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Abstract. We develop a numerical method for approximating the surface modes of
sphere-like nanoparticles in the quasi-static limit, based on an expansion of (the an-
gular part of) the potentials into spherical harmonics. Comparisons of the results ob-
tained in this manner with exact solutions and with a perturbation ansatz prove that
the scheme is accurate if the shape deviations from a sphere are not too large. The
method allows fast calculations for large numbers of particles, and thus to obtain statis-
tics for nanoparticles with random shape fluctuations. As an application we present
some statistics for the distribution of resonances, polariziabilities, and dipole axes for
particles with random perturbations.
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1 Introduction

The excitation of surface plasmons can cause strong interaction between light and metal-
lic nanoparticles. These plasmons are hybrid modes of the electromagnetic field and
the electron gas and are confined to the surface of the particle. They give rise to an en-
hancement of the incident field by several orders of magnitude [1–3]. This enhancement
enables a variety of applications ranging from the well-established surface-enhanced Ra-
man spectroscopy (SERS), which allows the detection of even a single molecule [4, 5], to
the emerging field of plasmonics [6, 7], which has led to prototypes of plasmonic wave-
guides which effectuate optical energy transfer below the diffraction limit [6, 8, 9].
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A simple realization of a plasmonic waveguide is a chain of metallic spheres. A sur-
face plasmon mode, typically a dipole mode, of the first sphere of the chain is excited and
the scattered field of this first particle excites a surface mode in a sphere nearby and so the
excitation can travel through the chain. There are two crucial points for an efficient trans-
port: the spatial structure of the scattered field in the region of the neighboring sphere
must allow for an efficient excitation of the favored mode, and the overlap of the reso-
nances of the bordering spheres has to be big enough. Since any realization of a sphere
will deviate from an ideal one, thus introducing random fluctuations, it is important to
estimate the typical magnitude of such deviations which still allow for an efficient trans-
port. Therefore a simple and efficient numerical method for approximating the surface
modes of the sphere-likes particles is needed.

There are many numerical methods for the determination of the electromagnetic field
in the present of nanosized scatterers, like the finite difference time domain approach
(FDTD), or so called semi-analytical methods based on expansions into special function
systems like the multiple multipole method (MMP), or the discrete dipole approximation
(DDA) (see, e.g., [10, 11]) for reviews. Essentially, all methods able to calculate the fields
also allow to determine the surface modes. For example, in [12] the DDA is used for the
determination of the surface modes of nanoparticles, and in [13, 14] a boundary integral
approach is proposed, which focuses on the surface modes, and has been used in [15]
to determine the surface modes of single and coupled spheres, cylinders and cube-like
nanoparticles.

Here we use a semi-analytical approach based on an expansion of the potentials into
spherical harmonics, i.e., into modes

rlYm
l (θ,φ) and r−(l+1)Ym

l (θ,φ),

and on the determination of the expansion coefficients by the physically motivated projec-
tion of the boundary conditions onto the modes rlYm

l (θ,φ). See also [16, Section 6] for a
review of various ways to determine expansions from the boundary conditions in a vari-
ety of related problems. For nonspherical particles, our approach corresponds to an ex-
pansion into non-orthogonal modes and therefore is similar to the usage of the Rayleigh
hypothesis in the theory of scattering in optics, where the scattered field at a perturbed
interface is likewise expanded in the solutions of the scattered field of the unperturbed
one [17]. It is known that such expansion methods may fail if the deviations from the
ideal geometry become too large (see, e.g., [18] and the references therein). Nonethe-
less, additional to its simplicity and easy implementation the distinct advantage of our
approach is its computational efficiency for nearly spherical particles. Thus it allows to
calculate the surface modes for many realizations of randomly distorted nanospheres and
so to statistically characterize their optical responses.

The paper is organized as follows: the numerical method is explained in Section 2,
and validated in Section 3, using the cases of an ellipsoid and of a sphere with certain
shape distortions as benchmarks. In Section 4 we give a statistical study of the optical
response of spheres and spheroids with random perturbations.
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2 The scheme

We are interested in the surface modes of sphere-like nanoparticles, described as some
bounded domain Ω⊂R3, with boundary ∂Ω. We restrict ourselves to particles that are
small compared to the relevant wavelengths and therefore employ the quasi-static ap-
proximation. In order to determine their surface modes we consider an excitation from
infinity (described by the potential Φext), and calculate the potential inside (Φ−) and out-
side (Φ+) the particle. These potentials fulfill the Laplace equation

∆Φ±(x)=0, for x 6∈∂Ω. (2.1)

In addition, the boundary conditions on the surface ∂Ω of the particle are

Φ+(x)=Φ−(x), for x∈∂Ω, (2.2a)

∂nΦ+(x)=ǫ∂nΦ−(x), for x∈∂Ω, (2.2b)

with the outward normal derivative ∂n and the permittivity ǫ of the particle. The bound-
ary condition (2.2b) implies that the particle is surrounded by vacuum and is homoge-
neous, isotropic and non-magnetic; the dielectric properties are assumed to be local.

