
Commun. Comput. Phys.
doi: 10.4208/cicp.250509.211009a

Vol. 8, No. 5, pp. 1242-1263
November 2010

Trigonometric WENO Schemes for Hyperbolic

Conservation Laws and Highly Oscillatory Problems

Jun Zhu1 and Jianxian Qiu2,∗

1 College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing,
Jiangsu 210016, China.
2 Department of Mathematics, Nanjing University, Nanjing, Jiangsu 210093, China.

Received 25 May 2009; Accepted (in revised version) 21 October 2009

Communicated by Chi-Wang Shu

Available online 28 July 2010

Abstract. In this paper, we use trigonometric polynomial reconstruction, instead of
algebraic polynomial reconstruction, as building blocks for the weighted essentially
non-oscillatory (WENO) finite difference schemes to solve hyperbolic conservation
laws and highly oscillatory problems. The goal is to obtain robust and high order
accurate solutions in smooth regions, and sharp and non-oscillatory shock transitions.
Numerical results are provided to illustrate the behavior of the proposed schemes.

AMS subject classifications: 65M06, 65M99, 35L65

Key words: TWENO scheme, hyperbolic conservation laws, highly oscillatory problem, finite
difference scheme.

1 Introduction

In this paper, we investigate using trigonometric polynomial reconstruction as building
blocks for the weighted essentially non-oscillatory (WENO) finite difference schemes,
termed as TWENO schemes, to solve hyperbolic conservation laws:

{

ut+ fx(u)=0,
u(x,0)=u0(x).

(1.1)

Hyperbolic conservation laws appear often in applications, such as in gas dynamics
and modelling of shallow waters, among many others. As a result, devising robust, ac-
curate and efficient methods for numerically solving these problems is of considerable
importance and has attracted the interest of many researchers and practitioners. In 1959,

∗Corresponding author. Email addresses: zhujun@nuaa.edu.cn (J. Zhu), jxqiu@nju.edu.cn (J. Qiu)

http://www.global-sci.com/ 1242 c©2010 Global-Science Press

J. Zhu and J. Qiu / Commun. Comput. Phys., 8 (2010), pp. 1242-1263 1243

Godunov [4] proposed a first-order numerical scheme for solving hyperbolic conserva-
tion laws. In order to achieve uniform high order of accuracy, Harten and Osher [6] gave a
weaker version of the TVD (Total Variation Diminishing) [5] criterion, and also obtained
the essentially non-oscillatory (ENO) type schemes. The key idea of ENO schemes is
to apply the most smooth stencil among all candidate stencils to approximate the vari-
ables at cell boundaries to a high order of accuracy and to avoid oscillations near dis-
continuities. In 1994, Liu et al. [9] proposed a Weighted ENO (WENO) scheme that was
constructed from the r-th order ENO schemes to obtain (r+1)-th order accuracy. Then
in 1996, Jiang and Shu [7] proposed a framework to construct finite difference WENO
schemes from the r-th order (in L1-norm sense) ENO schemes to get (2r−1)-th order ac-
curacy. It gave a new way of measuring the smoothness indicators and emulated the
ideas of minimizing the total variation of the approximation in [14]. Recently, Zhang
and Shu [16] constructed the third-order WENO scheme on three-dimensional tetrahe-
dral meshes. A key idea in WENO schemes is the exploitation of a linear combination of
lower order fluxes or reconstruction to obtain a higher order approximation. Both ENO
and WENO schemes use the idea of adaptive stencils to automatically achieve high order
accuracy and non-oscillatory property near discontinuities. For the system case, WENO
schemes are based on local characteristic decompositions and flux splitting to avoid spu-
rious oscillations. They have been used successfully in many applications, especially
for problems containing shocks and/or complicated smooth solution structures, such as
compressible turbulence simulations and aeroacoustics.

Wave-like phenomena or highly oscillatory problems are encountered quite often in
nature. However, little attention has been paid to trigonometric essentially non-oscillatory
schemes, which appear to be more suitable for the simulation of such problems. In 1976,
Baron [1] studied trigonometric interpolation and presented certain Neville-like algo-
rithms. Muhlbach [10–13] studied general basis function, including trigonometric inter-
polation in Newton form. However, their work cannot be applied to ENO type schemes
directly. The methodology used cannot obey the rule of adding one interpolation point to
the stencil once a time but two. Christofi [3] provided a new trigonometric reconstruction
methodology that can add interpolation points one by one and can also possess necessary
symmetries to be used in ENO schemes.

In this paper, following the ideas in [3, 7, 14], we construct a kind of finite difference
TWENO scheme which is of 5-th order accurate. The main differences between [3] and
this work are the way of measuring the smoothness of the trigonometric polynomials
and the form of the reconstruction that the schemes are ultimately based on. A Newton
form is employed in [3], but a Lagrange form used in this work that seems suitable for
improving the WENO type schemes. Compared to [3], the new scheme with the same
stencils can achieve an even higher order of accuracy in smooth regions and less oscil-
lations in discontinuous regions. Compared to the WENO schemes of [7] and [14], one
major advantage of the new TWENO scheme is its good performance for the wave-like
and highly oscillatory problems.

The organization of this paper is as follows. In Section 2, we review and construct

1244 J. Zhu and J. Qiu / Commun. Comput. Phys., 8 (2010), pp. 1242-1263

finite difference TWENO schemes. In Section 3, we present extensive numerical tests to
verify the accuracy and stability of the proposed schemes. Concluding remarks are given
in Section 4.

2 Finite difference TWENO schemes

In this section we consider one-dimensional hyperbolic conservation laws (1.1). The
semi-discretization is written in the form:

du

dt
= L(u), (2.1)

where L(u) is the high order spatial discrete representation of − fx(u).
For simplicity of presentation, we assume that the mesh is uniformly distributed into

several cells Ii =[xi−1/2,xi+1/2], with the cell size xi+1/2−xi−1/2 = h, and cell centers xi =
1
2(xi+1/2+xi−1/2). We also denote ui(t)=u(xi,t). Then, the right hand side of (2.1) can be
written as in [7]:

L(ui(t))=−1

h
(f̂i+1/2− f̂i−1/2), (2.2)

where f̂i+1/2 is a numerical flux which is a high order approximation of the flux f (u) at
the boundary xi+1/2 of cell Ii. If we take the numerical flux f̂i+1/2 to be the (2r+1)-th
order approximation to vi+1/2 =v(xi+1/2), where v(x) is defined implicitly by:

f (u(x))=
1

h

∫ x+h/2

x−h/2
v(ξ)dξ, (2.3)

then the right-hand side of (2.2) is the (2r+1)-th order approximation to − fx(u) at x=xi.
For a general flux, we split it into two parts:

f (u)= f +(u)+ f−(u), with
d f +(u)

du
≥0 and

d f−(u)

du
≤0.

