant state U∗R. If λ1(UL)>0, the solution exhibits the same pattern shown
in Fig. 8. In fact the 1-wave connecting UL and U∗L is a shock with speed S<0.
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Figure 7: Wave pattern in Example 4.4: no interaction between the 1-wave and the 0-wave.

Figure 8: Wave pattern in Example 4.5: the 1-wave and the 0-wave interact giving rise to a resonant behaviour
of the solution on the right of the contact discontinuity.

Example 4.6. If

KR >KL and







λ1(UL)>0,
λ1(U∗L)<0,
λ1(U∗R)<0,

(4.16)

the solution presents the pattern shown in Fig. 9. In this case, the solution does not
present a resonant behaviour, as the 1-wave, moving on the surface K = KL, does not
interact with the 0-wave. The 1-wave is necessarily a shock one, as λ1(UL) > λ1(U∗L).
The U∗L constant state, the contact discontinuity and the U∗R constant state follow.

Example 4.7. If

KR =KL and

{

λ1(UL)<0,
λ1(U∗L)>0,

(4.17)
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Figure 9: Wave pattern in Example 4.6: no interaction between the 1-wave and the 0-wave.

Figure 10: Wave pattern in Example 4.7: The 1-rarefaction wave crosses the t-axis without any interaction with
the 0-wave.

the solution presents the pattern shown in Fig. 10. In this case, the solution does not
present a resonant behaviour. In fact, as KR =KL, the contact discontinuity vanishes and
the rarefaction crosses the t-axis, without any interaction with the 0-wave. When KR=KL,
the solution pattern of the DNSWE reduces to the one of the classical Nonlinear Shallow
Water Equations.

Example 4.8. If

KR =KL and

{

λ1(UL)>0
λ1(U∗L)<0,

(4.18)

the solution presents the pattern shown in Fig. 11. In this case, the solution does not
present a resonant behaviour. In fact, as KR =KL, the contact discontinuity vanishes and
the shock can lie on the left or over the t-axis, without any interaction with the 0-wave.
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Figure 11: Wave pattern in Example 4.8: The 1-shock wave lies on the left of t-axis without any interaction
with the 0-wave.

In Table 1 we give a summary of the examples explained above. It can be seen that
different combinations of the eigenvalue signs coupled with the relation between KL and
KR can give rise to different wave patterns, determining wether the resonance occurs or
not and its position with respect to the t-axis.

Table 1: Summary of the examples of the wave patterns obtained with different combinations of the eigenvalue
signs.

Example K λ(UL) λ(U∗L) λ(U∗R) resonance
1 KL >KR - + + yes
2 KL >KR + + - no
3 KL <KR - - + yes
4 KL <KR + + - no
5 KL <KR - - + yes
6 KL <KR + - - no
7 KL =KR - + + no
8 KL =KR + - - no

5 A solution strategy

On the basis of what we have explained above, we can state that the solution of the Rie-
mann problem exhibits different wave patterns according to the reciprocal position of
the discontinuities. In particular, in the previous section we have shown that a remark-
able number of different configurations can be found when the two eigenvalues λ1 and
λ4 change their sign. Moreover, when the two eigenvalues λ1 and λ4 remain positive
or negative, we can also have two different configurations: the basic one, in which the
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Figure 12: Possible wave patterns in the solution of the Riemann problem for the dispersive nonlinear shallow
water equations.

eigenvalue λ1 is always negative, while the eigenvalue λ4 is always positive and the one
in which both the two eigenvalues λ1 and λ4 are positive or negative. In the former case,
the two waves associated with the eigenvalues λ1 and λ4 lie respectively on the left and
on the right of the t-axis, while in the latter one, both the waves associated with the eigen-
values λ1 and λ4 lie on the same side of the t-axis. All these cases, including the resonant
ones, can be summarized as shown in Fig. 12, where one half of the possible configura-
tions is represented (the other-half is represented by the symmetrical cases). Notice that
‘Configuration a’ does not need a symmetrical one.

In the following we present a complete description of all the possible configurations
and the conditions for their occurrence. Since such conditions depend on the solution
itself (i.e. on U∗L and U∗R), a set of trial values is needed to detect the correct configu-
ration and solve the equations valid in it. The trial values can be obtained by using an
approximate numerical solver (like a Rusanov one). After getting the analytical solution
of the equations valid in the chosen configuration, it is necessary to verify wether these
values satisfy the conditions for the occurrence of the configuration itself. If they do not,
the correct configuration has to be considered and a new solution has to be found. Hence,
the solution is based on an iterative procedure.