There are two different methods to determine the surface modes of a nanoparticle
from (2.1)-(2.2). The first is to assume that the potential vanishes at infinity, i.e., to cal-
culate the modes of the particle that can be present without an external excitation. In
this case the problem can be reformulated as an eigenvalue problem with a real plasmonic
eigenvalue ǫ for which a nontrivial solution of Eqs. (2.1)-(2.2) with

lim
‖x‖→∞

|Φ+(x)|=0,

exists [19]. In this interpretation the variable ǫ in (2.2b) is not regarded as the generally
complex permittivity of the particle, but rather as a real eigenvalue. The second method is
to study the system (2.1)-(2.2) with an external excitation and thus to regard the ǫ in (2.2b)
as the complex permittivity ǫ(ω) of the particle. The system is then solved for different
values of the permittivity and a solution is called a surface mode if the field inside and
around the particle is enhanced. If the imaginary part of the permittivity does not vary
too much, then the enhanced fields occur when the real part of ǫ is equal to a plasmonic
eigenvalue. Thus the terms plasmonic eigenvalue and resonant value are closely related
and will be used interchangeably. In general there will be a difference in the number of
eigenvalues and resonant values. While there is a infinite number of eigenvalues, the
used excitation will choose some of these eigenvalues and only for these an enhanced
field will appear.

We study the response of a particle to an external field and assume that the potential
at infinity equals the potential of the excitation

lim
‖x‖→∞

|Φ+(x)−Φext(x)|=0. (2.3)
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The basic idea is to expand the potential inside and outside the particle into spherical
modes which automatically fulfill the Laplace equation (2.1),

Φ−(x)=
∞

∑
l=0

l

∑
m=−l

αl,mrlYm
l (θ,φ), (2.4a)

Φ+ =ψ++Φext, (2.4b)

with

ψ+(x)=
∞

∑
l=0

l

∑
m=−l

βl,mr−(l+1)Ym
l (θ,φ), (2.4c)

Φext(x)=
∞

∑
l=0

l

∑
m=−l

γl,mrlYm
l (θ,φ). (2.4d)

Here
x= r

(

cos(φ)sin(θ),sin(φ)sin(θ),cos(θ)
)t

,

and the familiar spherical harmonics are denoted by

Ym
l (θ,φ)= Pm

l (cosθ)eimφ,

for m≥0, the associated Legendre polynomials are

Pm
l (s)= cm

l

1

2ll!
(1−s2)

m
2

( d

ds

)l+m
(s2−1)l,

with the scale factors

cm
l =(−1)m

√

2l+1

4π

√

(l−m)!

(l+m)!
and Pm

l :=(−1)mP−m
l ,

for m<0.
From (2.3) the coefficients γl,m are defined by the excitation potential. Thus it remains

to calculate the coefficients αl,m and βl,m from (2.2a) and (2.2b). In order to do this we use
the following numerical scheme.

First we truncate to |l|≤N, such that (N+1)2 coefficients αl,m and βl,m have to be cal-
culated. To get the required 2(N+1)2 equations we project the boundary conditions (2.2a)
and (2.2b) onto the modes rlYm

l (θ,φ) with degree equal to or less than N. In detail, we
require

∫

∂Ω
(Φ−−ψ+)rlYm

l (θ,φ)dS=
∫

∂Ω
ΦExtr

lYm
l (θ,φ)dS, (2.5a)

∫

∂Ω
(ǫ∂nΦ−−∂nψ+)rlYm

l (θ,φ)dS=
∫

∂Ω
(∂nΦExt)rlYm

l (θ,φ)dS. (2.5b)
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This yields a system of the form

(M1+ǫM2)U = M3G, (2.6)

where
M1,M2,M3∈C

2(N+1)2×2(N+1)2
,

are matrices which depend only on the geometry of the particle, G ∈C2(N+1)2
depends

only on the γlm, U∈C2(N+1)2
contains the unknown coefficients αlm and βlm.