In this paper, we use the simplest Lax-Friedrichs splitting:

f±(u)=
1

2
(f (u)±αu) , (2.4)

where α is taken as α = maxu | f ′(u)| over the whole range of u. Let f̂ +
i+1/2 and f̂−i+1/2 be

the numerical fluxes at xi+1/2 obtained from (2.3) for positive and negative parts of f (u),
respectively. We can define f̂i+1/2 = f̂ +

i+1/2+ f̂−i+1/2.

Now, we describe the procedure of reconstruction of f̂ +
i+1/2. From the definition of

v(x) in (2.3) for f +(u), we have:

f +(ui)=
1

h

∫ xi+1/2

xi−1/2

v(ξ)dξ =vi ,

J. Zhu and J. Qiu / Commun. Comput. Phys., 8 (2010), pp. 1242-1263 1245

where vi is the cell average of v(x) on the Ii.

Step 1. We choose the following stencil: T = {Ii−r,··· , Ii+r}. We define the primitive
function of v(x) [14]:

V(x)=
∫ x

−∞
v(ξ)dξ, (2.5)

V(xi+1/2)=
i

∑
j=−∞

∫

Ij

v(ξ)dξ =h
i

∑
j=−∞

vj. (2.6)

Thus, with the cell averages {vj}, we know the primitive function V(x) at the xi+1/2

exactly. If we denote the proper trigonometric polynomial P(x) that interpolates V(x)
at the (2r+2) points xi−(2r+1)/2,··· ,xi+(2r+1)/2 and denote its derivative by p(x)= P′(x),
then it is easy to verify that:

1

h

∫

Ij

p(ξ)dξ =
1

h

∫

Ij

P′(ξ)dξ =
1

h

(

P(xj+1/2)−P(xj−1/2)
)

=
1

h

(

V(xj+1/2)−V(xj−1/2)
)

=
1

h

(

∫ xj+1/2

−∞
v(ξ)dξ−

∫ xj−1/2

−∞
v(ξ)dξ

)

=
1

h

∫

Ij

v(ξ)dξ =vj , j= i−r,··· ,i+r. (2.7)

This implies that p(x) is the desired trigonometric polynomial. Next, we use the La-
grange form of the interpolating trigonometric polynomial [3]:

ln(x)=cos

(

1

2
(x−xi+(2n−(2r+3))/2)

)

×
2r+2

∏
k=1,k 6=n

sin
(

1
2(x−xi+(2k−(2r+3))/2)

)

sin
(

1
2(xi+(2n−(2r+3))/2−xi+(2k−(2r+3))/2)

) , n=1,··· ,2r+2, (2.8a)

P(x)=
2r+2

∑
n=1

V(xi−(2r+3−2n)/2)ln(x). (2.8b)

One can verify that the following relations are valid:

2r+2

∑
n=1

ln(x)=1, (2.9a)

P(x)−V(xi−(2r+1)/2)=
2r+2

∑
n=1

(

V(xi+(2n−(2r+3))/2)−V(xi−(2r+1)/2)
)

ln(x), (2.9b)

V(xi+(2n−(2r+3))/2)−V(xi−(2r+1)/2)=h
n−2r

∑
j=−r

vi+j, n≥ r. (2.9c)

1246 J. Zhu and J. Qiu / Commun. Comput. Phys., 8 (2010), pp. 1242-1263

Taking the derivative on both sides of the above relation (2.9b), we can obtain

p(x)=
∂

∂x

(

2r+2

∑
n=1

(

V(xi+(2n−(2r+3))/2)−V(xi−(2r+1)/2)
)

ln(x)

)

. (2.10)

Step 2. In this step, we set n = 1,··· ,r+1. We divide the stencil T into (r+1) smaller
stencils: S1 = {Ii−r,··· , Ii},··· , Sr+1 = {Ii,··· , Ii+r}. Just as in Step 1, we can construct the
trigonometric polynomials pn(x) in the associated smaller stencils to approximate the
function v(x).

The values of the functions pn(x) at the point xi+1/2 of cell Ii can be written as a linear
combination of {vj}. For example, when r=1, we have

p1(xi+1/2)=
h

2sin(h)
(−vi−1+vi+2vi cos(h)) , (2.11a)

p2(xi+1/2)=
h

2sin(h)
(vi+vi+1). (2.11b)

When r=2, we have

p1(xi+1/2)=−β(h)
(

2vi−1−3vi+(3vi−1−vi−2−5vi)cos(h)

+(vi−1−vi−2−3vi)cos(2h)+vi−1 cos(3h)
)

, (2.12a)

p2(xi+1/2)= β(h)
(

2vi +vi+1+(−vi−1+2vi +vi+1)cos(h)+vi cos(2h)
)

, (2.12b)

p3(xi+1/2)= β(h)
(

vi +2vi+1+(vi+2vi+1−vi+2)cos(h)+vi+1 cos(2h)
)

. (2.12c)

where and also in (2.13) below, β(h)=h/[sin(2h)(2+4cos(h))].
When r=3, we have

p1(xi+1/2)=−β(h)
(

5vi−1−3vi−2+vi−3−5vi +2(4vi−1−2vi−2+vi−3−5vi)cos(h)

+(6vi−1−4vi−2−6vi)cos(2h)+(2vi−1−2vi−2−4vi)cos(3h)+2vi−1 cos(4h)
)

, (2.13a)

p2(xi+1/2)= β(h)
(

−vi−1+vi−2+3vi+vi+1+(−2vi−1+6vi +2vi+1)cos(h)

−2(vi−1−vi)cos(2h)+2vi cos(3h)
)

, (2.13b)

p3(xi+1/2)= β(h)
(

−vi−1+vi+vi+1−vi+2+4(vi+vi+1)cos(h)+2(vi +vi+1)cos(2h)
)

,

(2.13c)

p4(xi+1/2)= β(h)
(

vi +3vi+1−vi+2+vi+3+2(vi+3vi+1−vi+2)cos(h)

+2(vi+1−vi+2)cos(2h)+2vi+1 cos(3h)
)

. (2.13d)

J. Zhu and J. Qiu / Commun. Comput. Phys., 8 (2010), pp. 1242-1263 1247

Then we find the linear weights, such that the following equation is valid:

p(xi+1/2)=
r+1

∑
n=1

γn pn(xi+1/2).