5.1 Configuration a

In this configuration, the left and the right rarefaction or shock waves lie respectively on
the left and on the right of the t-axis, while the two contact discontinuities coincide and
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lie exactly on the t-axis. This configuration takes place, for example, in the basic case in
which the eigenvalue λ1 is always negative and the eigenvalue λ4 is always positive or
in the case shown in Example 4.6 of Section 4. In general, this wave pattern occurs when
the following conditions are satisfied:

λ1(U∗L)<0 and λ1(U∗R)<0, (5.1a)

λ4(U∗L)>0 and λ4(U∗R)>0. (5.1b)

In order to get the solution of the Riemann problem, we have to write the equations valid
through every wave of the pattern. In particular, for the left and right waves, equations
(3.8), (3.13), (3.19) and (3.21) apply:

u∗L=uL− fS(d∗L,dL,ψL) if λ1(UL)>S2>λ1(U∗L),
u∗L=uL− fR(d∗L,dL,ψL) if λ1(UL)<λ1(U∗L),

}

left wave

u∗R=uR+ fS(d∗R,dR,ψR) if λ4(U∗R)>S1>λ4(UR),
u∗R=uR− fR(d∗R,dR,ψR) if λ4(U∗R)<λ4(UR);

}

right wave

(5.2)

with

ψ∗L =ψL+
d∗L−dL

γ
, ψ∗R =ψR+

d∗R−dR

γ
, (5.3a)

φ∗L =φL, φ∗R =φR. (5.3b)

Moreover across the λ2 and λ3 discontinuities, the following conditions hold:

[F1]=0, ⇐⇒ u∗Ld∗L =u∗Rd∗R, (5.4)

[F2]=0, ⇐⇒ gd2
∗R

2
+

(u∗Rd∗R)2

d∗R
+

Ad2
∗R

3
ψ∗R=

gd2
∗L

2
+

(u∗Ld∗L)
2

d∗L
+

Ad2
∗L

3
ψ∗L. (5.5)

Using the above equations for u∗L and u∗R and adding Eqs. (5.4) and (5.5), we obtain a
set of four equations in the four unknowns d∗L, d∗R, u∗L and u∗R:















































u∗L =uL− fR,S(d∗L,dL,ψL),

u∗R =uR∓ fR,S(d∗R,dR,ψR),

u∗Ld∗L =u∗Rd∗R,

gd2
∗R

2
+

(u∗Rd∗R)2

d∗R
+

Ad2
∗R

3

[

ψR+
d∗R−dR

γ

]

=
gd2

∗L

2
+

(u∗Ld∗L)
2

d∗L
+

Ad2
∗L

3

[

ψL+
d∗L−dL

γ

]

,

(5.6)

where the choice of fR or fS for u∗L and u∗R depends on the solution itself. Such a system
of equations can be solved by using a standard multivariate Newton method for non-
linear systems of equations as described, e.g. in Chapter 9.7 of [13]. After calculating
d∗L, d∗R, u∗L and u∗R, the quantities φ∗L, φ∗R, ψ∗L and ψ∗R can be also obtained by using
Eq. (5.3).
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5.2 Configuration b

In this configuration, both the waves associated with the eigenvalues λ1 and λ4 lie on the
right of the t-axis, while the two contact discontinuities coincide and lie exactly on the
t-axis. This configuration can take place, for example, in the cases shown in Examples
4.2 and 4.9 of Section 4 or in the case in which both the two eigenvalues λ1 and λ4 are
positive. In general, this wave pattern occurs when the following conditions are satisfied:

λ1(UL)>0 and λ1(U∗L)>0, (5.7a)

λ4(U∗L)>0 and λ4(U∗R)>0. (5.7b)

Across the λ1 discontinuity the following equations apply:

ψ∗L =ψ∗R+
(d∗L−d∗R)

γ
, (5.8a)

u∗R =u∗L− fR,S(d∗R,d∗L), (5.8b)

while across the λ4 discontinuity the following equations hold:

ψ∗R =ψR+
(dR−dR)

γ
, (5.9a)

uR =uR∓ fR,S(d∗R,dR). (5.9b)

Across the λ2 and λ3 discontinuities, we have:

[Q]=0, ⇐⇒ uLdL =u∗Ld∗L, (5.10)

[F]=0, ⇐⇒ gd2
L

2
+

(uLdL)2

dL
+

Ad2
L

3
ψL=

gd2
∗L

2
+

(u∗Ld∗L)
2

d∗L
+

Ad2
∗L

3
ψL∗. (5.11)

Eqs. (5.8b), (5.9b), (5.10) and (5.11) can be rearranged in a system of four equations for the
four unknowns d∗L, d∗R, u∗L and u∗R. Eqs. (5.8a) and (5.9a) can be used to find ψ∗L and
ψ∗R. Notice that φ∗L is always equal to φL and φ∗R is always equal to φR.