For a sphere Sr0 of radius r0 the spherical harmonics Ym
l are an orthogonal (orthonor-

mal if r0 = 1) basis of L2(∂Sr0). Thus, (2.6) decouples in the case of a sphere (becomes
block diagonal, see the Appendix for the precise structure) and yields (N+1)2 exact so-
lutions of (2.1)-(2.2). For a perturbed sphere the Ym

l are no longer orthogonal, and the
physically motivated idea of projecting onto the modes rlYm

l (instead of, e.g., projecting
onto the spherical harmonics Ym

l , which at first might appear more natural) is as follows:
we may expect the fields to be localized near parts of ∂Ω with high curvature, and for
perturbations of spheres (of radius r0) these occur most naturally for parts bulging out,
i.e., for r > r0. Thus, to minimize the error, it appears reasonable to weight the spherical
harmonics as test functions in (2.5a), (2.5b) with rl . This also complies with the folklore
rule to use the same functions as test functions and as ansatz function. On the other hand,
this rule is rather ambiguous here since we have (N+1)2 more ansatz functions, namely
r−(l+1)Ym

l . However, these tend to localize near ”flat” parts of the perturbed sphere and
are therefore less useful as test functions. We evaluated all three sets of test functions
(rlYm

l )l,m, (Ym
l )l,m and (r−(l+1)Ym

l )l,m, against available exact solutions for spheroids (see

Section 3) and found that (rlYm
l ) works best while (Ym

l ) and even more so (r−(l+1)Ym
l )

yield slower convergence.
As already pointed out in the Introduction, expansions like those given by Eqs. (2.4a)

and (2.4c) are conceptually related to the Rayleigh hypothesis, and may fail to converge
if the deviation of the geometry considered from the ideal geometry is too large. There-
fore it is of great importance to test the method against known exact solutions, and to
control the error. As shown below, for the present problem it turns out that already mod-
erate N yield quite accurate results if the deviations from a sphere are not too large. The
achievable accuracy, however, also depends on the quantities one wants to compute. We
find that typically N=7, which yields Mj∈C128×128, is sufficient to calculate the resonant
value of ǫ with high accuracy.

The generation of the matrices Mj is the most expensive part of the scheme since each
entry requires the evaluation of surface integrals similar to the ones in Eqs. (2.5a) and
(2.5b). However, once the matrices Mj are generated, for any given Φext we only need
to first calculate the coefficients γlm and then solve some rather small linear system with
given ǫ. In particular, the scheme allows for a fast parameter scan when solving the
system (2.6) for different G, i.e., when rotating the incident field. For fixed ǫ, we may also
define a T-matrix

T =(M1+ǫM2)
−1M3,
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to obtain U = TG. The calculation of the γlm is quite simple; for instance, for a constant
field in (x,y,z)t-direction the coefficients are γlm =0, for l 6=1; γ1,−1 =−x−iy, γ1,0 =z and
γ1,1 = x−iy.

We use the GNU Scientific Library [20] for the spherical harmonics and the Cuba
library [21] for calculating the projection integrals (2.5a), (2.5b). The linear system (2.6) is
then solved with a standard method from LAPack [22].

3 Comparison with exact solutions and a perturbation ansatz

As test cases for our scheme we consider the surface modes of an ellipsoidal particle, for
which an exact solution exists [2], and the case of a sphere with certain Gaussian pertur-
bations. For the latter we compare our results with the results of a recently developed
perturbation-theoretical ansatz [23].

3.1 Surface modes of an ellipsoid

We start with a spheroid, i.e., an ellipsoid with two identical semi-axes. The spheroid
is oriented such that the two identical axes are along the x- and y-axis of the coordinate
system. Furthermore, we choose the semi-diameter in x- and y-direction as 1†. Thus the
geometry of the test case is described by one parameter R, the semi-axis in z-direction.
As the dipole modes of a sphere are excitable by a constant field, and we are interested
primarily in dipole-like modes, we use a constant incident field in the test cases.

Considering a constant incident field in z-direction, the exact solution for the resonant
value of the permittivity ǫ is [2]

ǫ(R)=1−
1

L(R)
, (3.1)

with the depolarization coefficient L(R) given by

L(R)=
R

2

∫ ∞

0

ds

(s+R)2
√

2(s+1)(s+R2)
. (3.2)

Numerically we determine the resonances as follows: after calculating the matrices Mj

we solve Eq. (2.6) for different values of ǫ‡, and define the resonant value as that value of
ǫ, which produces the biggest dipole-like near field, i.e., we search the value of ǫ, which
maximizes

√

|β1,−1|2+|β1,0|2+|β1,1|2.