For example, when r=1, we have

γ1 =
cos(h)

1+2cos(h)
, γ2 =

1+cos(h)

1+2cos(h)
. (2.14)

When r=2, we have

γ1 =
1

2(1+2cos(h)+cos(2h)+cos(3h))
, (2.15a)

γ2 =
cos(h)+cos(2h)+cos(3h)

1+2cos(h)+cos(2h)+cos(3h)
, (2.15b)

γ3 =
1+2cos(h)

2(1+2cos(h)+cos(2h)+cos(3h))
. (2.15c)

When r=3, we have

γ1 =
1

s
cos(2h), (2.16a)

γ2 =
1

s

(

2+3cos(h)+2cos(2h)+2cos(3h)+cos(4h)+cos(5h)+cos(6h)
)

, (2.16b)

γ3 =
1

s

(

2+4cos(h)+4cos(2h)+3cos(3h)+3cos(4h)+cos(5h)+cos(6h)
)

, (2.16c)

γ4 =
1

s

(

1+cos(h)+cos(2h)+cos(3h)
)

, (2.16d)

where s=5+8cos(h)+8cos(2h)+6cos(3h)+4cos(4h)+2cos(5h)+2cos(6h).
For smaller stencils Sn, we compute the smoothness indicators, denoted by βn, which

measure how smooth the functions pn(x) are in the target cell Ii. The smaller these
smoothness indicators, the smoother the functions are in the target cell. We use the same
recipe for the smoothness indicators as in [7]:

βn =
r

∑
α=1

∫

Ii

h2α−1
(dα pn(x)

dxα

)2
dx. (2.17)

We then compute the nonlinear weights based on the linear weights and the smoothness
indicators [14]:

ωn =
ωn

∑
r+1
k=1ωk

, ωn =
γn

∑
r+1
k=1(ε+βk)2

, (2.18)

where γn are the linear weights determined in the above step, and ε is a small positive
number to avoid overflow. We use ε = 10−6 in all the computations in this paper. The

1248 J. Zhu and J. Qiu / Commun. Comput. Phys., 8 (2010), pp. 1242-1263

final reconstruction of the numerical flux which approximates the positive part of f (u) at
x= xi+1/2 is given by

f̂ +
i+1/2 =

r+1

∑
n=1

ωn pn

(

xi+ 1
2

)

.

The procedure for the reconstruction of f̂−i+1/2 is a mirror symmetry to that of f̂ +
i+1/2 with

respect to xi+1/2.

Step 3. The semidiscrete scheme (2.1) is then discretized in time by a TVB Runge-
Kutta method [15]; for example the 4th-order version is given by











































u(1) =un+
1

2
∆tL(un),

u(2) =un+
1

2
∆tL(u(1)),

u(3) =un+∆tL(u(2)),

un+1 =−1

3
un+

1

3
u(1)+

2

3
u(2)+

1

3
u(3)+

1

6
∆tL(u(3)).

(2.19)

Remark 2.1. For systems of conservation laws, such as the Euler equations of gas dynam-
ics, all of the reconstructions are performed in the local characteristic directions to avoid
oscillations.

Remark 2.2. For two-dimensional problems, the reconstructions can be performed by a
dimension-by-dimension fashion.

3 Numerical tests

In this section we present only the results of numerical tests of the 5th-order scheme
described in the previous section.

Example 3.1. We solve the following linear scalar equation:

{

ut+ux =0, −π≤ x≤π, t>0,
u(x,0)=u0(x),

(3.1)

with the initial condition u(x,0)= sin(x) and periodic boundary condition. We compute
the solution up to t=1. The errors and numerical orders of accuracy of the TWENO and
WENO [7] schemes are shown in Table 1 and the numerical error against CPU time is
plotted in Fig. 1. Table 1 demonstrates that the theoretical order is actually achieved and
TWENO can exhibit smaller errors than WENO for the same mesh level. Fig. 1 shows
that TWENO needs less CPU time than WENO does to obtain the same quantities of L1

and L∞ errors. It is therefore concluded that TWENO is more efficient than WENO for
this test case.

J. Zhu and J. Qiu / Commun. Comput. Phys., 8 (2010), pp. 1242-1263 1249

Table 1: Example 3.1: L1 and L∞ errors. TWENO scheme and WENO scheme at t=1.

TWENO scheme WENO scheme

grid points L1 error order L∞ error order L1 error order L∞ error order
10 5.72E-5 8.71E-5 5.72E-3 1.22E-2
20 1.34E-6 5.41 2.10E-6 5.36 2.57E-4 4.47 4.66E-4 4.70
40 3.43E-8 5.28 5.42E-8 5.28 7.60E-6 5.08 1.59E-5 4.86
80 8.69E-10 5.30 1.36E-9 5.30 2.27E-7 5.06 4.90E-7 5.02

160 2.17E-11 5.32 3.41E-11 5.32 6.95E-9 5.03 1.43E-8 5.09
320 5.40E-13 5.33 8.48E-13 5.33 2.16E-10 5.00 4.01E-10 5.15
640 1.34E-14 5.33 2.10E-14 5.33 6.71E-12 5.01 1.16E-11 5.10

-2 0 2
Log10(CPU time (sec))

-15

-14

-13

-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

L
og

1
0(

L1
er

ro
r)

+

+

+

+

+

+

+

-2 0 2
Log10(CPU time (sec))

-15

-14

-13

-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

L
o

g
10

(L
in

fin
ity

er
ro

r)

+

+

+

+

+

+

+

Figure 1: Example 3.1: computing time and error. Plus signs with a solid line denote the results of TWENO
scheme; squares with a solid line denote the results of WENO scheme.

Example 3.2. We solve the following linear scalar equation:

{

ut+ux =0 −∞< x<∞, t>0,
u(x,0)=u0(x),

(3.2)

with the initial condition u(x,0) = x5. In this test case, we adopt a large computational
domain at the initial time stage, and shrink computational domain at each time step to
avoid implementation of boundary conditions. We compute the solutions up to t=1. The
errors and numerical orders of accuracy of the TWENO and WENO of [7] are shown in
Table 2, and the numerical error against CPU time is plotted in Fig. 2. It is observed in
Table 2 that the theoretical order is actually achieved but TWENO may exhibit slightly
bigger errors than WENO. Fig. 2 shows that TWENO needs more CPU time than WENO
does to obtain the same quantities of L1 and L∞ errors, as the function basis of the so-
lutions are in the algebraic polynomial space and not in the trigonometric polynomial

1250 J. Zhu and J. Qiu / Commun. Comput. Phys., 8 (2010), pp. 1242-1263

Table 2: Example 3.2: L1 and L∞ errors. TWENO scheme and WENO scheme at t=1.