5.3 Configuration c

In this configuration, the two contact discontinuities vanish and the left rarefaction wave
lies on the t-axis, without any resonant behaviour, while the right rarefaction or shock
wave is located on the right of it. This configuration can take place in situations analogous
to the one shown in Example 4.7 of Section 4. In general, this wave pattern occurs when
the following conditions are satisfied:

λ1(UL)≤0 and λ1(U∗L)≥0 and λ1(U∗R)≥0,
λ4(U∗L)>0 and λ4(U∗R)>0 and λ4(UR)>0,

}

if KL =KR. (5.12)
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Across the λ1 discontinuity the following equations apply:

ψ∗L =ψL+
(d∗L−dL)

γ
, (5.13a)

u∗L =uL− fR(d∗L,dL), (5.13b)

while across the and λ4 discontinuity the following equations hold:

ψ∗R =ψR+
(dR−dR)

γ
, (5.14a)

u∗R =uR∓ fR,S(d∗R,dR). (5.14b)

Moreover, we have that:

ψ∗L =ψ∗R, (5.15a)

d∗L =d∗R, u∗L =u∗R. (5.15b)

Eqs. (5.13b), (5.14b) and (5.15b) can be rearranged in a system of four equations for the
four unknowns d∗L, d∗R, u∗L and u∗R. Eqs. (5.13a) and (5.15a) provide solutions for ψ∗L

and ψ∗R.

5.4 Configuration d

In this configuration, the 1-wave interacts with the 0-wave, giving rise to a rarefaction
attached to a contact discontinuity on the left of the t-axis (compound wave), followed
by the constant state U∗L. The latter is split from the U∗R state by the 1-rarefaction or
shock wave. The right rarefaction or shock 1-wave lies on the right of the t-axis. This
configuration can take place, for example in situations like the one shown in Example
4.1 of Section 4. In general, this wave pattern occurs when the following conditions are
satisfied:

λ1(UL)<0 and λ1(U∗L)>0,
λ4(U∗L)>0 and λ4(U∗R)>0,

}

if KL >KR. (5.16)

To solve this configuration, it is necessary to choose a point B very close to the t-axis, but
on the left side of it (see Fig. 13). Since

ψ∗L =ψ∗R+
1

γ
(d∗L−d∗R), and ψ∗R =ψR+

1

γ
(d∗R−dR), (5.17)

we have that:

ψ∗L =ψR+
1

γ
(d∗L−dR). (5.18)
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Figure 13: The wave pattern when the compound wave lies on the left of the t-axis.

Choosing SB = xB/tB, with SB <0 and |SB|≪1, the following conditions hold:

SB =uB−
√

gdB +
A(d2

B)

3γ
+

2

3
AdBψB, (5.19a)

uB =uL− fR(dB,dL,ψL), (5.19b)

uBdB =u∗Ld∗L, (5.19c)

u∗L =u∗R− fR,S(d∗L,d∗R), (5.19d)

gd2
B

2
+

(uBdB)2

dB
+

Ad2
B

3
ψB =

gd2
∗L

2
+

(u∗Ld∗L)
2

d∗L
+

Ad2
∗L

3
ψ∗L, (5.19e)

with

ψB =ψL+
1

γ
(dB−dL), (5.20)

while across the λ4 shock or rarefaction wave, the following equations apply:

ψ∗R =ψR+
(dR−dR)

γ
, (5.21a)

u∗R =uR∓ fR,S(d∗R,dR). (5.21b)

Eqs. (5.19) and (5.21b) can be set in a system of six equations for the six unknowns dB,
d∗L, d∗R, uB, u∗L and u∗R; ψB, ψ∗L and ψ∗R can be obtained through Eqs. (5.18), (5.20) and
(5.21a).