†All lengths in the following will be dimensionless because there is no natural length scale in the system and
therefore the results are presented in a scale invariant way.
‡In all calculations we use an imaginary part of the permittivity of 10−2. This value is chosen because if
we approximate the permittivity of gold with a simple Drude model [24], ǫ(ω) = 1−ωpτ/ω(ωτ+i), with

ωp =1.4×1016 Hz and τ =3×10−14s, the permittivity for ω =8×1015s−1 is about −2+0.01i.
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Figure 1: Comparison of the exact resonant values for a spheroid with the ones calculated within our approach
for different N and an incident field oriented along the x-axis (a) and the z-axis (b). In the later Fig. 4, where
we show the polarizability of a spheroids, the dependence of the resonant values on N can be seen in more
detail.

In Fig. 1 we compare the resonances thus obtained numerically with the exact ones,
for different N and for two different incident fields. The results are remarkably good,
even for small N. Indeed, for an incident field in z-direction and R=1.5, for example, the
exact result figures as ǫ≈−3.29, while the numerical procedure with N=1 gives ǫ=−3.18,
and differs from the exact result by less than 10−2 with N = 7. Thus, for the calculation
of the resonant values our method gives accurate results even with only few spherical
harmonics, and even when the shape deviates significantly from that of a sphere. More-
over, for an incident field perpendicular to the long axis of the spheroid N =1 still works
well for larger aspect ratios (e.g., R=2 in (a) or R=0.5 in (b)). This is due to the fact that
typically high curvature parts of the boundary strongly enhance field localization. In (a)
the fields are localized near θ = π/2 and φ = 0 or φ = π, where curvature decreases for
R >1 but increases for R <1. Thus, in (a) the approximation of the potential by only the
first harmonics works better for R>1 than for R<1 and vice versa in (b).

In general, however, the method is not well suited for the calculation of the fields with
high accuracy if the deviations from the sphere become large. For illustration, we first
show in Fig. 2(a) the potentials inside and outside a spheroid with R=1.4, for an incident
field in z-direction. The linescan in (b) shows that along the particular line indicated in
(a) the boundary conditions (2.2a), (2.2b) are reasonably well fulfilled for N=7, while the
jumps for N =1 indicate that in this case N =1 is not sufficient, as expected.

From a systematic viewpoint, a more relevant basic check of the accuracy of the po-
tentials is the total relative error in Eqs. (2.2a), (2.2b). In Fig. 3 we plot the L2-norms of
these errors, again as functions of R and N, henceforth denoted by

e1 :=
2‖Φ+−Φ−‖

‖Φ+‖+‖Φ−‖
, e2 :=

2‖∂nΦ+−ǫ∂nΦ−‖

‖∂nΦ+‖+‖∂nΦ−‖
,

where

‖ f‖=
(

∫

∂Ω
| f |2 dS

)
1
2
.
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Figure 2: (Color online) (a) Calculated potentials inside and around a spheroid for R = 1.4 and N = 7. The
imaginary part of the potential is plotted for the resonant value of the permittivity and the potential is normalized
such that the maximum of the imaginary part is 1. The shape of the spheroid is indicated by the black ellipse.
The linescans in (b) are taken for x=0; the one with N =1 is shifted downwards by 1 for clarity.
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Figure 3: (a) L2-norm of the boundary condition (2.2a) and (b) of the condition (2.2b), for the indicated N.

For R close to 1, say 0.8 ≤ R ≤ 1.3, we find that e1 and e2 are small and decrease
monotonously in N. However, e1,2 become large rather quickly when R falls outside
this range. Moreover, they then no longer decay in N, which we attribute to a failure
analogous to that of the Rayleigh hypothesis for such strongly deformed spheres.

Similar effects can be observed for various other test particles: the approximation
of resonant values of ǫ is typically much better than e1,2. Thus the performance of the
method strongly depends on what one wants to compute. As a rule of thumb we find
that for e1,2 ≤ 0.2 we obtain very good approximations of the resonant values, and also
of the polarizabilities and of the dipole axes, as shown below; these three observables
are the quantities we are mainly interested in. Therefore we have made sure that in all
calculations presented below, we have e1,2 < 0.1. For the solution shown in Fig. 2 with
N =7, we have e2 slightly larger than 0.1, so that this solution would be discarded.

Another quantity of immediate physical interest is the polarizability α which relates
the incident field (Eext) to the excited dipole moment (pex). In general this quantity is
a tensor, but for the case of a spheroid with an incident field oriented along one of the
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principal axes the polarizability is a scalar, i.e.,

pex =ǫ0αEext.