TWENO scheme WENO scheme

grid points L1 error order L∞ error order L1 error order L∞ error order
20 7.45E-2 2.56E-1 6.23E-2 2.21E-1
40 3.05E-3 4.61 1.34E-2 4.25 2.40E-3 4.70 1.27E-2 4.12
80 1.10E-4 4.79 7.78E-4 4.11 8.69E-5 4.79 7.65E-4 4.06

160 2.98E-6 5.21 3.24E-5 4.59 2.25E-6 5.27 3.20E-5 4.58
320 9.02E-8 5.05 1.21E-6 4.74 6.92E-8 5.03 1.20E-6 4.74
640 2.85E-9 4.98 3.52E-8 5.11 2.22E-9 4.96 3.46E-8 5.11

-2 0 2
Log10(CPU time (sec))

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

L
og

1
0(

L1
er

ro
r)

+

+

+

+

+

+

-2 0 2
Log10(CPU time (sec))

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

L
o

g
10

(L
in

fin
ity

er
ro

r)

+

+

+

+

+

+

Figure 2: Example 3.2: computing time and error. Plus signs with a solid line denote the results of TWENO
scheme; squares with a solid line denote the results of WENO scheme.

space any more. However, it is observed that the differences given by the two schemes
are very small.

Example 3.3. We solve the following linear scalar equation:

{

ut+ux+uy =0 −π≤ x≤π, −π≤y≤π, t>0,
u(x,y,0)=u0(x,y,),

(3.3)

with the initial condition u(x,y,0) = sin(x+y) and periodic boundary conditions. We
compute the solution up to t = 1. The errors and numerical orders of accuracy given
by the TWENO and WENO [7] schemes are shown in Table 3, and the numerical error
against CPU time is plotted in Fig. 3. We can observe that the theoretical order is actually
achieved and the TWENO scheme can get better results and is more efficient than WENO
in this test case.

J. Zhu and J. Qiu / Commun. Comput. Phys., 8 (2010), pp. 1242-1263 1251

Table 3: Example 3.3: L1 and L∞ errors. TWENO scheme and WENO scheme at t=1.

TWENO scheme WENO scheme

grid points L1 error order L∞ error order L1 error order L∞ error order
10×10 1.12E-4 1.73E-4 1.22E-2 1.98E-2
20×20 2.74E-6 5.35 4.34E-6 5.31 4.76E-4 4.68 8.89E-4 4.47
40×40 7.04E-8 5.28 1.10E-7 5.29 1.47E-5 5.01 3.04E-5 4.86
80×80 1.75E-9 5.32 2.76E-9 5.31 4.45E-7 5.04 9.44E-7 5.00

160×160 4.35E-11 5.33 6.84E-11 5.33 1.38E-8 5.00 2.84E-8 5.05
320×320 1.08E-12 5.33 1.69E-12 5.33 4.32E-10 5.00 8.08E-10 5.13
640×640 2.68E-14 5.33 4.21E-14 5.33 1.34E-11 5.00 2.33E-11 5.11

-2 -1 0 1 2 3 4 5
Log10(CPU time (sec))

-15

-14

-13

-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

L
og

1
0(

L1
er

ro
r)

+

+

+

+

+

+

+

-2 -1 0 1 2 3 4 5
Log10(CPU time (sec))

-15

-14

-13

-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

L
o

g
10

(L
in

fin
ity

er
ro

r)

+

+

+

+

+

+

+

Figure 3: Example 3.3: computing time and error. Plus signs with a solid line denote the results of TWENO
scheme; squares with a solid line denote the results of WENO scheme.

Example 3.4. We solve the 1D Euler equations

∂

∂t





ρ
ρu
E



+
∂

∂x





ρu
ρu2+p

u(E+p)



=0, (3.4)

where ρ is density, u is the velocity in x-direction, E is total energy, and p is pressure. The
initial conditions are:

ρ(x,0)=1+0.2sin(x), u(x,0)=1, p(x,0)=1,

and boundary conditions are periodic. We compute the density solution up to t=2.
The errors and numerical orders of accuracy of the TWENO and WENO [7] schemes

are shown in Table 4 and the numerical error against CPU time is presented in Fig. 4. We
can observe that the theoretical order is actually achieved and the TWENO scheme can
get better results. It is observed from Fig. 4 that TWENO is more efficient than WENO in
this test case at the fine mesh levels.

1252 J. Zhu and J. Qiu / Commun. Comput. Phys., 8 (2010), pp. 1242-1263

Table 4: Example 3.4: L1 and L∞ errors. TWENO scheme and WENO scheme at t=2.

TWENO scheme WENO scheme

grid points L1 error order L∞ error order L1 error order L∞ error order
10 4.86E-3 1.22E-2 2.56E-3 4.18E-3
20 5.29E-5 6.52 1.83E-4 6.05 1.06E-4 4.58 1.92E-4 4.43
40 7.35E-7 6.16 4.55E-6 5.33 3.26E-6 5.03 6.45E-6 4.89
80 9.48E-9 6.27 9.64E-8 5.56 9.56E-8 5.09 1.88E-7 5.09
160 8.73E-11 6.76 1.03E-9 6.53 2.92E-9 5.03 5.22E-9 5.17
320 1.00E-12 6.44 5.76E-12 7.49 8.76E-11 5.05 1.48E-10 5.13
640 1.41E-14 6.14 5.04E-14 6.83 2.40E-12 5.18 3.95E-12 5.23

0 2
Log10(CPU time (sec))

-15

-14

-13

-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

L
og

1
0(

L1
er

ro
r)

+

+

+

+

+

+

+

0 2
Log10(CPU time (sec))

-15

-14

-13

-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

L
o

g
10

(L
in

fin
ity

er
ro

r)

+

+

+

+

+

+

+

Figure 4: Example 3.4: computing time and error. Plus signs with a solid line denote the results of TWENO
scheme; squares with a solid line denote the results of WENO scheme.

Example 3.5. We solve the 2D Euler equations

∂

∂t









ρ
ρu
ρv
E









+
∂

∂x









ρu
ρu2+p

ρuv
u(E+p)









+
∂

∂y









ρv
ρuv

ρv2+p
v(E+p)









=0, (3.5)

where ρ is density; u and v are the velocity components in the x- and y-directions, respec-
tively; E is total energy; and p is pressure. The initial conditions are:

ρ(x,y,0)=1+0.2sin(x+y), u(x,y,0)=0.7, v(x,y,0)=0.3, p(x,y,0)=1,

and boundary conditions are periodic in both directions. We compute the density so-
lution up to t = 2. The errors and numerical orders of accuracy of the TWENO and
WENO [7] schemes are shown in Table 5 and the numerical error against CPU time is

J. Zhu and J. Qiu / Commun. Comput. Phys., 8 (2010), pp. 1242-1263 1253

Table 5: Example 3.5: L1 and L∞ errors. TWENO scheme and WENO scheme at t=2.