5.5 Configuration e

In this configuration, the 1-wave interacts with the 0-wave, giving rise to a contact discon-
tinuity attached to a rarefaction on the right of the t-axis (compound wave). The constant
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state U∗L is located on the left of the t-axis, split from the UL state by the 1-rarefaction
or shock wave. The compound wave is followed by the constant state U∗R and the right
rarefaction or shock wave. This configuration can take place, for example in situations
like the ones shown in Examples 4.3 and 4.5 in Section 4. In general, this wave pattern
occurs when the following conditions are satisfied:

λ1(U∗L)<0 and λ1(U∗R)>0,
λ4(U∗L)>0 and λ4(U∗R)>0,

}

if KR >KL. (5.22)

To solve this configuration, it is possible to use the same strategy of ‘Configuration d’,
after moving the point B on the right of the t axis, the rarefaction of the compound wave
lying on the right side of it. In particular, we have that:

ψ∗L =ψL+
1

γ
(d∗L−dL), (5.23a)

ψB =ψ∗R+
1

γ
(dB−d∗R)=ψR+

1

γ
(dB−dR). (5.23b)

Assuming that SB = xB/tB, the following conditions hold:

SB =uB−
√

gdB +
A(d2

B)

3γ
+

2

3
AdBψB, (5.24a)

uB =u∗R− fR(dB,d∗R), (5.24b)

uBdB =u∗Ld∗L, (5.24c)

u∗L =uL− fR,S(d∗L,dL), (5.24d)

gd2
B

2
+

(uBdB)2

dL
+

Ad2
B

3
ψB =

gd2
∗L

2
+

(u∗Ld∗L)
2

d∗L
+

Ad2
∗L

3
ψ∗L, (5.24e)

while across the λ4 shock or rarefaction wave, the following equations apply:

ψ∗R =ψR+
(d∗R−dR)

γ
, (5.25a)

u∗R =uR∓ fR,S(d∗R,dR). (5.25b)

Eqs. (5.24) and (5.25b) can be set in a system of six equations for the six unknowns dB,
d∗L, d∗R, uB, u∗L and u∗R; ψB, ψ∗L and ψ∗R can be obtained through Eqs. (5.23) and (5.25a).

6 Sampling the solution

According to what explained in the previous sections, the solution in the constant regions
UL, UR, U∗L and U∗R can be found by solving systems of nonlinear equations. Notice that
the wave pattern, which establishes the equations to be solved, depends on the solution
itself; hence the procedure to obtain the solution in the star regions must be iterative.
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After calculating the solution in the constant state regions U∗L and U∗L, it is possible
to sample the solution in the whole domain. In particular, to find the solution in a rar-
efaction fan (for example the left one), we consider a point P=(x̂, t̂) inside the wave and
a characteristic curve joining the origin (0,0) and P. The speed of the characteristic is:

u−
√

gd+
A(d2)

3γ
+

2

3
Adψ=

dx

dt
=

x̂

t̂
. (6.1)

We can also connect P to the left data state via the generalized Riemann invariant; Eq. (3.8)
gives:

u∗L =uL− fR(d∗L,dL). (6.2)

The simultaneous solution (through Newton procedure) of Eqs. (6.1) and (6.2) for u and d
gives the required solution. The solution in the right rarefaction fan or in the rarefaction
fan of a compound wave can be found with an analogous procedure.

7 Dry-bed conditions

In this section we give the analytical solution of the Riemann problem for the cases in
which dry regions are either present at the initial time or appear as a consequence of the
interaction of the two left and right wet-bed states. In the former situation the initial
condition is given by a wet region adjacent to a dry region, while in the latter one the
whole domain is initially wet. Since in a zero-depth region any equation based on the
continuum assumption is not applicable, the solution of the Riemann problem has to be
found in the wet region up to the boundary between wet and dry regions, the boundary
being part of the solution itself.