Note our method is also able to calculate the full polarizability tensor by solving Eq. (2.6)
for three independent incident fields. In Fig. 4(a) the exact and the numerically calculated
polarizability of a spheroid with R=0.8 is depicted, more precisely its absolute value for
an incident field in z-direction, i.e.,

|αz|∝
√

|β1,−1|2+|β1,0|2+|β1,1|2.

The width and the magnitude of the polarizability are excellently reproduced by our
scheme and the agreement between the exact solution and the numerical one is very
good already for N ≥ 3, and even for N = 1 the approximation already reproduces the
shape of the resonance quite well. Fig. 4(b), which depicts the coefficients βl,m for the
expansion (2.4c), shows that the dominant part of the field stems from l = 1, but higher
spherical harmonics also give non-negligible contributions.

We have also checked our scheme against the exact solution for an ellipsoid with
three different semi-diameters, and an incident field that is not oriented along one of the
principal axes. Again the agreement between the exact solution [2] and our results is very
good as long as the semi-diameters are not too different.

3.2 Surface modes of a sphere with a perturbation

In Section 4 we perform a statistical analysis for the surface modes of nanoparticles with
a random shape, described by

r(θ,φ)=1+s
n

∑
i=1

hi exp
[

−0.5
(dist(θi,φi;θ,φ)

wi

)2]

, (3.3)

where s is a scaling factor, dist(θi,φi;θ,φ) is the Euclidean distance between two points
on the unit sphere, one specified by θi and φi and the other by θ and φ. In these later
studies, θi, φi, hi and wi will be randomly distributed. Thus, the nanoparticles then are
spheres with n Gaussian perturbations with height hi and width wi. In order to assess
our method for such cases, we first consider a particle with three perturbations, study
how the resonance is shifted by varying the scaling parameter s, and compare the results
with those of a perturbation ansatz for the surface modes of a nanoparticle [23].

For the perturbation ansatz, a geometry close to the given one is needed, for which
an exact solution for the surface modes exists. In the following that geometry is called
the ideal geometry, and the geometry for which the surface modes are to be calculated is
called the perturbed geometry. It is assumed that the perturbation strength is described
by a scalar parameter. In our case the ideal geometry is the unit sphere and the parameter
that characterizes the deviation from the sphere is the scaling amplitude s. When making
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Figure 4: (Color online) Comparison of the exact and numerically calculated polarizability of a spheroid with
R = 0.8 (a). The polarizability is normalized to the one of a sphere with radius 1 and a dielectric function of
−2+0.01i. In the right panel (b) the coefficients of the spherical harmonics are presented for N=7 and a value
of ǫ close to the resonant value.

the perturbation ansatz, the resonant values ǫ(s) are expanded in a series with respect to
s in the form

ǫ(s)=ǫ(0)+sǫ̇(0)+
s2

2
ǫ̈(0)+··· . (3.4)

In [23] an explicit formula for ǫ̇ is presented against which we can compare our numerical
results. Since the dipole mode of a sphere is threefold degenerate, there are in general
three different values of ǫ̇, characterizing the three dipole-like modes.

The test particle with three Gaussian perturbations is depicted in Fig. 5(a), whereas
(b) compares the results provided by (2.6) with the perturbation method. We only present
the results for N =7 but remark that the results are stable for N≥5. There is a very good
agreement between the projection and the perturbation method for small s. As expected
there are deviations for larger scaling factors, because these are beyond the scope of the
(first order) perturbation method.
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Figure 5: (Color online) Sketch of the used perturbed sphere (a) and the corresponding resonant values of ǫ
(b). The plot (a) refers to a scaling factor of s=0.5; the color scale depicts the distance from a point on the
surface to the center of the underlying unit sphere. The resonant values in (b) are calculated with N =7; the
inset shows a blow-up near s=0.
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For s≥0.4, more than three resonances occur, notably one with a real part of the per-
mittivity of about −1.6. By plotting the potential (or alternatively inspecting the expan-
sion coefficients βl,m), we find that these modes are shifted and perturbed quadrupole
modes of the unperturbed sphere, which due to the perturbations can be excited by a
constant field. For the unperturbed sphere these occur at Re(ǫ)=−1.5. Of course these
modes are in principle present in all cases, but it depends on the respective geometry if
these modes could be excited effectively by a constant field.