TWENO scheme WENO scheme

grid points L1 error order L∞ error order L1 error order L∞ error order
10×10 7.98E-3 2.27E-2 2.50E-3 4.16E-3
20×20 4.71E-5 7.40 1.86E-4 6.92 1.02E-4 4.61 1.90E-4 4.45
40×40 6.72E-7 6.12 4.30E-6 5.43 3.12E-6 5.03 6.33E-6 4.91
80×80 7.64E-9 6.45 7.15E-8 5.91 9.32E-8 5.06 1.79E-7 5.14

160×160 6.83E-11 6.80 5.26E-10 7.08 2.78E-9 5.06 4.60E-9 5.28
320×320 7.65E-13 6.48 2.93E-12 7.48 7.66E-11 5.18 1.23E-10 5.22

0 2 4
Log10(CPU time (sec))

-13

-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

L
og

1
0(

L1
er

ro
r)

+

+

+

+

+

+

0 2 4
Log10(CPU time (sec))

-13

-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

L
o

g
10

(L
in

fin
ity

er
ro

r)

+

+

+

+

+

+

Figure 5: Example 3.5: computing time and error. Plus signs with a solid line denote the results of TWENO
scheme; squares with a solid line denote the results of WENO scheme.

presented in Fig. 5. We can observe that the theoretical order is actually achieved and the
TWENO scheme can get better results. Moreover, TWENO is more efficient than WENO
in this test case at the fine mesh levels.

Example 3.6. We use function values H(xj+ 1
2
) from each of the test functions H listed

in [3]:

H(x)=

{

x, 0≤ x<π,
2π−x, π≤ x<2π,

H′(x)=

{

1, 0≤ x<π,
−1, π≤ x<2π,

(3.6a)

H(x)=

{

x+sin4(x), 0≤ x<π,

2π−(x+sin4(x)), π≤ x<2π,

H′(x)=

{

1+4sin3(x)cos(x), 0≤ x<π,

−(1+4sin3(x)cos(x)), π≤ x<2π.
(3.6b)

1254 J. Zhu and J. Qiu / Commun. Comput. Phys., 8 (2010), pp. 1242-1263

0 1 2 3 4 5 6
X

0

0.1

0.2

0.3

0.4

0.5

0.6

Y

+++

+

+

+

+

+
++

0 1 2 3 4 5 6
X

0

0.1

0.2

0.3

0.4

0.5

0.6

Y

+++

+

++

Figure 6: Error comparisons of the function H′(x) of the form (3.6a). Left: the pointwise errors |H′(xj+1/2)−
f̂ j+1/2| of the 4th degree trigonometric polynomial reconstruction to the derivative H′(x) are depicted by plus
signs and a solid line; those of the 4th degree algebraic polynomial are depicted by squares and a solid line.
Right: the pointwise errors |H′(xj+1/2)− f̂ j+1/2| of the TWENO scheme are depicted by plus signs and a solid
line; those of the WENO scheme are given by squares and a solid line.

0 1 2 3 4 5 6
X

0

0.1

0.2

0.3

0.4

0.5

0.6

Y

+++

+

+

+

+

+
++

0 1 2 3 4 5 6
X

0

0.1

0.2

0.3

0.4

0.5

0.6

Y

+++

+

++

Figure 7: Same as Fig. 6 except for H′(x) given by (3.6b).

Moreover, for 0≤ x<2π:

H(x)=sin7(x), H′(x)=7sin6(x)cos(x), (3.7a)

H(x)=0.01sin(3x), H′(x)=0.03cos(3x), (3.7b)

H(x)= x2cos(4x), H′(x)=2xcos(4x)−4x2 sin(4x), (3.7c)

H(x)= esin(x), H′(x)=cos(x)esin(x). (3.7d)

For every example, we present two graphs as follows: The first graph shows the
pointwise errors |H′(xj+1/2)− f̂ j+1/2| obtained by using the two approximations with 4th
degree trigonometric and algebraic polynomial reconstructions, respectively. The second
graph shows the pointwise errors |H′(xj+1/2)− f̂ j+1/2|, obtained by using the TWENO
and WENO schemes, respectively. These plots are displayed in Figs. 6 through 11. In

J. Zhu and J. Qiu / Commun. Comput. Phys., 8 (2010), pp. 1242-1263 1255

0 1 2 3 4 5 6
X

0

1E-06

2E-06

3E-06

4E-06

5E-06

6E-06

Y

++
+
++
++
+
++

+

+

+
+
++++

+

+

+

+

+

+

+

+

+
+++

+

+

+

+

+

+

+

+

+

+
++
+

+

+

+

+

++

+

+

+

+
++
+

+

+

+

+

+
+

+

+

+
+++
+
+

+

+

+
+
+
++++

+
+
+
+
+
++++

+
+
+

+

+

+
+
+++
+

+

+

+
+

+

+

+

+
+
++
+

+

+

+

++

+

+

+

+

+
++
+

+

+

+

+

+

+

+

+

+
+++
+

+

+

+

+

+

+

+

+
+
++
+
+
+

+

+

+
+
+
++++

0 1 2 3 4 5 6
X

0

1E-05

2E-05

3E-05

Y

+++
+
+

+
+++++

+
+

+

+

+
+
++
+
+

+

+

+

+

+

+
++

+

+

+

+

++

+

+

+

+

+
++
+

+

+

+

+

+
+
+

+

+

+

+
+
+

+

+

+

+

+

+

++
+++

+

+

+
+
+++
+
+
+

+

++++++
+

+

+++++
+
+

+

+

+

+++++

+

+

+

+

+

+

+
+
+

+

+

+

+
+

+

+

+

+

+

+
++
+

+

+

+

+

++

+

+

+

+

++

+

+

+

+

+

+

+
+
++
+
+

+

+

+
++++

+
+
+

++

Figure 8: Same as Fig. 6 except for H′(x) given by (3.7a).

0 1 2 3 4 5 6
X

0

1E-09

2E-09

3E-09

4E-09

5E-09

6E-09

7E-09

8E-09

9E-09

1E-08

1.1E-08

1.2E-08

Y

++
+
+
+
+
+
+
+
+
++
+++++++

+
+
+
+
+
+
+
+
++
+
+
+
+
+
+
+
+
++
+++++++

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
++
++++++++

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
++
++++++++

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
++
+++++++

+
+
+
+
+
+
+
+
++
+
+
+
+
+
+
+
+
++
+++++++

+
+
+
+
+
+
+

0 1 2 3 4 5 6
X

0

1E-08

2E-08

3E-08

4E-08

5E-08

6E-08

7E-08

8E-08

Y

++

+

+

+

+

+

+

+
+
+
+
+++++

+
+
+
+

+

+

+

+

+
++
+

+

+

+

+

+

+

+
+
+
++
++++

+
+
+
+

+

+

+

+

+++
+
+

+

+

+

+

+
+
+
+
++
++++

+
+
+
+

+

+

+

+

++
+
++

+

+

+

+

+
+
+
+
++
++++

+
+
+

+

+

+

+

+

+
+
++
+

+

+

+

+

+
+
+
+
++
++++

+
+
+

+

+

+

+

+

+

++
+

+

+

+

+

+

+
+
+
+
++++++

+
+
+

+

+

+

+

+

Figure 9: Same as Fig. 6 except for H′(x) given by (3.7b).