First of all, it is possible to demonstrate that a shock wave cannot be adjacent to a dry-
bed region. Consider the Riemann problem (2.1) such that UL is the data for a wet-bed
portion (dL>0) and UR is the data for the dry-bed region (dR=0). As the dry-bed region is
on the right, the wave family λ1 is absent, no medium for its propagation being available.
Suppose that UL and UR are connected by a 1-shock wave of speed S. Application of the
Rankine-Hugoniot conditions gives S=uL, but this result clearly contradicts the entropy
condition necessary to have a shock wave:

λ1(UL)>S ⇐⇒ uL−
√

gdL +
Ad2

L

3γ
+

2

3
AdLψL >S=uL, (7.1)

demonstrating the above statement.
There are three possible cases to be considered: one first case in which the dry-bed is

on the right-hand side, one second case in which the dry-bed on the left-hand side and
one last case in which a dry-bed is not present at t = 0, but it is generated because of
the interaction of the data states UL and UR. If the dry-bed is on the left side, the wave
patterns and the solution strategy are symmetrical to those shown for the case of right
dry-bed.
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Figure 14: Possible wave patterns if the dry-bed is on the right side.

7.1 The dry-bed is on the right side

If the initial condition presents a dry-bed region on the right side, four possible configura-
tions of the solution can be developed (see Fig. 14). Notice that in all the cases the 4-wave
is absent, as there is no water for it to propagate through, while the contact discontinu-
ities associated to the eigenvalues λ2 and λ3 can be either present or not depending on
the position of the dry-wet interface.

7.1.1 Configuration a

In this case the rarefaction associated to λ1 lies on the right of the t-axis. This configura-
tion takes place if the following conditions are satisfied:

λ1(UL)>0, λ1(U∗L)>0 and λ1(U∗R)=S∗R >0, (7.2)

where S∗R is the slope of the λ1 characteristic curve at the wet-dry interface (see Fig. 14).
The following equation system applies:



























d∗R =0,

dLuL =d∗Lu∗L,

gd2
L

2
+

(uLdL)2

dL
+

Ad2
L

3
ψL =

gd2
∗L

2
+

(u∗Ld∗L)
2

d∗L
+

Ad2
∗L

3
ψ∗L,

u∗R =u∗L− fR(d∗L,d∗R,ψ∗L),

(7.3)
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where

ψ∗L =ψR+
d∗L

γ
. (7.4)

Such a system can be solved by using a standard multivariate Newton method for non-
linear systems of equations.

7.1.2 Configuration b

This configuration takes place if KL =KR. In this case the solution pattern of the DNSWE
reduces to the classical NSWE one and the system to be solved becomes:

{

d∗L =0,

u∗L =uL− fR(d∗L,dL,ψL),
(7.5)

with

ψ∗L =ψL−
dL

γ
. (7.6)

7.1.3 Configuration c

In this configuration, which occurs if

λ1(UL)<0, λ1(U∗L)<0 and λ1(U∗R)<0, (7.7)

the contact discontinuities do not exist, as the t-axis lies in a dry region. The set of equa-
tions to be solved is the same of ‘Configuration b’.

7.1.4 Configuration d

In this configuration the eigenvalue λ1 changes its sign and interacts with the 0-wave giv-
ing rise to a resonance phenomenon. A compound wave appears in the solution pattern.
The condition for this configuration to occur are:

λ1(UL)<0, λ1(U∗L)>0, λ1(U∗R)=S∗R >0 and KL >KR, (7.8)

To solve this configuration it is possible to use the same strategy used in ‘Configuration
d’ for the wet-bed case. Once identified a point B very close to the t-axis, but on the left
side of it, the system of equations to be solved is the following:



































d∗R =0,

uB =uL− fR(dB,dL,ψB),

dBuB =d∗Lu∗L,

gd2
B

2
+

(uBdB)2

dB
+

Ad2
B

3
ψB =

gd2
∗L

2
+

(u∗Ld∗L)
2

d∗L
+

Ad2
∗L

3
ψ∗L,

u∗R =u∗L+ fR(d∗L,d∗R,ψ∗L),

(7.9)

where

ψB =ψL+
dB−dL

γ
and ψ∗L =ψR+

d∗R

γ
. (7.10)
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7.1.5 Configuration e

This configuration also presents a compound wave due to the interaction of the 1-wave
with the contact discontinuity because of the presence of a state at which λ1 = 0. This
configuration occurs if the following conditions are verified:

λ1(U∗L)<0, λ1(U∗R)=S∗R >0 and KR >KL, (7.11)

Solution is achieved by the same strategy used in ‘Configuration e’ for the wet bed case.
Once identified a point B very close to the t-axis, but on the right side of it, the system of
equations to be solved is the following:



































d∗R =0,

u∗L =uL− fR,S(dB,dL,ψL),

dBuB =d∗Lu∗L,

gd2
B

2
+

(uBdB)2

dB
+

Ad2
B

3
ψB =

gd2
∗L

2
+

(u∗Ld∗L)
2

d∗L
+

Ad2
∗L

3
ψ∗L,

u∗R =uB+ fR(d∗L,dB,ψB),

(7.12)

where

ψB =ψL+
dB

γ
. (7.13)