To conclude the test of our scheme: already with quite few spherical harmonics (typ-
ically N ≤ 7), and even if the errors e1,2 in the boundary conditions are significant, the
numerical data for the resonant values and the polariziabilities provided by our method
are stable and in remarkable agreement with exact solutions (if available), or with the
results of the perturbation ansatz.

4 Particles with randomly distributed Gaussian perturbations

We now assume that we are given a set of nominally identical nanospheres which suf-
fer from uncontrolled shape imperfections induced during the fabrication process. The
task then is to characterize the optical properties of this set in a statistical sense. Ide-
ally, one would have at least a good idea how the imperfections are distributed, based
on an inspection of a representative number of specimen, then generate a corresponding
ensemble, and compute the resonances of each individual member. Since we are not con-
sidering any particular case, here we simply assume that the random shape fluctuations
correspond to Gaussian distortions as described by Eq. (3.3). We start with n=4, set s=1,
and choose randomly distributed θi, φi, hi, and wi with i = 1,··· ,4. The positions of the
distortions, described by the angles θi and φi, are uniformly distributed on the sphere, hi

is normally distributed with a mean of 0.2 and a standard deviation of 0.1; the normally
distributed widths wi have a mean value of µw =0.7 and a standard deviation of σw =0.3.
Clearly, perturbations with a negative width wi are discarded, and we admit only per-
turbations with hi/wi ≤ 2 in order to avoid sharp peaks. Therefore each realization is a
sphere with four or less perturbations.

In order to get significant results we generate 1000 realizations of the perturbed
sphere, calculate for each realization the matrices Mi and solve the system of Eq. (2.6)
for 100 different incident fields, i.e.,we consider 100000 cases. We choose N = 7, and re-
quire e1,2 ≤0.1 as explained in Section 3.1, which has resulted in an ensemble with 42829
members.

In Fig. 6(a), we present a histogram of the resonant values of the real part of the per-
mittivity. Here we count a peak in the absolute value |αin| of the polarizability of a par-
ticle as a resonance if |αin| is at least 0.1 times the value |αin,sphere| of a perfect sphere. Hǫ

denotes the number of the resonances in the corresponding interval of Re(ǫ) divided by
the number of particles. In the following pictures, Hα and Hθ are defined in an analogous
way. As seen in Fig. 6(a) the shape fluctuations result in a relatively broad, asymmetric
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Figure 6: Histogram of the resonant values Re(ǫ) for the ensemble of perturbed spheres (a), and the sum of
the depolarization coefficients (b). The vertical lines in (a) indicates the resonances of the ”mean ellipsoid”.

distribution of the resonant values around the unperturbed value Re(ǫ) =−2, and the
maximum is shifted to a slightly bigger value.

To understand the structure of the histogram in Fig. 6(a) in more detail we have cal-
culated for each particle the three depolarization coefficients

Li :=
1

1−ǫi
,

cf. (3.1), determined by the three dipolar resonant values ǫi. For each particle, the sum of
these depolarization coefficients

L=
3

∑
i=1

Li,

is typically only slightly smaller than 1; mean value over all L 0.99 with a standard devi-
ation of 0.01. Due to the sum rule

3

∑
i=1

∞

∑
k=1

Ci,kLi,k =1,

with the mode amplitudes Ci,k for an arbitrary particle [25], this implies on the one hand
that the responses of our perturbed spheres to a uniform electric field are dominated by
the dipole modes. On the other hand, for an ellipsoid ∑

3
i=1 Li =1 and the depolarization

coefficients determine the aspect ratio of the ellipsoid, and therefore with the help of the
depolarization coefficients an ”effective ellipsoid” for each particle can be calculated, i.e.,
an ellipsoid with the same dipolar resonant values. For the vertical lines in Fig. 6(a) we
have sorted the depolarization coefficients of each particle as L1≤ L2≤ L3, calculated the
mean values L1,L2,L3, and then the resonant values

ǫi =1−Li
−1

.

These coincide reasonably with the shape of the histogram. Finally, the rightmost maxi-
mum of Hǫ is due to excitation of quadrupole modes.
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Not only the position of the resonance is of interest, but also the magnitude of the
induced dipole moment. Therefore we present in Fig. 6(b) a histogram of this magni-
tude, considering for each ensemble member only the resonance with the largest dipole
moment. Due to the fact that the polarizability of a sphere scales with its volume and a
typical realization of our perturbed spheres is somewhat bigger than a sphere with ra-
dius 1, we normalize the polarizability to that of a sphere with the same volume as the
perturbed one. In the large majority of cases the polarizability of the perturbed sphere is
smaller than that of the unperturbed one. This is due to the fact that for the sphere there
are no principal axes. Therefore the polarizability is independent of the direction of the
incident field, and for any field the induced dipole moment points into the direction of
the incident field. But if the symmetry of the sphere is destroyed by the perturbations,
there are three distinguished principal axes with different resonant values of the permit-
tivity. So for a fixed permittivity in general only one resonant condition is matched and
therefore essentially only the part of the incident field that points into the direction of
the corresponding principal axis contributes significantly to the induced dipole moment.
This results in an induced dipole moment which typically is smaller than that of a perfect
sphere, and is not parallel to the incident field.