0 1 2 3 4 5 6
X

0

5E-05

0.0001

0.00015

0.0002

Y

+++++++++++
+++++++++++++++

+++
++++++++++++++

++
++
+++++++++++++

+
+
++
++
++++++++

+
+
+
++
+
+
+
+
+
++
++++++

+
+
+
+
++
+
+
+
+
+
+
++
++++

+
+
+
+

+

+
+

+

+

+

+
+
+
+
++
+++
+
+
+

+

+

+

+
+

+

+

+

+

+
+
+
++++

+
+

+

+

+

+

+

+

+

+

+

+

0 1 2 3 4 5 6
X

0

0.0005

0.001

0.0015

Y

+++
+
+
+

++++
++
++
+++

+

+

+
+++++

++
++
+++
++

+

+

+
++++

++
++
++
++++++

+

+

+
+++
+
+
+
+
+
++
+++++

+

+

+

+

+++
+
+
+
+
+
+
++
++++

+

+

+

+

+++
+
+
+
+
+
+
+
++
+++
+

+

+
+

+

++
+

+

+

+

+

+
+
+
++++

+

+

+

+
++

++

+

+

+

+

+

+

+
+
+++
+

+

+

+

+

+

+

++

+

+

+

+

Figure 10: Same as Fig. 6 except for H′(x) given by (3.7c).

1256 J. Zhu and J. Qiu / Commun. Comput. Phys., 8 (2010), pp. 1242-1263

0 1 2 3 4 5 6
X

0

5E-08

1E-07

Y

+++++++
+
++
+
+
+
+
+
+
+
++
++++++

+
+
+
+
+
++
+
+
+
+
+
+
++
++++

+
+
+
+
+
+
+
+
+
+
+
+
+
++
+++++++

+
+
+
+
+
+
+
++
++
++
++++

++++++++++++++++++++++++
++++++++++++++++++++++++++++++++++++++

+++
+++
+++
+++++

+

0 1 2 3 4 5 6
X

0

5E-07

1E-06

Y

+++
++
++
+
+
+
+
+
+
+

+

+

+

+

+

+

+

+

+
+
+++++++

++
++
++
+++
+++++++++++++++++++

+
+

+

+

+

+
+
+

+

+
+
+
+
+
+
++

++

Figure 11: Same as Fig. 6 except for H′(x) given by (3.7d).

each example, we let xj = 2πj/N and set N = 160. As expected, our numerical experi-
ments for the test functions (3.6) and (3.7a)-(3.7c) demonstrate that the results using the
trigonometric polynomials in the reconstruction procedure are better than those obtained
by using the algebraic polynomials. However, when exponential functions, see (3.7d),
none of the scheme is uniformly better than the other one.

Example 3.7. We solve the 1D Euler equations with Riemann initial condition for the Lax
problem:

(ρ,u,p)T =

{

(0.445,0.698,3.528)T , x≤0,
(0.5,0,0.571)T , x>0.

(3.8)

For t = 0.16, we present in Fig. 12 the exact solution and the computed solutions for
the density ρ obtained with the TWENO and WENO schemes, respectively, using 200

-0.25 0 0.25
X

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

D
en

si
ty

+++
+
+

+

+

+

+

+
++
++++++++++++++++++++++++

+

+

+

++++++++++++++++++

-0.25 0 0.25
X

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

D
en

si
ty

++
+
+

+

+

+

+

+
++
++

+

+

+

+
++++++++++++++++++++++++++++++++++++++

Figure 12: The Lax problem solved by TWENO scheme and WENO scheme at t=0.16. Left: 200 grid points;
Right: 400 grid points. Solid line: exact solution; plus signs: TWENO results; squares: WENO results.

J. Zhu and J. Qiu / Commun. Comput. Phys., 8 (2010), pp. 1242-1263 1257

-1 0 1 2
Log10 (CPU time (sec))

-3

-2.5

-2

-1.5

L
og

1
0(

L1
er

ro
r)

+

+

+

+

+

+

Figure 13: Computing time against error for the Lax problem. Plus signs with a solid line denote the TWENO
results; and squares with a solid line denote the WENO results.

and 400 grid points. The corresponding L1 error against CPU time graph is plotted in
Fig. 13. The data points correspond to the cases using 50, 100, 200, 400, 800, and 1600
grid points in both TWENO and WENO schemes. It is observed that the computational
results obtained with TWENO and WENO schemes are similar.

Example 3.8. We solve the 1D Euler equations with a moving Mach=3 shock interacting
with sine waves in density:

(ρ,u,p)T =

{

(3.857143,2.629369,10.333333)T , x<−4,
(1+0.2sin(5x),0,1)T , x≥−4.

(3.9)

For t=1.8, we present in Fig. 14 the computed density ρ along with a reference solution.
The former is obtained with the TWENO and WENO schemes, respectively, using 200

-5 -4 -3 -2 -1 0 1 2 3 4 5
X

0

1

2

3

4

5

D
en

si
ty

+++
+
+++++++++++++++++++

+
+++++++++++++++++++

+
++
+++++++++++++++++

+
++
+++++++++++++++++

+
+++++

+++
+
+
++
+
++

+

+

+

+

++++
+++++++++++++++++++++

+++
+++
+++++++++++++++++++++

-5 -4 -3 -2 -1 0 1 2 3 4 5
X

0

1

2

3

4

5

D
en

si
ty

++
+
+++++++++++++++++++++++++++++++++++++++

+
++
+++++++++++++++++++++++++++++++++++++

+
+
++++++++++++++++++++++++++++++++++++++

++
++++++++++++

+
++
++
+
+
+
+++
+
+
+
++
++
+
+
+
+++
+
+

+

+
+
+++
+

+
+
++
+
+

+
+
++
+
+

+

+
+++
+
+
+
+
+++
+
+

+
+
++

+

+

+++++++
++++++
+++++++++++++++++++++++++++++++++++++

+++++
+++++
+++++++++++++++++++++++++++++++++++++++

+++++

Figure 14: The shock density wave interaction problem solved by TWENO scheme and WENO scheme at
t=1.8. Left: 200 grid points; Right: 400 grid points. Solid line: reference solution; plus signs: TWENO results;
squares: WENO results.