7.2 The dry bed is generated in the middle

For general wet-bed initial conditions, there can be special combinations of left and right
variables which can produce the generation of dry-bed in the middle of the domain.
Unfortunately, it is not possible to find a priori a condition on UL and UR which can
identify such a configuration of the solution, as is the case of shallow water equations
(see [15]). However, as the DNSWE always require a set of trial values to start the solution
procedure, the generation of dry-bed in the middle can be identified by using them. In
this case, the only possible wave pattern is the one shown in Fig. 15. The system of
equations to be solved is the following:















d∗L =0,
d∗R =0,
u∗L =uL− fR(d∗L,dL,ψL),
u∗R =uR− fR(d∗R,dR,ψR).

(7.14)

8 Test cases

In this section we present some analytical solutions of the Riemann problem for the ho-
mogeneous DNSWE. Such solutions are compared with numerical solutions obtained
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Figure 15: The dry-bed is generated in the middle.

by using both a Rusanov and a FORCE flux in the frame of the second-order MUSCL-
Hancock Method (see [17]). The test case initial conditions are shown in Table 2 (L is the
length of the computational domain). Notice that the output times are different for all
the test cases: in fact, as the wave celerity depends on the initial conditions, we have to
choose appropriate output times in order to see all the waves within the computational
domain.

Table 2: Test case initial conditions for DNSWE, over both Shallow Water (SW), Intermediate Depth (ID) and
Dry Bed (DB) conditions.

test dL uL ψL φL dR uR ψR φR L xgate Conf. Cond.
1 0.01 -0.005 5.0 0.0 0.01 0.005 5.0 0.0 1.0 0.5 a SW
2 1.0 0.0 10.0 1.0 0.5 0.0 20.0 5.0 6.0 3.0 a ID
3 1.0 10.0 -10.0 5.0 0.5 0.0 10.0 1.0 6.0 3.0 b ID
4 1.0 0.0 50.0 5.0 0.5 0.0 -10.0 1.0 6.0 3.0 d ID
5 0.1 0.0 20.0 5.0 1.0 -2.5 -10.0 1.0 6.0 3.0 e ID
6 0.5 0.5 20.0 5.0 0.0 0.0 0.0 0.0 6.0 3.0 d dry DB
7 0.5 -8.0 20.0 5.0 0.5 8.0 10.0 0.0 6.0 3.0 mid-dry DB

The test case conditions are both of shallow and intermediate water depths. In par-
ticular, shallow water conditions can be identified by exploiting the fact that, over very
small depths, the first two eigenvalues of the DNSWE tend to the eigenvalues of the
classical nonlinear shallow water equations. This happens when:

A

3g

∣

∣

∣

∣

d

γ
+2ψ

∣

∣

∣

∣

≪1. (8.1)

Since A=1s−1, 3g/A≃29.43 and, consequently, a good approximation of (8.1) is:

∣

∣

∣

∣

d

γ
+2ψ

∣

∣

∣

∣

≤1m. (8.2)
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Figure 16: Test 1. Numerical solution for ψ and φ obtained using the MUSCL-Hancock method with both
Rusanov flux (dashed line) and FORCE flux (crosses) and the exact solution (line) of the Riemann problem for
the DNSWE, at t=0.5s (configuration a of Fig. 12).
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Figure 17: Test 2. Numerical solution for ψ and φ obtained using the MUSCL-Hancock method with both
Rusanov flux (dashed line) and FORCE flux (crosses) and the exact solution (line) of the Riemann problem for
the DNSWE, at t=0.4s (configuration a of Fig. 12).
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Figure 18: Test 3. Numerical solution for ψ and φ obtained using the MUSCL-Hancock method with both
Rusanov flux (dashed line) and FORCE flux (crosses) and the exact solution (line) of the Riemann problem for
the DNSWE, at t=0.2s (configuration b of Fig. 12).
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Figure 19: Test 4. Numerical solution for ψ and φ obtained using the MUSCL-Hancock method with both
Rusanov flux (dashed line) and FORCE flux (crosses) and the exact solution (line) of the Riemann problem for
the DNSWE, at t=0.2s (configuration d of Fig. 12).
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Figure 20: Test 4. Convergence test for the numerical solution for ψ and φ obtained using the MUSCL-Hancock
method (FORCE flux) over a mesh of 400 (crosses), 2500 (dots) and 5000 cells (dashed line). The thick line
represents the analytical solution at t=0.2s.
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Figure 21: Test 5. Numerical solution for ψ and φ obtained using the MUSCL-Hancock method with both
Rusanov flux (dashed line) and FORCE flux (crosses) and the exact solution (line) of the Riemann problem for
the DNSWE, at t=0.2s (configuration e of Fig. 12).
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Figure 22: Test 6. Numerical solution for ψ and φ obtained using the MUSCL-Hancock method with a FORCE
flux (crosses) and the exact solution (line) of the Riemann problem for the DNSWE, at t=0.2s (configuration
d dry of Fig. 14).
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Figure 23: Test 7. Numerical solution for ψ and φ obtained using the MUSCL-Hancock method with both
Rusanov flux (dashed line) and FORCE flux (crosses) and the exact solution (line) of the Riemann problem for
the DNSWE, at t=0.2s (configuration of dry bed in the middle of Fig. 15).
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We also investigate the behaviour of the solution for some relevant cases of resonance
and for dry-bed conditions. In all the test cases, Ncells =5000, γ=0.1 and Cc f l =0.9 (except
for Test 1, in which Ncells = 1000, the computational domain being shorter than the oth-
ers). A convergence test is also shown, in which the numerical solution is obtained over
meshes of 400, 2500, and 5000 cells (test conditions are those of Test 4).

All the test cases show a very good agreement between the numerical and the analyt-
ical solutions of the Riemann problem, over both shallow and intermediate water depths.
In particular, the numerical solutions constitute a cross-check of the analytical solution, as
in the case of discontinuous solutions, since the numerical method chooses the entropy-
satisfying solution by default, as a result of its numerical viscosity. It is reassuring that
the correct wave pattern of the solution, the correct values of the variables in the constant
regions U∗L and U∗R and correct sampling of the solution have been attained. This is
true also in complex cases, like those containing compound waves. Notice that the only
differences between the numerical and the analytical solution can be seen in Tests 6 and 7
(Figs. 22 and 23). Such differences are due to the fact that the numerical solvers fail when
facing dry-bed conditions.

9 Conclusions

Compared to the classical Nonlinear Shallow Water Equations and to the many available
Boussinesq models, the Dispersive Nonlinear Shallow Water Equations (DNSWE), pro-
posed by Antuono, Liapideskii and Brocchini [1], show many advantages. In particular
they are able not only to simply treat wave-breaking and the shoreline motion, because
of their hyperbolic character, but they also allow to model dispersive effects.

Since the DNSWE are a set of hyperbolic equations with stiff source terms, they re-
quire appropriate numerical solution techniques. Very commonly used approaches to
solve system of balance laws with stiff source terms are splitting schemes. These schemes
consist in solving iteratively the associated system of conservation laws with a classical
finite volume scheme and the associated system of ordinary derivative equations with an
appropriate numerical tool. In particular, powerful numerical fluxes to solve hyperbolic
systems of conservation laws are based on the solution of the Riemann problem for the
system of conservation laws.

In the present work an analytical solution of the Riemann problem for the homoge-
neous part of the DNSWE is proposed, over both wet and dry bed conditions. All the
possible wave patterns of the solution are deeply analyzed and a particular care is de-
voted to those cases in which one of the eigenvalues of the system becomes zero. Such
configurations can allow for the formation of compound waves, which need appropriate
equations to be recognized and solved. The validity of the presented analytical solution is
confirmed by comparisons with accurate numerical solutions, obtained by using dissipa-
tive methods that do not make explicit use of the solution of the local Riemann problem.
A very good agreement between the analytical solution and numerical ones is shown in
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all the Riemann problem test cases presented.

Thanks to the good results obtained, the proposed analytical Riemann solver could be
used for the construction of a Godunov-type solver for the homogeneous DNSWE, to be
coupled with appropriate numerical tools for the associated system of ordinary deriva-
tive equations, in order to get a consistent, stable and accurate scheme for the complete
DNSWE. Such a complete solver, which is the goal of current undergoing studies, would
allow to correctly model nearshore hydrodynamics and could be applied to study differ-
ent physical phenomena of wave propagation over both intermediate and shallow water
depths.
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