0 0.5
0

0.15

θ/π

Hθ

(a)

0 0.5
0

0.1

θ/π

Hθ

(b)

Figure 7: Histogram of the orientation (relative to Eext) of the induced dipole moment for all resonances (a)
and only the biggest ones (b). The solid line in (a) is obtained if the orientation of the dipole axis is entirely
random.

In a plasmonic waveguide, consisting of a chain of metallic nanoparticles, a random
angle between the induced dipole moment p and the incident field Eext influences an
efficient transport, because the near field of one particle should excite the neighboring
particle. Therefore designing a plasmonic waveguide requires the knowledge of the spa-
tial structure of the near field. Because a sphere has no principal axes, any arbitrarily
small perturbation will pick three axes and therefore affects the orientation of the in-
duced dipole. Thus, with perturbed spheres we may expect that there are only very few
cases in which p is nearly parallel to Eext. To illustrate this quantitatively, we present
histograms of the angle between p and Eext in Fig. 7. In Fig. 7(a) we consider all reso-
nances, whereas in Fig. 7(b) only the biggest resonance for every member is used. The
main result is that realizations with p nearly parallel to Eext are indeed negligible, and the
orientation of the dipole relatively to the external field is nearly random. This can be seen
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from the solid line in Fig. 7(a), proportional to sin(θ), which corresponds to a completely
random choice of the orientation of the dipoles. This figure also illustrates that the only
cases which are suppressed when the spheres are perturbed are those in which p and Eext

are almost perpendicular.

As expected, when only the largest resonances are considered the angle is typically
smaller because, as already pointed out, in a resonant situation only that part of the inci-
dent field contributes that is parallel to the according dipole axis. Moreover, the distribu-
tion of this angle, shown in Fig. 7(b) is quite broad, which demonstrates the substantial
variability in the spatial structure of the field around our perturbed spheres.

Therefore, we now consider the surface modes of perturbed spheroids. As spheroids
already have at least one distinguished principal axis, we expect that perturbations of a
spheroid do not have such a strong effect on the orientation of the induced dipoles. We
employ the same kind of Gaussian perturbations, but now the unperturbed particle is a
spheroid with semi-axes Rx = 1, Ry = 1 and Rz = 1.2. Hence, the shape of a particle is
described by

r(θ,φ)=
[

(sinθ)2+
(cosθ

1.2

)2]−0.5
+

n

∑
i=1

hi exp
[

−0.5
(dist(θi,φi;θ,φ)

wi

)2]

. (4.1)

Again, θi and φi are uniformly distributed on a sphere, hi are normally distributed with a
mean value of 0.2 and a standard deviation of 0.1, and the normally distributed wi have
a mean value of 0.7 and a standard deviation of 0.3. We consider 10000 realizations of the
spheroid and calculate the response to a constant field in z-direction for each. Here the
numerical criterion e1,2≤0.1 leaves us with 4323 particles.

−2.7 z −2 x,y
0

0.1

Re(ε)

Hε

(a)

0 0.5
0

0.2

θ/π

Hθ

(b)

Figure 8: Location of the resonances ((a): all) and orientation of the induced dipole moments ((b): largest
only) for the perturbed spheroids. The vertical lines in (a), labeled by z and x,y, indicates the resonant values
for the unperturbed spheroid and an incident field along respective coordinate axes.

In Fig. 8 we present histograms for the location of the resonances and for the orienta-
tion of the induced dipoles. Again the resonances are shifted to somewhat bigger values
of the permittivity. However, now the angle between the incident field and the induced
dipole moment for the biggest resonance is much smaller, and also the distribution of the
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angle is narrower than in the previous case of the perturbed spheres. This comparison
can be roughly quantified by the respective mean values, and the widths of the distri-
butions of the angles. We focus again on the biggest resonances only, and determine the
mean value θ of the angle and the interval Iθ , centered around the mean value, which
contains two-thirds of the resonances. For the case of the sphere, this results in

θ =1.04 and Iθ =[0.65 :1.43],

whereas
θ =0.23 and Iθ =[0.09 :0.37],

for the case of spheroids.