1258 J. Zhu and J. Qiu / Commun. Comput. Phys., 8 (2010), pp. 1242-1263

-1 0 1 2
Log10 (CPU time (sec))

-2.5

-2

-1.5

-1

-0.5

L
og

1
0(

L1
er

ro
r)

+

+
+

+

+

+

Figure 15: Computing time against error for the shock density wave interaction problem. Plus signs with a solid
line denote the TWENO results; and squares with a solid line denote the WENO results.

and 400 grid points; and the latter is given by using the WENO scheme using 2000 grid
points. We then provide the L1 error against the CPU time in Fig. 15. The data points cor-
respond to the cases using 50, 100, 200, 400, 800, and 1600 grid points for the TWENO and
WENO schemes. The reference solution is obtained using WENO scheme with 16000 grid
points. Again, it is observed that the numerical results obtained using the two schemes
are similar.

Example 3.9. 2D Euler equations for the Riemann problem [2, 8]. We solve the Euler
equations (3.5) in a computational domain of [0,1]×[0,1] and set the initial conditions as:

(ρ,u,v,p)T =















(0.5313,0,0,0.4)T ,
(1,0.7276,0,1)T ,
(0.8,0,0,1)T ,
(1,0,0.7276,1)T ,

x>0.5, y>0.5,
x<0.5, y>0.5,
x<0.5, y<0.5,
x>0.5, y<0.5,

(3.10a)

(ρ,u,v,p)T =















(1.1,0,0,1.1)T ,
(0.5065,0.8939,0,0.35)T ,
(1.1,0.8939,0.8939,1.1)T ,
(0.5065,0,0.8939,0.35)T ,

x>0.5, y>0.5,
x<0.5, y>0.5,
x<0.5, y<0.5,
x>0.5, y<0.5,

(3.10b)

(ρ,u,v,p)T =















(1,0.1,0,1)T ,
(0.5313,0.8276,0,0.4)T ,
(0.8,0.1,0,0.4)T ,
(0.5313,0.1,0.7276,0.4)T ,

x>0.5, y>0.5,
x<0.5, y>0.5,
x<0.5, y<0.5,
x>0.5, y<0.5,

(3.10c)

(ρ,u,v,p)T =















(0.5313,0.1,0.1,0.4)T ,
(1.0222,−0.6179,0.1,1)T ,
(0.8,0.1,0.1,1)T ,
(1,0.1,0.8276,1)T ,

x>0.5, y>0.5,
x<0.5, y>0.5,
x<0.5, y<0.5,
x>0.5, y<0.5,

(3.10d)

J. Zhu and J. Qiu / Commun. Comput. Phys., 8 (2010), pp. 1242-1263 1259

(ρ,u,v,p)T =















(1,0.75,−0.5,1)T ,
(2,0.75,0.5,1)T ,
(1,−0.75,0.5,1)T ,
(3,−0.75,−0.5,1)T ,

x>0.5, y>0.5,
x<0.5, y>0.5,
x<0.5, y<0.5,
x>0.5, y<0.5.

(3.10e)

In Fig. 16, we show the computational results for density at (1) t = 0.25, (2) t = 0.25, (3)
t = 0.3, (4) t = 0.2, (5) t = 0.3, respectively. We can see that most of the flow features are
captured well for all these Riemann problems.

0 0.25 0.5 0.75 1
X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Y

0 0.25 0.5 0.75 1
X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Y

0 0.25 0.5 0.75 1
X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Y

0 0.25 0.5 0.75 1
X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Y

0 0.25 0.5 0.75 1
X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Y

Figure 16: 2D Euler equations for the Rie-
mann problem. TWENO scheme. From left
to right and top to bottom. Initial condition
(3.10a): t = 0.25, 30 equally spaced density
contours from 0.56 to 1.67; initial condition
(3.10b): t = 0.25, 30 equally spaced density
contours from 0.52 to 1.98; initial condition
(3.10c): t = 0.3, 30 equally spaced density
contours from 0.50 to 1.21; initial condition
(3.10d): t = 0.2, 30 equally spaced density
contours from 0.52 to 0.99; initial condition
(3.10e): t = 0.3, 30 equally spaced density
contours from 0.32 to 2.97. 400×400 grid
points.

1260 J. Zhu and J. Qiu / Commun. Comput. Phys., 8 (2010), pp. 1242-1263

0 0.25 0.5 0.75 1
X

0

0.5

1

Y

0.5 1
X

0

0.5

1

Y

0 0.5 1 1.5 2
X

0

0.5

1

Y

Figure 17: Shock vortex interaction problem. TWENO scheme. Top left: t=0.35, 30 equally spaced pressure
contours from 1.02 to 1.33, region [0,1]×[0,1]; Top right: t = 0.6, 90 equally spaced pressure contours from
1.19 to 1.37, region [0.4,1.45]×[0,1]; Bottom: t = 0.8, 30 equally spaced pressure contours from 1.1 to 1.3,
region [0,2]×[0,1]. 120×60 grid points.

Example 3.10. Shock vortex interaction problem [7]. We solve the Euler equations (3.5)
in a computational domain of [0,2]×[0,1]. A stationary Mach 1.1 shock is positioned at
x = 0.5 and normal to the x-axis. The left state of the shock is (ρ,u,v,p)T = (1,

√
γ,0,1)T.

A small vortex is superposed to the flow left to the shock and the center is at (xc,yc) =
(0.25,0.5). We describe the vortex as a perturbation of the velocity, temperature and en-
tropy of the mean flow and we denote it by the tilde values:







ũ= ετeα(1−τ2)sinθ, ṽ=−ετeα(1−τ2)cosθ,

T̃ =− (γ−1)ε2e2α(1−τ2)

4αγ
, S̃=0,

(3.11)

where τ = r/rc and r =
√

(x−xc)2+(y−yc)2. Here ε = 0.3, rc = 0.05 and α = 0.204. The
results are shown at t = 0.35, t = 0.6 and t = 0.8. We present the numerical results in
different regions in Fig. 17. We see that the method gives a good resolution for both
vortex and shock. We also can see that the reflection is well captured at t=0.8.

Example 3.11. Double Mach reflection problem. We solve the Euler equations (3.5) in a
computational domain of [0,4]×[0,1]. A reflection wall lies at the bottom of the domain

J. Zhu and J. Qiu / Commun. Comput. Phys., 8 (2010), pp. 1242-1263 1261

0 1 2 3
X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Y

0 1 2 3
X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Y

Figure 18: Double Mach reflection problem. TWENO scheme. t=0.2. 30 equally spaced density contours from
1.5 to 22.7. Top: 1600×400 grid points; Bottom: 2400×600 grid points.

2 2.2 2.4 2.6 2.8
X

0

0.1

0.2

0.3

0.4

0.5

Y

2 2.2 2.4 2.6 2.8
X

0

0.1

0.2

0.3

0.4

0.5

Y

Figure 19: Double Mach reflection problem, zoom in. TWENO scheme. t = 0.2. 30 equally spaced density
contours from 1.5 to 22.7. Left: 1600×400 grid points; Right: 2400×600 grid points.

starting from x = 1
6 , y=0, making a 60o angle with the x-axis. The reflection boundary

condition is used at the wall, while for the rest of the bottom boundary (the part from
x=0 to x= 1

6) the exact post-shock condition is imposed. The top boundary uses the exact
motion of the Mach 10 shock. We present the density at t=0.2 in the region [0,3]×[0,1] and
the blow-up region around the double Mach stems in Fig. 18 and Fig. 19, respectively. All
pictures show the density contours with 30 equal spaced contour lines from 1.5 to 22.7.
We can see that most of the flow features are captured well, and the scheme resolves the
two Mach stems well.

Example 3.12. A Mach 3 wind tunnel with a step. The setup of the problem is as follows:
The wind tunnel is 1 length unit wide and 3 length units long. The step is 0.2 length
units high and is located 0.6 length units from the left end of the tunnel. Initially, a right
going Mach 3 flow is used. Reflective boundary conditions are applied along the walls of

1262 J. Zhu and J. Qiu / Commun. Comput. Phys., 8 (2010), pp. 1242-1263

0 1 2 3
X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Y

0 1 2 3
X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Y

Figure 20: A Mach 3 wind tunnel with a step problem. TWENO scheme. t = 4.0. 30 equally spaced density
contours from 0.32 to 6.15. Top: 1200×400 grid points; Bottom: 2400×800 grid points.

the tunnel and inflow and outflow boundary conditions are applied at the entrance and
the exit, respectively. Fig. 20 presents the numerical results at t=4 in the whole solution
domain [0,3]×[0,1]. The pictures show the density contours with 30 equal spaced contour
lines from 0.32 to 6.15. We can see that the scheme performs well with good resolution,
both the shock and contact discontinuous are well captured.

4 Concluding remarks

In this paper, we constructed a class of high order finite difference TWENO schemes
for hyperbolic conservation laws and highly oscillatory problems. The key ideas of
TWENO schemes are the use of trigonometric polynomial interpolation in the recon-
struction phase and the methodology of weighted essentially non-oscillatory properties.
We use the procedure presented in [14] to obtain the values of linear weights, smooth-
ness indicators and nonlinear weights. Also in these cases, the function basis are not in
the algebraic polynomial space but in the trigonometric polynomial space instead. Com-
pared to the original trigonometric essentially non-oscillatory schemes [3], the major ad-
vantages of the new TWENO schemes are as follows. They are robust in computations
for problems with strong shocks and can obtain the same order of accuracy with more
compact stencils. Moreover, they use less logical ”if” and are very efficient on vector
computers for parallel computing. Compared to the original WENO schemes in [14],
the more oscillations for the trigonometric polynomials are used, the better the TWENO
schemes work. Numerical experiments for Euler equations of compressible gas dynamics
and other cases are presented to show the effectiveness of the proposed schemes.

J. Zhu and J. Qiu / Commun. Comput. Phys., 8 (2010), pp. 1242-1263 1263

Acknowledgments

The research was supported by NSFC grants 10671091, 10811120283 and the European
project ADIGMA on the development of innovative solution algorithms for aerodynamic
simulations. Additional support was provided by USA NSF DMS-0820348 while J. Qiu
was in residence at Department of Mathematical Sciences, Rensselaer Polytechnic Insti-
tute.

References

[1] W. Baron, Zur trigonometrischen interpolation, Computing, 16 (1976), 319-328.
[2] M. Brio, A.R. Zakharian and G.M. Webb, Two dimensional Riemann solver for Euler equa-

tions of gas dynamics, J. Comput. Phys., 167 (2001), 177-195.
[3] S. Christofi, The study of building blocks for essentially non-oscillatory (ENO) schemes,

PhD. thesis, Division of Applied Mathematics, Brown University, 1996.
[4] S.K. Godunov, A finite-difference scheme for the numerical computation of discontinuous

solutions of the equations of fluid dynamics, Matthematicheskii sbornik, 47(3) (1959), 271-
290.

[5] A. Harten, High resolution schemes for hyperbolic conservation laws, J. Comput. Phys.,
49(3) (1983), 357-393.

[6] A. Harten and S. Osher, Uniformly high-order accurate non-oscillatory schemes, IMRC Tech-
nical Summary Rept, 2823, Univ. of Wisconsin, Madison, WI, 1985.

[7] G.S. Jiang and C.W. Shu, Efficient implementation of weighted ENO schemes, J. Comput.
Phys., 126 (1996), 202-228.

[8] P.D. Lax and X.D. Liu, Solution of two dimensional Riemann problems of gas dynamics by
positive schemes, SIAM J. Sci. Comput., 19(2) (1998), 319-340.

[9] X.D. Liu, S. Osher and T. Chan, Weighted essentially non-oscillatory schemes, J. Comput.
Phys., 115 (1994), 200-212.

[10] G. Muhlbach, A recurrence formula for generalized divided differences and some applica-
tions, J. Apprxn., Th 9 (1973), 165-172.

[11] G. Muhlbach, Newton-und-Hermite-interpolation mit Cebysev-systemen,Z. Angew. Math.
Mech., 54 (1974), 541-550.

[12] G. Muhlbach, The general Neville-Aitken-algorithm and some applications, Num. Math., 31
(1978), 97-110.

[13] G. Muhlbach, The general recurrence relation for divided differences and the general
Newton-interpolation-algorithm with applications to trigonometric interpolation, Num.
Math., 32 (1979), 393-408.

[14] C.W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for
hyperbolic conservation laws, in Advanced Numerical Approximation of Nonlinear Hy-
perbolic Equations, edited by A. Quarteroni, Editor, Lecture Notes in Mathematics, CIME
subseries, Springer-Verlag, Berlin/New York; ICASE Report 97-65.

[15] C.W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock captur-
ing schemes, J. Comput. Phys., 77 (1988), 439-471.

[16] Y.T. Zhang and C.W. Shu, Third order WENO scheme on three dimensional tetrahedral
meshes, Commun. Comput. Phys., 5 (2009), 836-848.