5 Conclusions

We have presented a simple-to-implement and efficient numerical scheme for calculating
important characteristics for surface modes of sphere-like nanoparticles in the quasistatic
limit, based on an expansion of the ”inner” and ”outer” potentials into spherical harmon-
ics. Although the spherical harmonics do not constitute an orthogonal basis for particles
which are not exactly spherical, and therefore encounter problems similar to those con-
nected with the Rayleigh hypothesis when the deviation from an exact sphere becomes
too strong, they still remain a useful system of functions, in particular so when the bound-
ary conditions are interpreted in an integral manner, with a physically motivated choice
of test functions.

We have validated this scheme against exact solutions for ellipsoids, and against
perturbation-theoretical calculations for deformed spheres. These comparisons and also
additional intrinsic numerical tests both show that our method is able to yield accurate
results for the resonant permittivities and the polariziabilities even when only quite few
spherical harmonics are employed, that is, with quite small basis sets.

This high computational efficiency allows to perform statistical studies of large en-
sembles of randomly perturbed nanoparticles. This ability is indispensable when de-
signing, e.g., plasmonic waveguides from nanoparticles with small, but uncontrolled
fabrication-induced shape fluctuations. On the one hand, typical effects of such imperfec-
tions on the performance of these devices can be quantified in this manner; on the other,
admissible tolerances can be determined. While the specific distribution of shape fluctu-
ations employed for demonstration purposes in our example given in Section 4 exactly
the same route as outlined there.
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Appendix

Structure of the matrices. The structure of the matrices in Eq. (2.6), i.e.,

(M1+ǫM2)U = M3G,

is

M1=































a0,0,0,0 a1,−1,0,0 ··· aN,N,0,0 b0,0,0,0 b1,−1,0,0 ··· bN,N,0,0

a0,0,1,−1 a1,−1,1,−1 ··· aN,N,1,−1 b0,0,1,−1 b1,−1,1,−1 ··· bN,N,1,−1
...

...
. . .

...
...

...
...

. . .

a0,0,N,N a1,−1,N,N ··· aN,N,N,N b0,0,N,N b1,−1,N,N ··· bN,N,N,N

0 0 ··· 0 d0,0,0,0 d1,−1,0,0 ··· dN,N,0,0
...

...
. . .

... d0,0,1,−1 d1,−1,1,−1 ··· dN,N,1,−1
...

...
. . .

...
...

...
. . .

...
0 0 ··· 0 d0,0,N,N d1,−1,N,N ··· dN,N,N,N































,

M2 =

(

0 0

(cl,m,l ′,m′) 0

)

, M3 =

(

(al,m,l ′,m′) 0

(cl,m,l ′,m′) 0

)

,

where 0 is the (N+1)2×(N+1)2 zero matrix. The coefficients al,m,l′,m′ , ··· , dl,m,l′,m′ are

defined by projections of the boundary conditions (2.2a), (2.2b) onto the modes rl′Ym′

l′ on
the surface of the particle ∂Ω

al,m,l′,m′ =
∫

∂Ω

r(s)l+l′Ym
l (s)Ym′

l′ (s)dS,

bl,m,l′,m′ =−
∫

∂Ω

r(s)−(l+1)+l′Ym
l (s)Ym′

l′ (s)dS,

cl,m,l′,m′ =
∫

∂Ω

∂n

(

r(s)lYm
l (s)

)

r(s)l′Ym′

l′ (s)dS,

dl,m,l′,m′ =−
∫

∂Ω

∂n

(

r(s)−(l+1)Ym
l (s)

)

rl′Ym′

l′ (s)dS.

Thus, for a sphere with radius 1 the coefficients are

al,m,l′,m′ =δll′δmm′, bl,m,l′,m′ =−δll′δmm′ ,

cl,m,l′,m′ = lδll′δmm′, dl,m,l′,m′ =(l+1)δll′δmm′,

and so only four block diagonals of the matrix M1+ǫM2 have nonzero entries. The vec-
tors U and G in the system (2.6) are defined by the coefficients αl,m, βl,m and γl,m of the
expansion of the potentials (2.4a) and (2.4c) as

U =(α0,0,α1,−1,··· ,αN,N ,β0,0,β1,−1,··· ,βN,N)t,

G=(γ0,0,γ1,−1,··· ,γN,N,0,··· ,0)t.
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